Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Save this PDF as:

Size: px
Start display at page:

Download "Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop."

Transcription

1 Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage and limitation of an S-R flip-flop. recognise the arrangement of NAND gates used to form a clocked S-R flip-flop. complete a timing diagram for an S-R flip-flop. recognise the arrangement of NAND gates used to form a D-type flip-flop. describe the advantages of a D-type flip-flop. complete a timing diagram for a D-type flip-flop.

2 COMBINATIONAL LOGIC SYSTEMS Up to this point we have been investigating combinational logic systems. The output state of a combinational logic system can be worked out from its circuit diagram, provided we know the present state of its inputs. EXAMPLE A B C Fig. Combinational logic system You should be able to work out that = for the input settings shown. The Boolean equation representing the function of the system is: = A.B + C i.e. Output is if A = AND B =, OR if C =. SEUENTIAL LOGIC SYSTEMS The output state of a sequential logic circuit can only be worked out if we know the present, and previous, state of its inputs i.e. if we know the sequence of events that have occurred at its inputs The basic element in any sequential logic system is a flip-flop circuit. In this Chapter we shall be considering 2 types of flip-flops. the S-R flip-flop, and the D-type Flip-flop You will discover how feedback between outputs and inputs is used to give them a form of memory. 2

3 PROPERTIES OF FLIP-FLOP CIRCUITS Flip-flops have two outputs which are usually labelled and. The bar indicates that is the inverse of i.e. = when =. = = Inputs Inputs = = { { SET state RESET state Fig. 2 The stable states of a flip-flop Flip-flops can settle in any one of two stable states and are often referred to as bistable circuits. The two stable states are illustrated in Fig 2. Note that: in the SET state, = and =. in the RESET state, = and =. Let us now consider the three types in some detail. 3

4 A. THE S-R FLIP-FLOP Fig 3 shows how two NAND gates can be arranged to form an S-R flip-flop. +5V R S Note that: V Fig. 3 An S-R Flip-flop inputs are normally held at logic level by the pull-up resistors. Closing a switch pulls an input down to logic level. the bars on the S and R indicate that they are activated by operating switches which pull them down to logic level. feedback is applied by connecting the outputs back to inputs. the output is on the same gate as the S input. Fig 4 illustrates how an S-R flip-flop can settle in any one of two stable states when the power supply is switchedon, with neither S nor R switches pressed. Note how the same input conditions can produce different output states. The pull-up resistors and switches have not been included on the diagram. S S R R Set state Reset state 4 Fig. 4

5 Fig 5 illustrates a switching sequence for an S-R flip-flop. S S R R S R (a) (b) S R (c) (d) Fig. 5 In Fig 7.5a, the flip-flop is in its RESET state with both inputs at logic level. If the SET input is pulled down to logic level (Fig 7.5b), its output changes to logic level and the flip-flop settles in its SET state. REMINDER: The output of a NAND gate is logic level if one, or both, of its inputs are at logic level. When the SET input returns to logic level (Fig 5c) the flip-flop remains in its SET state. It remembers the event that took place at the SET input and latches in this state. Any further changes at the SET input will have no effect upon the output. The flip-flop can be reset by momentarily pulling its RESET input down to logic level (Fig 5d). 5

6 The following truth table illustrates the switching action for the sequence. S INPUT R INPUT OUTPUT OUTPUT (Fig 5a) SET action. (Fig 5b) No change at output. (Fig 5c) RESET action. (Fig 5d) No change at output. Fig. 6 Truth table for S-R flipflop DISADVANTAGE AND LIMITATION OF AN S-R FLIP-FLOP If both inputs are pulled down to logic level, both outputs will be at logic level. This state should not be allowed to occur in flip-flops. The output state of an S-R flip-flop changes whenever the inputs are activated. In most electronic systems, several changes have to be synchronised to occur at the same time. Flip-flops used in such systems should be fitted with a clock or strobe input. 6

7 DISADVANTAGE OF A CLOCKED S-R FLIP-FLOP If both inputs are held at logic level, both outputs can be at logic level C. THE D-TYPE FLIP FLOP The disadvantages of the flip-flops previously considered can be overcome by using a D type flip-flop, the main inputs, as shown in Fig 7. The D-type flip-flop has one data input and a clock input. Changing the D-input to logic level only produces no change at the output. D Clock Fig 7 The logic level at the D-input is transferred to the output at the instant when the clock signal is changing from logic level to logic level. Any changes at the D-input after the clock has reached logic level will be ignored. In the exercise you will be investigating D-type flip-flops contained in a 7474 IC package. You will discover that these flip-flops are rising edge triggered 7

8 Clock D-Input Fig. 8 Timing diagram for an edge-triggered flip-flop Fig 9 shows the logic symbol commonly used for a D-type flip-flop. D S CP R Fig. 9 Logic symbol for D-type flip-flop S and R can be used to set and reset the flip-flop. The circles indicate that they are active low Signals on S and R take effect immediately. They do not need a clock pulse to be present. The clock input is labelled CP (Clock Point). 8

9 APPLICATIONS. LATCHING If the D-input is connected to logic level, the flip-flop will latch in its set state when it receives a clock pulse. +5V D CLOCK R Fig. The clock pulse could be provided by an input transducer such as a light sensing unit. 2. DIVIDING BY 2 ( T type flip flop) If the D-input is connected to the output, as shown in Fig, the frequency of the signal at the output will be half of that applied at the clock input, provided the T input is high, if the T input is low the output will not toggle. This action will be investigated further in Activity 3. D T input Fig. 9

10 Exercise Objectives Having completed this Exercise you should be able to: construct and investigate an S-R flip flop made up from two NAND gates. construct and investigate a D-type flip flop made up from four NAND gates and an inverter. investigate a 7474 Dual D-type IC package. COMPONENTS REUIRED 7474 IC PACKAGE (Dual D-type)

11 ACTIVITY : We shall start this Exercise by investigating an S-R Flip-flop circuit. a. Set up the following arrangement: Use Press Switches on the Experiment Card Master Board to provide the falling edges at the SET (S) and RESET (R) inputs. Use the Logic Monitors to monitor the outputs and. S INPUT R INPUT b. Try to complete the following truth table before switching on the Power Supplies. S INPUT R INPUT c. Switch on the Power Supplies. If the indicator comes ON, reset the system by momentarily pressing the R INPUT switch.

12 d. Work through the sequence of input settings to check your predictions. INFORMATION A similar type of flip-flop can be formed using NOR gates. In this case the inputs are active high and the output is taken from the gate which has the RESET input connected to it. 2

13 DESIGN PROBLEM A system is required which latches on a flashing LED when it gets dark. It should be possible to manually reset the system during daylight hours. (a) (b) (c) Draw a logic circuit diagram showing a suitable circuit. Provide a brief explanation of how it works. Set up the system and evaluate its performance. 3

14 ACTIVITY 2: Activity 2 requires an experiment card which allows different chips to be investigated. 2a. Insert a 7474 Dual D-type IC package into one of the sockets on Experiment Card 9.3. Pin should be at the bottom left hand corner. Vcc R D2 D 2 CP 2 S D R D D CP S D GND 2b. Set up the following arrangement with the Board Clock set to its slowest speed. Pin numbers have been included to help you with the construction. Note that the Set and Reset inputs have been connected to +5V. Power supply connections on pins 7 and 4 are not shown on the diagram. Use Logic Monitors to monitor Clock Input and output. +5V 4 Press 2 5 To Logic switch D S Monitor Board clock 3 CP R 6 +5V 2c. By operating the press switch connected to the D-input and observing the Logic Monitor LEDs, decide when the D-input state is transferred to the output. 4

15 ACTIVITY 3: 3a. Set up the following D-type flip-flop arrangement. The D-input has been connected to the output. Press or slide switch Logic +5V Monitor D S 3 R 6 Press or slide switch 3b. Switch on the Power Supplies. If the Logic Monitor LED is on, momentarily operate the reset Press Switch B. 3c. Operate the clock input Press Switch A eight times i.e. apply 8 pulses at the clock input, and count the number of output pulses provided at the output. Complete the following diagram to illustrate the action of the arrangement when a steady train of pulses is applied at the clock input. Clock

16 3d. Extend the system, as shown below, using the second D-type flipflop in the 7474 IC package. (2 ) (2 ) A +5V +5V D S D S 3 R 6 R 8 B 3 3e. Operate the clock pulse Press Switch A eight times and count the number of output pulses obtained from the output. Complete the following diagram to illustrate the action of the arrangement when a steady train of pulses is applied at the clock input. Clock f. Disconnect the link from pin 3 to Switch A then connect pin 3 to the Board Clock output. 6

17 3g. Use a CRO to enable you to set a Clock input to provide pulses of frequency Hz. ms 3h. Use your CRO to measure the period of the signal provided at the output. Period of output = Frequency at output= 3i. Use your CRO to measure the period of the signal provided at the output. Period of output = Frequency at output= 3j. Set the Clock to its slowest possible speed. Observe the Logic Monitor. You should be able to see that the arrangement forms a binary counter, providing the binary counting sequence from zero to 3. } 2 3 } } }

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

Counters and Decoders

Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

Module 3: Floyd, Digital Fundamental

Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output

The components. E3: Digital electronics. Goals:

E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

Engr354: Digital Logic Circuits

Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

ENGI 241 Experiment 5 Basic Logic Gates

ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.

Decimal Number (base 10) Binary Number (base 2)

LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

Contents COUNTER. Unit III- Counters

COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

Theory of Logic Circuits. Laboratory manual. Exercise 3

Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

Chapter 9 Latches, Flip-Flops, and Timers

ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

Memory Elements. Combinational logic cannot remember

Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

ECE380 Digital Logic

ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,

CS311 Lecture: Sequential Circuits

CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop

7. Latches and Flip-Flops

Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

EXPERIMENT 8. Flip-Flops and Sequential Circuits

EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1

Digital Fundamentals

igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage

DEPARTMENT OF INFORMATION TECHNLOGY

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Prof. Randy Katz (Unified

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.

Chapter 5. Sequential Logic

Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

Flip-Flops, Registers, Counters, and a Simple Processor

June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

Fig1-1 2-bit asynchronous counter

Digital electronics 1-Sequential circuit counters Such a group of flip- flops is a counter. The number of flip-flops used and the way in which they are connected determine the number of states and also

Modeling Latches and Flip-flops

Lab Workbook Introduction Sequential circuits are digital circuits in which the output depends not only on the present input (like combinatorial circuits), but also on the past sequence of inputs. In effect,

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

Digital Controller for Pedestrian Crossing and Traffic Lights

Project Objective: - To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on next-state techniques

ASYNCHRONOUS COUNTERS

LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department

Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and

[ 4 ] Logic Symbols and Truth Table

[ 4 ] Logic s and Truth Table 1. How to Read MIL-Type Logic s Table 1.1 shows the MIL-type logic symbols used for high-speed CMO ICs. This logic chart is based on MIL-TD-806. The clocked inverter and transmission

1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs

CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.

Master/Slave Flip Flops

Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

Lecture 7: Clocking of VLSI Systems

Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis

Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

Combinational Logic Design Process

Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug

A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

Counters & Shift Registers Chapter 8 of R.P Jain

Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without

Development of a Simple Sound Activated Burglar Alarm System

[ Leonardo Journal of Sciences ISSN 1583-0233 Issue 9, July-December 2006 p. 97-102 Development of a Simple Sound Activated Burglar Alarm System Department of Electrical and Computer Engineering, Federal

Digital Logic Elements, Clock, and Memory Elements

Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1

UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1 This work covers part of outcome 3 of the Edexcel standard module: Outcome 3 is the most demanding

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems

Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH

ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.

ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually

Sequential Logic: Clocks, Registers, etc.

ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits

Wiki Lab Book. This week is practice for wiki usage during the project.

Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice

Operating Manual Ver.1.1

4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

PURDUE UNIVERSITY NORTH CENTRAL

ECET 109/159 PURDUE UNIVERSITY NORTH CENTRAL Electrical and Computer Engineering Technology Department All Semesters ECET Lab Report Format and Guidelines I. Introduction. Part of being technically educated

Layout of Multiple Cells

Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed

Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

Design: a mod-8 Counter

Design: a mod-8 Counter A mod-8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7. So, the stored value follows

Figure 8-1 Four Possible Results of Adding Two Bits

CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 06057-2905 (860) 489-8003 www.alta-engineering.com

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).

G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas

Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count

ECE124 Digital Circuits and Systems Page 1

ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit - FSM A Sequential circuit contains: Storage

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

Digital Logic Design Sequential circuits

Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief E-mail: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An n-bit register

Asynchronous counters, except for the first block, work independently from a system clock.

Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can