Testing Digital Systems I

Size: px
Start display at page:

Download "Testing Digital Systems I"

Transcription

1 Testing igital Systems I Testing igital Systems I Lecture : Test Generation for Sequential Circuits Instructor: M. Tahoori Copyright 2, M. Tahoori TS I: Lecture Sequential Circuits Approach Convert Finite State Machine to Corresponding Iterative Network Multiple Time Frames (Iterative Cells) Needed for Justification and Propagation One Fault in Sequential Circuit Many Faults in Corresponding Iterative Network Use 9-valued signals Issues Order of Justification and Propagation Simulation Values Test Point Insertion ( Partial Scan) Copyright 2, M. Tahoori TS I: Lecture 2 Lecture

2 Testing igital Systems I Sequential ATPG ifficulties Initialization of the bistables Gated clocks Circuits with multiple clock domains Internally derived clocks, mixed data and clock signals Asynchronous logic Circuits with combinational feedback paths Embedded counters Embedded RAMs and ROMs Copyright 2, M. Tahoori TS I: Lecture 3 Finite State Machine Example : serial adder S i = a i b i c i- C i = a i b i c i- (a i b i ) a b C P Q C OR S CK Copyright 2, M. Tahoori TS I: Lecture 4 Lecture 2

3 Testing igital Systems I Example Corresponding parallel binary adder circuit Iterative network of the previous circuit a b a b a2 b2 Cin P P P2 OR S OR S OR S2 C2 Copyright 2, M. Tahoori TS I: Lecture 5 General Case Huffman model of sequential circuit with edge-triggered -flip-flops x y Combinational Logic Q C CK Copyright 2, M. Tahoori TS I: Lecture 6 Lecture 3

4 Testing igital Systems I General Case Any sequential circuit with edge-triggered -FF can be directly converted into an iterative network x x xr y y yr Combinational Logic Combinational Logic Combinational Logic r Copyright 2, M. Tahoori TS I: Lecture 7 Iterative Logic Array Expansion To detect a fault, a sequence of vectors may be needed Copyright 2, M. Tahoori TS I: Lecture 8 Lecture 4

5 Testing igital Systems I Example Test for P SA Provoke Fault on P: a =, b = Propagate Fault to S2: C = Need to consider last time frame: : a =, b =, Cin = a2 =, b2 = a b a b a2 b2 Cin OR S P P P2 C C OR OR S S2 C2 Copyright 2, M. Tahoori TS I: Lecture 9 Example Test for u SA In time frame t provoke fault: u = propagate fault effect to (path E,H,): v = and G = Justify B = C = : y = and w = Requires G = in the time frame t- for a don t care value of y (i.e., y = or ) in the time frame t - u v w A y B C E Q C Copyright 2, M. Tahoori TS I: Lecture G H CK Lecture 5

6 Testing igital Systems I Example (cont) Test for u SA In time frame t - G =, y = A = U = A = in the faulty circuit Conflict! u v w A y B C E Q C Copyright 2, M. Tahoori TS I: Lecture G H CK Example (cont) Problem with this example Try to extend -algorithm for sequential circuits is in the presence of u/ irrespective of the logic values on other signal lines, and the content of the flip-flop Copyright 2, M. Tahoori TS I: Lecture 2 Lecture 6

7 Testing igital Systems I Example (cont) Input sequence to set to in the fault-free circuit E = and G = B = y = u = v = and w = in cycle t - u =, v = and w = in cycle t u v w A y B C E G H Q C CK Copyright 2, M. Tahoori TS I: Lecture 3 Nine-Valued Signals A fault can be detected even if in the presence of the fault a signal line in the faulty circuit has an unknown value () While the corresponding signal line in the fault-free circuit has a known value ( or ) or vice-versa This information is not expressed by the logic values,, and introduced in the context of the -algorithm Copyright 2, M. Tahoori TS I: Lecture 4 Lecture 7

8 Testing igital Systems I Nine-Valued Signals Symbol Symbol Fault-free circuit value Faulty Circuit Value <, > <, > <, > <, > <, > or or <, > G or <, > G or <, > F or <, > or Copyright 2, M. Tahoori TS I: Lecture 5 Using Nine-valued Signals Propagate assigned values Assign values to propagate or Assign values to provoke or at stuck fault gate output Primitive -cube of the fault Line Justification Copyright 2, M. Tahoori TS I: Lecture 6 Lecture 8

9 Testing igital Systems I Propagating Assigned Values NOT AN G G F G G F G G F G G F G G F F F F G G G F G G F G G G G G G G G G G F F F F F F F F G F Copyright 2, M. Tahoori TS I: Lecture 7 Propagation -Cubes For propagating the fault effect through an OR gate with input, apply <, > to the other inputs of the OR gate. For propagating the fault effect through an OR gate with input, apply <, > to the other inputs of the OR gate. For propagating the fault effect through an AN gate with input, apply <, > to the other inputs of the AN gate. For propagating the fault effect through an AN gate with input, apply <, > to the other inputs of the AN gate. Copyright 2, M. Tahoori TS I: Lecture 8 Lecture 9

10 Testing igital Systems I Assigning Values To Provoke Or At stuck fault gate output Primitive -cube of the fault AN Gate with output SA AN Gate with output SA a b a b <,> <,> <,> <,> <,> <,> AN Gate with input a SA AN Gate with input a SA a b a b <,> <,> <,> <,> Copyright 2, M. Tahoori TS I: Lecture 9 Line Justification AN Gate with output <,> AN Gate with output <,> a b a b <,> <,> <,> <,> <,> <,> <,> <,> <,> Copyright 2, M. Tahoori TS I: Lecture 2 Lecture

11 Testing igital Systems I Example: u/ Provoke the fault Apply <, > = on signal line u at time frame t Propagate fault effect (along path through E and H to ) v and G must be <, > = G v is a primary input v = <, > at time t A = <, > justify B = C = <, > (= G) justifying C = <, > w = C= <,> at time frame t justifying B = <, > justify y = <, > justify G = <, > at time frame t- u v w A y B C E Copyright 2, M. Tahoori TS I: Lecture 2 G H Q C CK Example: u/ (cont) justifying G = <, > (= G) in time frame t- justify B = C = <, > at time frame t- justify C = <, > by setting w = in time frame t- justifying <, > on B set A = <, > and y = <, > A = <, > u = <, > and v = <, > in time frame t- u = v = at time frame t- Test for u/ u =, v = and w = in time frame t- u =, v = and w = in time frame t u v w A y B C E Copyright 2, M. Tahoori TS I: Lecture 22 G H Q C CK Lecture

12 Testing igital Systems I Complexity of ATPG Synchronous circuit All flip-flops controlled by clocks; PI and PO synchronized with clock: Cycle-free circuit No feedback among flip-flops Test generation for a fault needs no more than dseq time-frames dseq is the sequential depth. Cyclic circuit Contains feedback among flip-flops: May need 9 Nff time-frames Nff is the number of flip-flops. Asynchronous circuit Higher complexity! Smax Time- Frame max- Time- Frame max-2 S3 Time- Frame -2 S2 Time- Frame - S Time- Frame S max = Number of distinct vectors with 9-valued elements = 9 Nff Copyright 2, M. Tahoori TS I: Lecture 23 Cycle-Free Circuits Characterized by Absence of cycles among flip-flops and a sequential depth, dseq. dseq is the maximum number of flip-flops on any path between PI and PO. Both good and faulty circuits are initializable. Test sequence length for a fault is bounded by dseq. Copyright 2, M. Tahoori TS I: Lecture 24 Lecture 2

13 Testing igital Systems I Circuit Cycle-Free Example F2 2 Level = F2 F3 3 s - graph 2 F3 Level = 3 All faults are testable dseq = 3 Copyright 2, M. Tahoori TS I: Lecture 25 Cyclic Circuit Example Modulo-3 counter CNT F2 s - graph F2 Copyright 2, M. Tahoori TS I: Lecture 26 Lecture 3

14 Testing igital Systems I Modulo-3 Counter Cyclic structure Sequential depth is undefined. Circuit is not initializable. No tests can be generated for any stuck-at fault. After expanding the circuit to 9 Nff = 8, or fewer, timeframes ATPG program calls any given target fault untestable. Circuit can only be functionally tested by multiple observations. Functional tests, when simulated, give no fault coverage. Copyright 2, M. Tahoori TS I: Lecture 27 Summary Combinational ATPG algorithms are extended: Time-frame expansion unrolls time as combinational array Nine-valued logic system Justification via backward time Cycle-free circuits: Require at most dseq time-frames dseq is the maximum number of flip-flops on any path between PI and PO Always initializable Cyclic circuits: May need 9 Nff time-frames Nff is the number of flip-flops Circuit must be initializable Partial scan can make circuit cycle-free Asynchronous circuits: High complexity Low coverage and unreliable tests Copyright 2, M. Tahoori TS I: Lecture 28 Lecture 4

Design Verification & Testing Design for Testability and Scan

Design Verification & Testing Design for Testability and Scan Overview esign for testability (FT) makes it possible to: Assure the detection of all faults in a circuit Reduce the cost and time associated with test development Reduce the execution time of performing

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

Memory Elements. Combinational logic cannot remember

Memory Elements. Combinational logic cannot remember Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

More information

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

ECE380 Digital Logic

ECE380 Digital Logic ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during

More information

Asynchronous counters, except for the first block, work independently from a system clock.

Asynchronous counters, except for the first block, work independently from a system clock. Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can

More information

Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary

Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at

More information

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012 Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Introduction to VLSI Testing

Introduction to VLSI Testing Introduction to VLSI Testing 李 昆 忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan, R.O.C. Introduction to VLSI Testing.1 Problems to Think A 32 bit adder A

More information

Counters & Shift Registers Chapter 8 of R.P Jain

Counters & Shift Registers Chapter 8 of R.P Jain Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Counters are sequential circuits which "count" through a specific state sequence.

Counters are sequential circuits which count through a specific state sequence. Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Lecture 10 Sequential Circuit Design Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 10 Sequential Circuit Design Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS igital IC esign & Analysis Lecture 10 Sequential Circuit esign Zhuo Feng 10.1 Z. Feng MTU EE4800 CMOS igital IC esign & Analysis 2010 Sequencing Outline Sequencing Element esign Max and Min-elay

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Prof. Randy Katz (Unified

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Flip-Flops, Registers, Counters, and a Simple Processor

Flip-Flops, Registers, Counters, and a Simple Processor June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

More information

Combinational Logic Design Process

Combinational Logic Design Process Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

A New Paradigm for Synchronous State Machine Design in Verilog

A New Paradigm for Synchronous State Machine Design in Verilog A New Paradigm for Synchronous State Machine Design in Verilog Randy Nuss Copyright 1999 Idea Consulting Introduction Synchronous State Machines are one of the most common building blocks in modern digital

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

EE360: Digital Design I Course Syllabus

EE360: Digital Design I Course Syllabus : Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

Switching and Finite Automata Theory

Switching and Finite Automata Theory Switching and Finite Automata Theory Understand the structure, behavior, and limitations of logic machines with this thoroughly updated third edition. New topics include: CMOS gates logic synthesis logic

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

More information

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:

More information

Design Verification and Test of Digital VLSI Circuits NPTEL Video Course. Module-VII Lecture-I Introduction to Digital VLSI Testing

Design Verification and Test of Digital VLSI Circuits NPTEL Video Course. Module-VII Lecture-I Introduction to Digital VLSI Testing Design Verification and Test of Digital VLSI Circuits NPTEL Video Course Module-VII Lecture-I Introduction to Digital VLSI Testing VLSI Design, Verification and Test Flow Customer's Requirements Specifications

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013 DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1

More information

More Verilog. 8-bit Register with Synchronous Reset. Shift Register Example. N-bit Register with Asynchronous Reset.

More Verilog. 8-bit Register with Synchronous Reset. Shift Register Example. N-bit Register with Asynchronous Reset. More Verilog 8-bit Register with Synchronous Reset module reg8 (reset, CLK, D, Q); input reset; input [7:0] D; output [7:0] Q; reg [7:0] Q; if (reset) Q = 0; else Q = D; module // reg8 Verilog - 1 Verilog

More information

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines

More information

Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX

Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX White Paper Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX April 2010 Cy Hay Product Manager, Synopsys Introduction The most important trend

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic

More information

Lecture 10: Sequential Circuits

Lecture 10: Sequential Circuits Introduction to CMOS VLSI esign Lecture 10: Sequential Circuits avid Harris Harvey Mudd College Spring 2004 Outline q Sequencing q Sequencing Element esign q Max and Min-elay q Clock Skew q Time Borrowing

More information

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.

More information

Lecture 11: Sequential Circuit Design

Lecture 11: Sequential Circuit Design Lecture 11: Sequential Circuit esign Outline Sequencing Sequencing Element esign Max and Min-elay Clock Skew Time Borrowing Two-Phase Clocking 2 Sequencing Combinational logic output depends on current

More information

Sequential Circuit Design

Sequential Circuit Design Sequential Circuit Design Lan-Da Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

Set-Reset (SR) Latch

Set-Reset (SR) Latch et-eset () Latch Asynchronous Level sensitive cross-coupled Nor gates active high inputs (only one can be active) + + Function 0 0 0 1 0 1 eset 1 0 1 0 et 1 1 0-? 0-? Indeterminate cross-coupled Nand gates

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

Theory of Logic Circuits. Laboratory manual. Exercise 3

Theory of Logic Circuits. Laboratory manual. Exercise 3 Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices

More information

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

VLSI Design Verification and Testing

VLSI Design Verification and Testing VLSI Design Verification and Testing Instructor Chintan Patel (Contact using email: cpatel2@cs.umbc.edu). Text Michael L. Bushnell and Vishwani D. Agrawal, Essentials of Electronic Testing, for Digital,

More information

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012 Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information

Chapter 5. Sequential Logic

Chapter 5. Sequential Logic Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends

More information

Sequential Logic: Clocks, Registers, etc.

Sequential Logic: Clocks, Registers, etc. ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design

More information

Digital Fundamentals

Digital Fundamentals igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store

More information

Layout of Multiple Cells

Layout of Multiple Cells Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed

More information

Chapter 8. Sequential Circuits for Registers and Counters

Chapter 8. Sequential Circuits for Registers and Counters Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State

More information

Contents COUNTER. Unit III- Counters

Contents COUNTER. Unit III- Counters COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

More information

Step : Create Dependency Graph for Data Path Step b: 8-way Addition? So, the data operations are: 8 multiplications one 8-way addition Balanced binary

Step : Create Dependency Graph for Data Path Step b: 8-way Addition? So, the data operations are: 8 multiplications one 8-way addition Balanced binary RTL Design RTL Overview Gate-level design is now rare! design automation is necessary to manage the complexity of modern circuits only library designers use gates automated RTL synthesis is now almost

More information

CpE358/CS381. Switching Theory and Logical Design. Class 10

CpE358/CS381. Switching Theory and Logical Design. Class 10 CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer- 24 Copyright 24-373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic

More information

The Model Checker SPIN

The Model Checker SPIN The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(

More information

Getting the Most Out of Synthesis

Getting the Most Out of Synthesis Outline Getting the Most Out of Synthesis Dr. Paul D. Franzon 1. Timing Optimization Approaches 2. Area Optimization Approaches 3. Design Partitioning References 1. Smith and Franzon, Chapter 11 2. D.Smith,

More information

NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6

NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6 E.T.S.E.T.B. MSc in ICT FINAL EXAM VLSI Digital Design Spring Course 2005-2006 June 6, 2006 Score publication date: June 19, 2006 Exam review request deadline: June 22, 2006 Academic consultancy: June

More information

Digital Logic Design Sequential circuits

Digital Logic Design Sequential circuits Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief E-mail: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An n-bit register

More information

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog ECE232: Hardware Organization and Design Part 3: Verilog Tutorial http://www.ecs.umass.edu/ece/ece232/ Basic Verilog module ();

More information

Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology

Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter

More information

Module-I Lecture-I Introduction to Digital VLSI Design Flow

Module-I Lecture-I Introduction to Digital VLSI Design Flow Design Verification and Test of Digital VLSI Circuits NPTEL Video Course Module-I Lecture-I Introduction to Digital VLSI Design Flow Introduction The functionality of electronics equipments and gadgets

More information

The 104 Duke_ACC Machine

The 104 Duke_ACC Machine The 104 Duke_ACC Machine The goal of the next two lessons is to design and simulate a simple accumulator-based processor. The specifications for this processor and some of the QuartusII design components

More information

Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Digital Fundamentals. Lab 8 Asynchronous Counter Applications Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

Combinational Controllability Controllability Formulas (Cont.)

Combinational Controllability Controllability Formulas (Cont.) Outline Digital Testing: Testability Measures The case for DFT Testability Measures Controllability and observability SCOA measures Combinational circuits Sequential circuits Adhoc techniques Easily testable

More information

Design: a mod-8 Counter

Design: a mod-8 Counter Design: a mod-8 Counter A mod-8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7. So, the stored value follows

More information

Asynchronous Counters. Asynchronous Counters

Asynchronous Counters. Asynchronous Counters Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

More information

The Boundary Scan Test (BST) technology

The Boundary Scan Test (BST) technology The Boundary Scan Test () technology J. M. Martins Ferreira FEUP / DEEC - Rua Dr. Roberto Frias 42-537 Porto - PORTUGAL Tel. 35 225 8 748 / Fax: 35 225 8 443 (jmf@fe.up.pt / http://www.fe.up.pt/~jmf) Objectives

More information

Sequential Circuits. Combinational Circuits Outputs depend on the current inputs

Sequential Circuits. Combinational Circuits Outputs depend on the current inputs Principles of VLSI esign Sequential Circuits Sequential Circuits Combinational Circuits Outputs depend on the current inputs Sequential Circuits Outputs depend on current and previous inputs Requires separating

More information

Copyright Peter R. Rony 2009. All rights reserved.

Copyright Peter R. Rony 2009. All rights reserved. Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table

More information

Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic

Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic Aims and Objectives E 3.05 Digital System Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk How to go

More information

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is CONTENTS PREFACE xv 1 INTRODUCTION 1 1.1 About Digital Design 1 1.2 Analog versus Digital 3 1.3 Digital Devices

More information

路 論 Chapter 15 System-Level Physical Design

路 論 Chapter 15 System-Level Physical Design Introduction to VLSI Circuits and Systems 路 論 Chapter 15 System-Level Physical Design Dept. of Electronic Engineering National Chin-Yi University of Technology Fall 2007 Outline Clocked Flip-flops CMOS

More information

Master/Slave Flip Flops

Master/Slave Flip Flops Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

More information

Registers & Counters

Registers & Counters Objectives This section deals with some simple and useful sequential circuits. Its objectives are to: Introduce registers as multi-bit storage devices. Introduce counters by adding logic to registers implementing

More information

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit - FSM A Sequential circuit contains: Storage

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information