The components. E3: Digital electronics. Goals:
|
|
|
- Lester White
- 9 years ago
- Views:
Transcription
1 E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC (4x2-input NAND) 1 st. IC (6x1-input NOT) 1 st. IC (3x3-input NAND) 1 st. IC (2x4-input NAND) 2 st. IC (7-segment display driver) 1 st. IC (2x1 JK-flip-flop) 1 st. IC (4-bitars binary counter) 1 st. IC (5-bit shift register) 1 st. Breadboard 1 st. digital oscilloscope. The components 1. The light emitting diodes (LED) The voltage drop over an LED is ca. 2 V Limit the current by a few hundred ohm series resistor. The cathode side cut off. 2. The LED bridge. Ten individual LEDs in one unit. The anode side is marked by the cut off corner. Also here you need the series resistor. 3. The resistor bridge. 8 pc. 470 Ω resistors Connected together on one side. See fig 1. Fig 1. Resistor bridge
2 4. 7-segment display 7 LEDs which can show the digits 0-9. The anode is common. The decoding from binary number to shining segments is done in the circuit. Pins a, b, c, d, e, f, g connect to the individual diode cathodes. The pin DP connects to the decimal point. Figur 2. 7-segment display Figur 3. 74HC47 driver to 7 segment display 5. 7-segment display driver circuit The 74HC47 chip with supply voltages (pin 16: V CC = + 5 V and pin 8: GND = 0 V) decodes the binary number (inputs DCBA). The relevant segments labels have corresponding output pins on the chip. RBI and RBO may be unconnected (nc). LT stands for Lamp Test. When grounded, all LEDs of the display will shine 6. The inverter chip The 74HC04 circuit contains 6 inverters ( NOT gates). The supply voltages shall be the normal : V CC = + 5 V och GND = 0 V. Since the chip contains 6 gates it is called a 6x1 NOT gate. The label HC indcates that it is not a standard TTL circuit. The C means that it uses the CMOS definition of logic 1 and logic 0. This will be important when we use the chip to make a clock pulse generator. Figur 4. 74HC04 NOT-gate
3 7. NAND-gate NAND-gates have two or more inputs per gate. The pin assignments for three NAND chips follow in figure 5. You have them in the box. 74HC00 4x2 input NAND 74HC10 3x3 input NAND 74HC20 2x4 input NAND Figur 5 Pinouts of the NAND gates
4 8. J-K Flip-Flop The J-K Flip Flop is a type of circuit called sequential net. When the clock signal, Ck, presents a falling edge, the status on the J and K inputs is loaded into the flip-flop. The stored values depend on the previous values in the flip-flop (the sequentiality). There are two control signals CL and PR. (clear and preset). 74HC76 (2x1 JK flip-flop) 74HC93 (4-bit binary counter) 74HC96 5-bit shift register Principal sketch of the shift register. Figur 6. Circuits with Flip-Flops
5 How to connect IC s to the breadboard Remove a chip carefully. Use a screwdriver or similar to lift it up in small steps at each end. Large chips with many legs may require special tools. Make sure that you don t forget supply voltage and ground connection! Inputs must in general be connected in order to have well defined status. Static electricity can easily charge up an input to make it logic 1. Pins labeled NC (Not Connected) can be left open. The Lab work starts here: A. Logic circuits You use the LED-bridge to visualize the output result. Use the resistor bridge to provide individual protection resistors to the LEDs (maximum 8 are used). Connect + 5 V to the common pin of the resistor bridge and the anode of the individual LEDs to the other end of each resistor. How can you make the LED shine? Save the LED circuit for use later during the lab (all day). Normally, logic circuits operate on simultaneous pulses on the inputs. We will make it easier with static values 0V (logic 0 ) and 5V (logic 1 ) by connecting wires to ground and to the supply voltage. Let us start with the inverter, 74HC04. Connect the chip. Study one of the six inverters. Connect logic 1 to the input. Inspect the output with the LED (use one of the segments of the bridge). What do you observe? Describe it in the report. Now lets study the 74HC00, NAND circuit. Connect the chip. Use the LED bridge to inspect the result. Fill out the truth table. Connect the output to the inverter! What logic operation does this circuit perform?
6 A B Q (just NAND) Q (NAND with inverter) B. Full adder. We will build a 1-bit full adder. Lets take it step by step. The circuit diagram for the half adder is found below. Build it on the breadboard. A B =1 XOR Q & AND C UT Construct the truth table. Unfortunately, we have only NOT- and NAND-gates. At first sight this may seem like a complication and you think you need a lot of circuitry. Once the half adder works you shall make another half adder. Then you connect the two half adders to a full adder. Here you will see that you can save components by being clever.
7 AND AND or C ut A B C in XOR XOR Q Construct the Truth table. Explain what the circuit does. C. Multiplexer and decoder The two circuits are illustrated in the figures. It is not so instructive to connect and try them. So just let us analyse what these two important circuits do. Explain the function of the two circuits. What is the use of them in a digital system, e.g a computer. D. Clocksignal generator (oscillator) A digital system is normally driven by a clock pulse that keeps track of data in the system. The clock is a pulse train by which activities in the digital system are coordinated. The clock generator we build is a poor mans clock with bad timing accuracy. Precision timing uses crystal oscillators
8 instead. Simple clock signalgenerator Choose capacitor and resistor to obtain a period time of approximately 1 ms. Study the signals by oscilloskope and explain how the circuit works, based on a sketch of the oscilloscope information at crucial points. Add an inverter on the output to obtain sharp edges on the clock which ideally has vertical steps when changing state. You will need the clockpulse generator later. D. Sequential nets, the flip-flop. So far, we have dealt with combinatorial logic. The output stat does only depend on what the input is. Sequential logic differs so that the output state depend on the input and what the old state was. You see it in the figures below as the connection from the output, back to the input. The simplest flip-flop is called the SR-flip-flop. The index n refers to the clockpulse in the sequence so Q n+1 is the new value and Q n was the previous one. From the truth table you see that One setting (01)corresponds to setting the value to 0, next setting (10)the value is set to 1 and with (11) the previous value is kept. This corresponds to the three states of a memory cell in a computer, clear bi, set bit and remeber bit. For this simple the (00) value has undefined result. Make a complete truth table, i.e. including also the different possibilities of old values. The JK-flip-flop has 4 a well defined states. For J=1 and K=1 the new value is then the inverse of the old value. This is not needed for the memory function but it is very useful in an important circuit, the binary counter.
9 Make a complete truth table, i.e. including also the different possibilities of old values. F. The binary counter. Connect 74HC93, binary counter according to the description. The chip contains three flip-flops which are connected together and a fourth which is individual. You must connect it to the other three externally to obtain a 4-bit counter. The reset inputs R(1) och R(2) must be grounded. Connect Q A, Q B, Q C, och Q D, to the LED bridge. Use the clock adjusted to a frequency of ca 1Hz, as input. Visualize the clocking on a LED. Describe function with a table and in words. Change to 1kHz frequency. Use the oscilloscope to study the function in detail. Make a sketch of your observations with the oscilloscope. You need the binary counter in part G. Change the frequency back to 1Hz. G. Visualize the counting with 7-segment display. Connect the display (don t forget the protection resistor) to the 74HC47 translator chip. Check that it works by grounding the LT pin. All segments should shine. The outputs from the binary counter should then be removed from the LED bridge and instead connected as Q A =A, Q B =B, Q C =C och Q D =D where A,B,C,D are pins on the 74HC47. Describe the result. It does not look allright all the way up to the result FF. Why? What would you like to do to solve this? This is a common problem so the chips are prepared for a solution. Try to figure it out. You have to check what is inside the chips. Do the change so that the display works as one digit in a decimal counter. Describe your solution.
10 H. Shiftregister Look at the circuit diagram and explain the function of the shift register. What can it be used for in a digital system. Which matematical operation does it perform? If you have time you can hook up the 74HC96, 5-bit shift register. Connect the parallel outputs to the LED bridge. Connect CL to logic 1 and PE to logic 0. SI to logic 0 and Ck to the clock. Connect a bit pattern on pins PR A, PR B, PR C, PR D, PR E. By quickly setting PRESET ENABLE to logic 1 and back to 0 you load the bit pattern into the shift register. On the next clock edge, the data is moved one step. The last bit emerges on Q E. Connect Q E with SERIAL INPUT and the bit pattern will rotate continuously. You can also try to feed in data into the SERIAL INPUT synchronized by hand with the clock (you have to make the clock it really slow).
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
CHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage
Upon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
A Digital Timer Implementation using 7 Segment Displays
A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics
Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
3-Digit Counter and Display
ECE 2B Winter 2007 Lab #7 7 3-Digit Counter and Display This final lab brings together much of what we have done in our lab experiments this quarter to construct a simple tachometer circuit for measuring
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation
Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential
Digital Logic Elements, Clock, and Memory Elements
Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set
DEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.
Operating Manual Ver.1.1
4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-
Copyright Peter R. Rony 2009. All rights reserved.
Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits
2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.
2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,
A Lesson on Digital Clocks, One Shots and Counters
A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters
A Lesson on Digital Clocks, One Shots and Counters
A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters
Interfacing To Alphanumeric Displays
Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
Contents COUNTER. Unit III- Counters
COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
Module 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : [email protected] Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
CHAPTER 11 LATCHES AND FLIP-FLOPS
CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop
Seven-Segment LED Displays
Seven-Segment LED Displays Nicholas Neumann 11/19/2010 Abstract Seven-segment displays are electronic display devices used as an easy way to display decimal numerals and an alterative to the more complex
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
Lecture-3 MEMORY: Development of Memory:
Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct
EXPERIMENT 8. Flip-Flops and Sequential Circuits
EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift
ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit
AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR
AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR INTRODUCTION This Project "Automatic Night Lamp with Morning Alarm" was developed using Microprocessor. It is the Heart of the system. The sensors
DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.
DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting
List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).
G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment
ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
Asynchronous Counters. Asynchronous Counters
Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter
Memory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
Digital Fundamentals. Lab 8 Asynchronous Counter Applications
Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
Objectives: Part 1: Build a simple power supply. CS99S Laboratory 1
CS99S Laboratory 1 Objectives: 1. Become familiar with the breadboard 2. Build a logic power supply 3. Use switches to make 1s and 0s 4. Use LEDs to observe 1s and 0s 5. Make a simple oscillator 6. Use
GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8
GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 06057-2905 (860) 489-8003 www.alta-engineering.com
Chapter 8. Sequential Circuits for Registers and Counters
Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State
WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
Digital Logic Design Sequential circuits
Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: [email protected] Dr. Eng. Rania.Swief E-mail: [email protected] Dr. Eng. Ahmed H. Madian Registers An n-bit register
1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver
Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,
Flip-Flops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
PLL frequency synthesizer
ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,
1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs
CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.
GLOLAB Universal Telephone Hold
GLOLAB Universal Telephone Hold 1 UNIVERSAL HOLD CIRCUIT If you have touch tone telephone service, you can now put a call on hold from any phone in the house, even from cordless phones and phones without
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
CS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
Lesson 12 Sequential Circuits: Flip-Flops
Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012
Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR
Figure 8-1 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
Systems I: Computer Organization and Architecture
Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store
Lab 1: Study of Gates & Flip-flops
1.1 Aim Lab 1: Study of Gates & Flip-flops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flip-flops. 1.2 Hardware Requirement a. Equipments -
Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
ENGI 241 Experiment 5 Basic Logic Gates
ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.
Chapter 9 Latches, Flip-Flops, and Timers
ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
ECEN 1400, Introduction to Analog and Digital Electronics
ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall
Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
Flip-Flops and Sequential Circuit Design
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
Sequential Logic Design Principles.Latches and Flip-Flops
Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch
Sequential Logic: Clocks, Registers, etc.
ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design
ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME
The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.
Counters & Shift Registers Chapter 8 of R.P Jain
Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without
Wiki Lab Book. This week is practice for wiki usage during the project.
Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1
Let s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
Design Verification and Test of Digital VLSI Circuits NPTEL Video Course. Module-VII Lecture-I Introduction to Digital VLSI Testing
Design Verification and Test of Digital VLSI Circuits NPTEL Video Course Module-VII Lecture-I Introduction to Digital VLSI Testing VLSI Design, Verification and Test Flow Customer's Requirements Specifications
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
Build A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue
Build A Video Switcher Reprinted with permission from Electronics Now Magazine September 1997 issue Copyright Gernsback Publications, Inc.,1997 BUILD A VIDEO SWITCHER FRANK MONTEGARI Watch several cameras
SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
Interfacing Analog to Digital Data Converters
Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
Gray Code Generator and Decoder by Carsten Kristiansen Napier University. November 2004
Gray Code Generator and Decoder by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Design of a Gray Code Generator and
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department
Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and
DS1307ZN. 64 x 8 Serial Real-Time Clock
DS137 64 x 8 Serial Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The Input-Control/Output-Display
Lab Unit 4: Oscillators, Timing and the Phase Locked Loop
Chemistry 8 University of WisconsinMadison Lab Unit : Oscillators, Timing and the Phase Locked Loop Oscillators and timing circuits are very widely used in electronic measurement instrumentation. In this
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0
ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.
Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors
Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles
