Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:"

Transcription

1 Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary sequence. -bit (up) binary counter:,,,. -bit down binary counter: 7,,,,,,, Design Eample: ers Other useful counters: Decimal counter (e.g. BCD counter),,,,,,,, Modulo-k counter Modulo- counter:,,,,,,,, M-to-N counter -to-8 counter:,,,,7,8,,, Ripple counter Ring counter and ohnson counter -Bit Binary er -Bit Binary er (t) (t+) T current state net state flip-flop inputs A B C A B C TA TB TC Flip-flop input functions TA = BC TB = C TC = T A T B T C Figure. gives a -bit binary counter. When =C, =B, =A, delete, set enable bit to be constant, it becomes this -bit counter.

2 Binary er with Flip-Flops E A -Down Binary er E A (t) (t+) when E = and goes from to : A A A A A A A A A A Eercise: Verify that the circuit is a binary counter that counts down from to, and then back to again. A A A A A A A A Summary Binary er with Parallel Sequential circuit design eample Shift registers Basic counters Net time Binary counter with parallel Ripple counter ohnson counter Net Monday: Eam IV PLD, Chapter, 7., 7. Discussion on Wednesday s class control signals, modes: ( i =D i ) = (up) =, = No change =, = (change, or count, happens only at positive edge of the clock pulse.) Carry Out: if and only if the counter is in count mode with content. Read Figure. for the detailed implementation. D D

3 9 7 8 modulo- Modulo-7 er modulo-7 (when to ) D D modulo- -To-8 er D D -to-8 (when and what to ) Design Eample Eam IV 8-bit counter with two ers D D D D 7 PLD Timing diagram for basic latch/flip-flop Sequential circuit analysis Sequential circuit design Registers and counters

4 Ripple er Synchronous counter: the signal of all flipflops are from the common clock. Ripple counter: the of some flip-flops are from other flip-flops (and through logic gates). Ripple counter is asynchronous Binary ripple (up) counter (read Figure.) Binary ripple down counter Where the signal comes from? (By default, flip-flop is positive edge triggered.) BCD Ripple er Verify the following circuit is a BCD Ripple counter triggered by negative edge. 8 BCD Ripple er Verify the following circuit is a BCD Ripple counter triggered by negative edge. Ring er Ring counter: a circular shift register (with k flipflops) that at any time, only one flip-flop is set (having value ) and all others are cleared (with value ). It is used to generate k (periodic) timing signals. Eample: see Figure.7 for circuit. A D 8 C B

5 Ring er as er + Decoder ohnson er To generate (periodic) timing signals, we need a -bit ring counter, or a -bit counter and a decoder. -bit count decoder D C B A ohnson counter: a k-bit circular shift register with the complement of the last flip-flop connected to the input of the first flip-flop, and k decoding gates. It is used to generate k (periodic) timing signals. AND gates for decoding S S S D D D ohnson er S S S D D D states AND gate for output S S S T T T T T T AND gates for decoding S S S T = S S T = S S T = S S T = S S T = S S T = S S

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

REGISTERS. Consists of a set of flip-flops (each flip-flop stores one bit of information)

REGISTERS. Consists of a set of flip-flops (each flip-flop stores one bit of information) REGISTERS Sequential circuit used to store binary word Consists of a set of flip-flops (each flip-flop stores one bit of information) External gates may be used to control the inputs of the flip-flops:

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

1) For a RS flip flop constructed out of NAND gates complete the following table. R S Q Q\ State name Q Q\

1) For a RS flip flop constructed out of NAND gates complete the following table. R S Q Q\ State name Q Q\ Sequential logic tutorial Flip Flops 1) For a RS flip flop constructed out of NAND gates complete the following table R S Q Q\ State name 0 0 1 1 0 1 0 1 1 0 1 0 1 1 Q Q\ 2) Complete the following timing

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

Figure (1): Decade Counter Output Waveforms.

Figure (1): Decade Counter Output Waveforms. DIGITAL COUNTER AND APPLICATIONS A digital counter is a device that generates binary numbers in a specified count sequence. The counter progresses through the specified sequence of numbers when triggered

More information

Digital Logic Design Sequential circuits

Digital Logic Design Sequential circuits Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief E-mail: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An n-bit register

More information

Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS

Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS Introduction : Logic circuit is divided into two types. 1. Combinational Logic Circuit 2. Sequential Logic Circuit Definition : 1. Combinational

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store

More information

Basic bistable element. Chapter 6. Latches vs. flip-flops. Flip-flops

Basic bistable element. Chapter 6. Latches vs. flip-flops. Flip-flops Basic bistable element hapter 6 It is a circuit having two stable conditions (states). It can be used to store binary symbols. Flip-Flops and Simple Flip-Flop Applications.. Huang, 24 igital Logic esign

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Sequential Circuits. Chapter 4 S. Dandamudi

Sequential Circuits. Chapter 4 S. Dandamudi Sequential Circuits Chapter 4 S. Dandamudi Outline Introduction Clock signal Propagation delay Latches SR latch Clocked SR latch D latch JK latch Flip flops D flip flop JK flip flop Example chips Example

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using K-map method.

28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using K-map method. Unit-1 1. Show Karnaugh map for equation Y = F(A,B,C) = S m(1, 2, 3, 6, 7) 2. Show Karnaugh map for equation Y = F(A,B,C,D) = S m(1, 2, 3, 6, 8, 9, 10, 12, 13, 14) 3. Give SOP form of Y = F(A,B,C,D) =

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

CHAPTER 12 REGISTERS AND COUNTERS

CHAPTER 12 REGISTERS AND COUNTERS CHAPTER 12 REGISTERS AND COUNTERS This chapter in the book includes: Objectives Study Guide 12.1 Registers and Register Transfers 12.2 Shift Registers 12.3 Design of Binary Counters 12.4 Counters for Other

More information

1. Realization of gates using Universal gates

1. Realization of gates using Universal gates 1. Realization of gates using Universal gates Aim: To realize all logic gates using NAND and NOR gates. Apparatus: S. No Description of Item Quantity 1. IC 7400 01 2. IC 7402 01 3. Digital Trainer Kit

More information

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

More information

Chapter 6 Registers and Counter

Chapter 6 Registers and Counter Chapter 6 Registers and Counter The filp-flops are essential component in clocked sequential circuits. Circuits that include filp-flops are usually classified by the function they perform. Two such circuits

More information

Overview. Ripple Counter Synchronous Binary Counters

Overview. Ripple Counter Synchronous Binary Counters Counters Overview Ripple Counter Synchronous Binary Counters Design with D Flip-Flops Design with J-K Flip-Flops Serial Vs. Parallel Counters Up-down Binary Counter Binary Counter with Parallel Load BCD

More information

In Module 9, 10, 11, you have been introduced to examples of combinational logic circuits whereby the outputs are entirely dependent on the current

In Module 9, 10, 11, you have been introduced to examples of combinational logic circuits whereby the outputs are entirely dependent on the current Module 12 In Module 9, 10, 11, you have been introduced to examples of combinational logic circuits whereby the outputs are entirely dependent on the current inputs. The following topics will be on sequential

More information

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users

More information

Output depends on sequence of previous inputs Sequence of previous this is history History is a state that captures how you got here

Output depends on sequence of previous inputs Sequence of previous this is history History is a state that captures how you got here Sequential Logic Output depends on sequence of previous inputs Sequence of previous this is history History is a state that captures how you got here " E.g., 35 cents vending = cents + cents + cents +

More information

Tutorial 1: Chapter 1

Tutorial 1: Chapter 1 Tutorial 1: hapter 1 1. Figure 1.1 shows the positive edge triggered D flip flop, determine the output of Q 0, assume output is initially LOW. Figure 1.1 2. For the positive edge-triggered J-K flip-flop

More information

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012 Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

SYNCHRONOUS COUNTERS

SYNCHRONOUS COUNTERS SYNCHRONOUS COUNTERS Synchronous digital counters have a common clock signal that controls all flip-flop stages. Since a common clock controls all flip-flops simultaneously, there are no cumulative delays

More information

Digital Principles and System Design

Digital Principles and System Design PART-A Questions 1. Convert (10101100)2 into octal. 2. What is the important property of XS3 code? 3. What is the drawback of a serial adder compared to parallel adder? 4. Represent (-10)10 in sign-2 s

More information

Applications of Edge-Triggered D Flip-flop

Applications of Edge-Triggered D Flip-flop Applications of Edge-Triggered D Flip-flop 1. Data Storage using D-flip-flop A Multiplexer based Parallel-to-Serial converter needs to have stable parallel data at its inputs as it converts it to serial

More information

Combinational and Sequential Circuits.

Combinational and Sequential Circuits. Combinational and Sequential Circuits. Basically, sequential circuits have memory and combinational circuits do not. Here is a basic depiction of a sequential circuit. All sequential circuits contain combinational

More information

UNIVERSITI MALAYSIA PERLIS DKT DIGITAL SYSTEMS II. Lab 2 : Counter Design

UNIVERSITI MALAYSIA PERLIS DKT DIGITAL SYSTEMS II. Lab 2 : Counter Design UNIVERSITI MALAYSIA PERLIS DKT 212/3 : DIGITAL SYSTEM II Lab 2 : Counter Design Name : Matrix No. : Program : Date : OBJECTIVE 1. To understand state diagram in sequential circuit. 2. To build Karnaugh

More information

Shift registers. 1.0 Introduction

Shift registers. 1.0 Introduction Shift registers 1.0 Introduction Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of flip-flops connected in a chain so that the output from

More information

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS CHAPTER IX-1 CHAPTER IX CHAPTER IX COUNTERS, SHIFT, AN ROTATE REGISTERS REA PAGES 249-275 FROM MANO AN KIME CHAPTER IX-2 INTROUCTION -INTROUCTION Like combinational building blocks, we can also develop

More information

Chapter 18. Sequential Circuits: Flip-flops and Counters

Chapter 18. Sequential Circuits: Flip-flops and Counters Chapter 18 Sequential Circuits: Flip-flops and Counters 1. Design a counter that has the following repeated binary sequence:, 1, 2, 3, 4, 5, 6, 7. Use RS flip-flops. Fig. 1.1 State diagram of a 3-bit binary

More information

FACULTY OF ENGINEERING LAB SHEET EEE1036 DIGITAL LOGIC DESIGN TRIMESTER 3, 2015_2016

FACULTY OF ENGINEERING LAB SHEET EEE1036 DIGITAL LOGIC DESIGN TRIMESTER 3, 2015_2016 EEE06: Digital Logic Design, Lab Exp. DL FACULTY OF ENGINEERING LAB SHEET EEE06 DIGITAL LOGIC DESIGN TRIMESTER, 05_06 DL - Flip-Flops and Their Applications *Note: On-the-spot evaluation may be carried

More information

Digital Logic Design CSE-241

Digital Logic Design CSE-241 Digital Logic Design CSE-241 Unit 20 3-Bit Synchronous Binary Counter: 2 1 4-Bit Synchronous Binary Counter: 3 DOWN COUNTERS: A synchronous counter that counts in the reverse or downward sequence can be

More information

Counters are sequential circuits which "count" through a specific state sequence.

Counters are sequential circuits which count through a specific state sequence. Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 5. Combinational & Sequential Circuits

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 5. Combinational & Sequential Circuits SAMPLE OF THE STUD MATERIAL PART OF CHAPTER 5 5. Introduction Digital circuits can be classified into two types: Combinational digital circuits and Sequential digital circuits. 5.2 Combinational Digital

More information

Chapter 8. Sequential Circuits for Registers and Counters

Chapter 8. Sequential Circuits for Registers and Counters Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS The SN54/74LS90 is a synchronous UP/DOWN BCD Decade (842) Counter and the SN54/74LS9 is a synchronous UP/DOWN Modulo-6

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A/ 161A/ 162A/ 163A are high-speed 4-bit synchronous counters. They are edge-triggered, synchronously presettable, and cascadable MSI building blocks

More information

Today. Sequential logic Latches Flip-flops Counters. Andrew H. Fagg: Embedded Real-Time Systems: Sequential Logic

Today. Sequential logic Latches Flip-flops Counters. Andrew H. Fagg: Embedded Real-Time Systems: Sequential Logic Today Sequential logic Latches Flip-flops Counters Time Until now: we have essentially ignored the issue of time We have assumed that our digital logic circuits perform their computations instantaneously

More information

The NOT Gate The NOT gate outputs a logical 0 if its input is a logical 1 and outputs a 1 if its input is a 0. The symbol is given.

The NOT Gate The NOT gate outputs a logical 0 if its input is a logical 1 and outputs a 1 if its input is a 0. The symbol is given. Gates and Flip-Flops Pádraig Ó Conbhuí 08531749 SF WED Abstract This experiment was carried out to construct (with the exception of the AND and NOT gates) and investigate the outputs of AND, NAND, OR,

More information

Asynchronous counters, except for the first block, work independently from a system clock.

Asynchronous counters, except for the first block, work independently from a system clock. Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can

More information

Counters In this lesson, the operation and design of Synchronous Binary Counters will be studied.

Counters In this lesson, the operation and design of Synchronous Binary Counters will be studied. Counters In this lesson, the operation and design of Synchronous Binary Counters will be studied. Synchronous Binary Counters (SBC) Description and Operation In its simplest form, a synchronous binary

More information

Basic Bit Memory: Latches and Flip Flops

Basic Bit Memory: Latches and Flip Flops Basic Bit Memory: Latches and Flip Flops Topics: 1. General description of bit memory, also called a memory cell. 2. Definition of sequential and combinational circuits. Memory devices are sequential devices.

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 2/4 ELEKTRONIK DIGIT Kolej Universiti Kejuruteraan Utara Malaysia Sequential Logic Circuits - Shift Registers - Basic Shift Register Functions Consist of an arrangement of flip-flops. Important in

More information

4.0 Design of Synchronous Counters

4.0 Design of Synchronous Counters 4.0 Design of Synchronous Counters This section begins our study of designing an important class of clocked sequential logic circuits-synchronous finite-state machines. Like all sequential circuits, a

More information

Counters. Non-synchronous (asynchronous) counters A 2-bit asynchronous binary counter High

Counters. Non-synchronous (asynchronous) counters A 2-bit asynchronous binary counter High Counters Learning objectives Understanding the operation and characteristics of asynchronous and synchronous counters Analyze counter circuits and counter timing diagrams Determine the sequence of a counter

More information

Figure 2.4(f): A T flip flop

Figure 2.4(f): A T flip flop If the T input is in 0 state (i.e., J = K = 0) prior to a clock pulse, the Q output will not change with the clock pulse. On the other hand, if the T input is in 1 state (i.e., J = K = 1) prior to a clock

More information

Sequential Logic. SR Latch

Sequential Logic. SR Latch n 2/24/3 Sequential Logic Outputs of sequential logic depend on current inputs and prior input values Sequential logic might explicitly remember certain previous inputs, or it might distill (encode) the

More information

Module 5A2: Laboratory: Flip-Flops

Module 5A2: Laboratory: Flip-Flops Excelsior College ELEC201 Digital Electronics Module 5A2: Laboratory: Flip-Flops Objectives The objectives of this experiment are to: 1. Examine the operation of the RS latch. 2. Examine the operation

More information

Steps of sequential circuit design (cont'd)

Steps of sequential circuit design (cont'd) Design of Clocked Synchronous Sequential Circuits Design of a sequential circuit starts with the verbal description of the problem (scenario). Design process is similar to computer programming. First,

More information

Counters & Shift Registers Chapter 8 of R.P Jain

Counters & Shift Registers Chapter 8 of R.P Jain Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without

More information

Lecture 9: Flip-flops

Lecture 9: Flip-flops Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flip-flops and latches Lecture 9: Flip-flops Professor Peter Cheung Department of EEE, Imperial

More information

Asynchronous Counters. Asynchronous Counters

Asynchronous Counters. Asynchronous Counters Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

More information

Timing pulses & counters

Timing pulses & counters Timing pulses & counters Timing Pulses Important element of laboratory electronics Pulses can control logical sequences with precise timing. If your detector sees a charged particle or a photon, you might

More information

Lab 1 Physics 430 Laboratory Manual 1. LAB 1 Logic Gates, Flip Flops and Registers

Lab 1 Physics 430 Laboratory Manual 1. LAB 1 Logic Gates, Flip Flops and Registers Lab Physics 430 Laboratory Manual LAB Logic Gates, Flip Flops and Registers In this first lab we assume that you know a little about logic gates and using them. The first experiment is an exericse to help

More information

EE 110 Practice Problems for Exam 2: Solutions, Fall 2008

EE 110 Practice Problems for Exam 2: Solutions, Fall 2008 EE 110 Practice Problems for Exam 2: Solutions, Fall 2008 1. Circle T (true) or F (false) for each of these Boolean equations. (a). T FO An 8-to-1 multiplexer requires 2 select lines. (An 8-to-1 multiplexer

More information

LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III

LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III 1 INDEX Sr. No Title of the Experiment 1 Study of BASIC Gates 3 2 Universal Gates 6 3 Study of Full & Half Adder & Subtractor

More information

Synchronous (Parallel) Counters

Synchronous (Parallel) Counters Synchronous ounter Synchronous (Parallel) ounters Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse. We can design these counters using the sequential

More information

DIGITAL SYSTEM DESIGN LAB

DIGITAL SYSTEM DESIGN LAB EXPERIMENT NO: 7 STUDY OF FLIP FLOPS USING GATES AND IC S AIM: To verify various flip-flops like D, T, and JK. APPARATUS REQUIRED: Power supply, Digital Trainer kit, Connecting wires, Patch Chords, IC

More information

Experiment # 8 Latches And Flip Flops Characteristics

Experiment # 8 Latches And Flip Flops Characteristics Digital Design LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 2112: Digital Design LAB Eng: Ahmed M. Ayash Experiment # 8 Latches And Flip Flops Characteristics

More information

Latches and Flip-flops

Latches and Flip-flops Latches and Flip-flops Latches and flip-flops are circuits with memory function. They are part of the computer's memory and processor s registers. SR latch is basically the computer memory cell Q=1 Q=0

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU MICROPROCESSOR - 1 LABORATORY MANUAL

SIR C.R.REDDY COLLEGE OF ENGINEERING SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU MICROPROCESSOR - 1 LABORATORY MANUAL SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU 534 007 MICROPROCESSOR - 1 LABORATORY MANUAL II/ IV B.Tech (CSE) : II - SEMESTER DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MICROPROCESSOR LAB -1 II / IV

More information

Counters. Present State Next State A B A B Henry Hexmoor 1

Counters. Present State Next State A B A B Henry Hexmoor 1 Counters are a specific type of sequential circuit. Like registers, the state, or the flipflop values themselves, serves as the output. The output value increases by one on each clock cycle. After the

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Lecture 10: Analog/Digital Conversion

Lecture 10: Analog/Digital Conversion Lecture 0: Analog/Digital onversion Example: ounter made from two JK flip-flops. This circuit counts from 0 3 0 3 0 is the lowest order bit, is the higher order bit. The output is a binary number =. The

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and

More information

Activity Introduction to Flip-Flops

Activity Introduction to Flip-Flops Activity 3.1.1 Introduction to Flip-Flops Introduction Flip-flops; not the sandals, but the logic gates, are the fundamental building blocks of sequential logic. There are a variety of different flip-flop

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

Cascaded Counters. Page 1 BYU

Cascaded Counters. Page 1 BYU Cascaded Counters Page 1 Mod-N Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A mod-n counter has N states Counts from 0 to N-1 then rolls

More information

Sequential Logic Circuits Part I (Memory Element)

Sequential Logic Circuits Part I (Memory Element) Sequential Logic Circuits Sequential Logic Circuits Part I (Memory Element) CIT 595 Spring 2010 Output depends on stored information (current state) and may be on current inputs Example: state = Score

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence

More information

Latches and Flip-Flops characterestics & Clock generator circuits

Latches and Flip-Flops characterestics & Clock generator circuits Experiment # 7 Latches and Flip-Flops characterestics & Clock generator circuits OBJECTIVES 1. To be familiarized with D and JK flip-flop ICs and their characteristic tables. 2. Understanding the principles

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN :: IGIAL LOGI ESIGN Ivan Marsic, Rutgers University Electrical & omputer Engineering Fall Lecture #: Sequential Logic esign Practices ; ounters Sequential ircuit iming iagram Next-state Logic F State Memory

More information

555 Timer MONOSTABLE MODE. 555 is an IC used to generate a clock. The two attributes of a clock are Frequency Duty cycle.

555 Timer MONOSTABLE MODE. 555 is an IC used to generate a clock. The two attributes of a clock are Frequency Duty cycle. 555 Timer 555 is an IC used to generate a clock. The two attributes of a clock are Frequency Duty cycle. Both of these can be changed using this IC, however the duty cycle is always

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

J-K flip-flop circuit with potential timing problem. Timing diagram of J-K flip-flop circuit with potential timing problem

J-K flip-flop circuit with potential timing problem. Timing diagram of J-K flip-flop circuit with potential timing problem The 555 Timer The 555 Timer is a versatile and widely used device which can be configured as a mono-stable One-Shot or as an Astable multivibrator. An Astable multivibrator is known as an Oscillator which

More information

Latches and Flip-flops

Latches and Flip-flops Latches and Flip-flops Latches and flip-flops are circuits with memory function. They are part of the computer's memory and processor s registers. SR latch is basically the computer memory cell Q=1 Q=0

More information

Sequential Logic Design Practices

Sequential Logic Design Practices Sequential Logic esign Practices oru Todinca epartment of Computers Politehnica University of Timisoara Outline Latches and Flip-flops Multibit Registers and Latches Counters Ripple Counters Synchronous

More information

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

More information

Mealy and Moore Type Finite State Machines

Mealy and Moore Type Finite State Machines Mealy and Moore Type Finite State Machines Objectives There are two basic ways to design clocked sequential circuits. These are using: 1. Mealy Machine, which we have seen so far. 2. Moore Machine. The

More information

ENEE 244 (01**). Spring Homework 6. Due back in class on Wednesday, May 10.

ENEE 244 (01**). Spring Homework 6. Due back in class on Wednesday, May 10. ENEE 244 (01**). Spring 2006 Homework 6 Due back in class on Wednesday, May 10. 1. Design a modulo-6 counter, which counts 0,1,2,3,4,5,0,1,... The counter counts the clock pulses if its enable input,w,

More information

EC1261 DIGITAL LOGIC CIRCUITS UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A 1. What do you mean by literal? 2. What is logic gate? 3.

EC1261 DIGITAL LOGIC CIRCUITS UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A 1. What do you mean by literal? 2. What is logic gate? 3. EC1261 DIGITAL LOGIC CIRCUITS UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A 1. What do you mean by literal? 2. What is logic gate? 3. What is demultiplexer? How does it differ from a decoder?

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013 DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012 Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

More information

Registers & Counters

Registers & Counters Objectives This section deals with some simple and useful sequential circuits. Its objectives are to: Introduce registers as multi-bit storage devices. Introduce counters by adding logic to registers implementing

More information

Design of Synchronous Counters

Design of Synchronous Counters Design of Synchronous Counters By: Dr. A. D. Johnson Lab Assignment #11 EECS: 1100 Digital Logic Design The University of Toledo 1. Objectives - getting familiar with state transition tables of synchronous

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

EXPERIMENT 8. Flip-Flops and Sequential Circuits

EXPERIMENT 8. Flip-Flops and Sequential Circuits EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.

More information

Table 36.1a D flip-flop input table for X=0. Present State Next State X=1 D flip-flop inputs. Table 36.1b D flip-flop input table for X=1

Table 36.1a D flip-flop input table for X=0. Present State Next State X=1 D flip-flop inputs. Table 36.1b D flip-flop input table for X=1 Example4: 3-bit Up/Down Counter The 3-bit Up/Down Counter was earlier implemented using J-K flip-flops. A D flip-flop based 3-bit Up/Down Counter is implemented by mapping the present state and next state

More information

Sequential Circuits Sequential circuits combinational circuits clocked sequential circuits gate delay

Sequential Circuits Sequential circuits combinational circuits clocked sequential circuits gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

Part IA Engineering. Contents of Handout 2. Digital Circuits & Information Processing. Handout 2. Sequential Logic

Part IA Engineering. Contents of Handout 2. Digital Circuits & Information Processing. Handout 2. Sequential Logic Part IA Engineering Contents of Handout 2 Digital Circuits & Information Processing Handout 2 Sequential Logic ichard Prager Tim Flack anuary 29 Section A Section B Section C Section D Section E Binary

More information

ECE 223 Digital Circuits and Systems. Synchronous Logic. M. Sachdev. Dept. of Electrical & Computer Engineering University of Waterloo

ECE 223 Digital Circuits and Systems. Synchronous Logic. M. Sachdev. Dept. of Electrical & Computer Engineering University of Waterloo ECE 223 Digital Circuits and Systems Synchronous Logic M. Sachdev Dept. of Electrical & Computer Engineering University of Waterloo Sequential Circuits Combinational circuits Output = f (present inputs)

More information

Lab Manual. Digital System Design (Pr): COT-215 Digital Electronics (P): IT-211

Lab Manual. Digital System Design (Pr): COT-215 Digital Electronics (P): IT-211 Lab Manual Digital System Design (Pr): COT-215 Digital Electronics (P): IT-211 Lab Instructions Several practicals / programs? Whether an experiment contains one or several practicals /programs One practical

More information