ECE 331 Digital System Design


 Candace Tyler
 2 years ago
 Views:
Transcription
1 ECE 331 Digital System Design Introduction to and Analysis of Sequential Logic Circuits (Lecture #21) The slides included herein were taken from the materials accompanying Fundamentals of Logic Design, 6 th Edition, by Roth and Kinney, and were used with permission from Cengage Learning.
2 Combinational vs. Sequential Combinational Logic Circuit Output is a function only of the present inputs. Does not have state information. Does not require memory. Sequential Logic Circuit (aka. Finite State Machine) Output is a function of the present state. Has state information Requires memory. Uses FlipFlops to implement memory. Spring 2011 ECE Digital System Design 2
3 Synchronous vs. Asynchronous Synchronous Sequential Logic Circuit Clocked All FlipFlops use the same clock and change state on the same triggering edge. Asynchronous Sequential Logic Circuit No clock Can change state at any instance in time. Faster but more complex than synchronous sequential circuits. Spring 2011 ECE Digital System Design 3
4 Sequential Circuits: General Model Memory Stores state information Realized using FlipFlops Combinational Logic Implements FlipFlop input functions and output functions Realized using logic gates, a ROM or a PLA Spring 2011 ECE Digital System Design 4
5 Sequential Circuits: Models Moore Machine Outputs are a function of the present state. Outputs are independent of the inputs. State diagram includes an output value for each state. Mealy Machine Outputs are a function of the present state and the present input. State diagram includes an input and output value for each transition (between states). Spring 2011 ECE Digital System Design 5
6 Sequential Circuits: Models Spring 2011 ECE Digital System Design 6
7 Sequential Circuits: Mealy Model output Next state Present state Spring 2011 ECE Digital System Design 7
8 Sequential Circuits: Moore Model Present state output Next state Spring 2011 ECE Digital System Design 8
9 Sequential Circuits: State Diagram Input State Output Moore Machine Each node in the graph represents a state in the sequential circuit. Spring 2011 ECE Digital System Design 9
10 Sequential Circuits: State Diagram Input Output State Mealy Machine Each node in the graph represents a state in the sequential circuit. Spring 2011 ECE Digital System Design 10
11 Sequential Circuit Analysis Spring 2011 ECE Digital System Design 11
12 Analysis: Signal Tracing 1.Assume an initial state for the sequential circuit. All FlipFlops reset to 0 (unless otherwise stated). 2.Determine the sequential circuit output and the flipflop inputs for the first input value in the sequence. 3.Determine the next state of each FlipFlop After the next active clock edge. 4.Determine the sequential circuit output and the flipflop inputs for the next value in the sequence. 5.Repeat steps 3 & 4. Spring 2011 ECE Digital System Design 12
13 Example: Moore Machine FlipFlop inputs output State = AB input Spring 2011 ECE Digital System Design 13
14 Example: Moore Machine Spring 2011 ECE Digital System Design 14
15 Example: Mealy Machine Spring 2011 ECE Digital System Design 15
16 Example: Mealy Machine Spring 2011 ECE Digital System Design 16
17 Analysis: State Tables and Graphs Although constructing timing charts is satisfactory for small circuits and short input sequences, the construction of state tables and graphs provides a more systematic approach which is useful for the analysis of larger circuits and which leads to a general synthesis procedure for sequential circuits. The state table specifies the next state and output of a sequential circuit in terms of its present state and input. Spring 2011 ECE Digital System Design 17
18 Analysis Procedure 1. Determine the FlipFlop input equations 2. Determine the Sequential Circuit output equations 3. Derive the Next State equation for each FlipFlop Using the corresponding input equation And the FlipFlop characteristic equation 4. Plot the Next State Kmap for each FlipFlop 5. Construct the State Table (aka. Transition Table) Assign a state label to each binary state assignment 6. Draw the corresponding state diagram (aka. state graph) Spring 2011 ECE Digital System Design 18
19 Example: Analyze a sequential circuit using D FlipFlops Spring 2011 ECE Digital System Design 19
20 Example: Analysis (D FF) Derive the State Table for the following Sequential Logic Circuit: Spring 2011 ECE Digital System Design 20
21 Example: Analysis (D FF) The flipflop input equations are: D A = X xor B' D B = X or A The sequential circuit output equation is: Z = A xor B The nextstate equations for the flipflops are: A + = D A = X xor B' B + = D B = X or A Spring 2011 ECE Digital System Design 21
22 Example: Analysis (D FF) The corresponding nextstate (K) maps are: Spring 2011 ECE Digital System Design 22
23 Example: Analysis (D FF) The state table, or transition table, is then: A + B + A B X = 0 X = 1 Z Present Next State State X = 0 X = 1 Output S0 S3 S1 0 S1 S0 S2 1 S2 S1 S2 0 S3 S2 S1 1 Spring 2011 ECE Digital System Design 23
24 Example: Analysis (D FF) The state diagram can then be drawn from the state table: Spring 2011 ECE Digital System Design 24
25 Example: Analyze a sequential circuit using JK FlipFlops Spring 2011 ECE Digital System Design 25
26 Example: Analysis (JK FF) Derive the State Table for the following Sequential Logic Circuit: Spring 2011 ECE Digital System Design 26
27 Example: Analysis (JK FF) The flipflop input equations are: J A = X.B K A = X J B = X K B = X.A The sequential circuit output equation is: Z = X.B' + X.A + X'.A'.B The nextstate equations for the flipflops are: A + = J A.A' + K A '.A A + = X.B.A' + X.A B + = J B.B' + K B '.B B + = X.B' + X.A.B Spring 2011 ECE Digital System Design 27
28 Example: Analysis (JK FF) The corresponding nextstate (K) maps are Spring 2011 ECE Digital System Design 28
29 Example: Analysis (JK FF) The state table, and transition table, is then: Spring 2011 ECE Digital System Design 29
30 Example: Analysis (JK FF) The state diagram can then be drawn from the state table: Spring 2011 ECE Digital System Design 30
31 Example: Analyze a serial adder Spring 2011 ECE Digital System Design 31
32 Example: Serial Adder The serial adder adds two nbit binary numbers. (serial) output (serial) inputs next state present state Spring 2011 ECE Digital System Design 32
33 Example: Serial Adder Truth Table for the Full Adder: Spring 2011 ECE Digital System Design 33
34 Example: Serial Adder The state table, or transition table, is then: C i+1 Sum C i XY = 00 XY = 01 XY = 10 XY = 11 XY = 00 XY = 01 XY = 10 XY = Present Next State Output State XY = 00 XY = 01 XY = 10 XY = 11 XY = 00 XY = 01 XY = 10 XY = 11 S0 S0 S0 S0 S S1 S0 S1 S1 S Spring 2011 ECE Digital System Design 34
35 Example: Serial Adder State Graph for the Serial Adder: What type of state machine is this? Spring 2011 ECE Digital System Design 35
36 Example: Serial Adder Timing Diagram for the Serial Adder: Spring 2011 ECE Digital System Design 36
37 Example: Analyze a state machine with multiple inputs. Spring 2011 ECE Digital System Design 37
38 Example: Multiple Inputs State Table for a state machine with multiple inputs: Spring 2011 ECE Digital System Design 38
39 Example: Multiple Inputs State Graph for a state machine with multiple inputs: What type of state machine is this? How many paths leave each state? Spring 2011 ECE Digital System Design 39
40 Questions? Spring 2011 ECE Digital System Design 40
ECE 223 Digital Circuits and Systems. Synchronous Logic. M. Sachdev. Dept. of Electrical & Computer Engineering University of Waterloo
ECE 223 Digital Circuits and Systems Synchronous Logic M. Sachdev Dept. of Electrical & Computer Engineering University of Waterloo Sequential Circuits Combinational circuits Output = f (present inputs)
More informationSynchronous Sequential Logic. Logic and Digital System Design  CS 303 Erkay Savaş Sabanci University
Synchronous Sequential Logic Logic and Digital System Design  S 33 Erkay Savaş Sabanci University Sequential Logic Digital circuits we have learned, so far, have been combinational no memory, outputs
More informationCounters are sequential circuits which "count" through a specific state sequence.
Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:
More informationCounter/shiftregister model. State machine model (cont d) General state machine model
CSE 37 Spring 26 Introduction to igital esign Lecture 8: Moore and Mealy Machines Last Lecture Finite State Machines Today Moore and Mealy Machines Counter/shiftregister model Values stored in registers
More informationLecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
More informationENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.
ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures
More informationEngr354: Digital Logic Circuits
Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flipflops;
More informationIE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
More informationDigital Logic Design. Basics Combinational Circuits Sequential Circuits. PuJen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits PuJen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
More informationChapter  5 FLIPFLOPS AND SIMPLE FLIPFLOP APPLICATIONS
Chapter  5 FLIPFLOPS AND SIMPLE FLIPFLOP APPLICATIONS Introduction : Logic circuit is divided into two types. 1. Combinational Logic Circuit 2. Sequential Logic Circuit Definition : 1. Combinational
More informationChapter 5. Sequential Logic
Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends
More informationLecture 8: Flipflops
Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flipflops and latches Lecture 8: Flipflops Professor Peter Cheung Department of EEE, Imperial
More informationTo design digital counter circuits using JKFlipFlop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JKFlipFlop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
More informationCDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch EdgeTriggered D FlipFlop (FF) SR FlipFlop (FF) JK FlipFlop (FF) T FlipFlop
More informationCombinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate Kmaps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
More informationOutline. D Latch Example. D Latch Example: State Table. D Latch Example: Transition Table. Asynchronous Circuits (Feedback Sequential Circuits)
Outline Last time: Combinational Testability and Testpattern Generation Faults in digital circuits What is a test? : Controllability & Observability Redundancy & testability Test coverage & simple PODEM
More informationDIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.
DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting
More informationDIGITAL SYSTEM DESIGN LAB
EXPERIMENT NO: 7 STUDY OF FLIP FLOPS USING GATES AND IC S AIM: To verify various flipflops like D, T, and JK. APPARATUS REQUIRED: Power supply, Digital Trainer kit, Connecting wires, Patch Chords, IC
More informationLatches, the D FlipFlop & Counter Design. ECE 152A Winter 2012
Latches, the D FlipFlop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 FlipFlops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR
More informationSequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
More informationETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
More informationCHAPTER 11 LATCHES AND FLIPFLOPS
CHAPTER 11 LATCHES AND FLIPFLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 SetReset Latch 11.3 Gated D Latch 11.4 EdgeTriggered D FlipFlop 11.5 SR FlipFlop
More informationTutorial 1: Chapter 1
Tutorial 1: hapter 1 1. Figure 1.1 shows the positive edge triggered D flip flop, determine the output of Q 0, assume output is initially LOW. Figure 1.1 2. For the positive edgetriggered JK flipflop
More information1. Realization of gates using Universal gates
1. Realization of gates using Universal gates Aim: To realize all logic gates using NAND and NOR gates. Apparatus: S. No Description of Item Quantity 1. IC 7400 01 2. IC 7402 01 3. Digital Trainer Kit
More informationLesson 12 Sequential Circuits: FlipFlops
Lesson 12 Sequential Circuits: FlipFlops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
More informationLecture 9: Flipflops
Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flipflops and latches Lecture 9: Flipflops Professor Peter Cheung Department of EEE, Imperial
More informationExperiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
More informationChapter 3. Sequential Logic Design. Copyright 2013 Elsevier Inc. All rights reserved.
Chapter 3 Sequential Logic Design 1 Figure 3.1 Crosscoupled inverter pair 2 Figure 3.2 Bistable operation of crosscoupled inverters 3 Figure 3.3 SR latch schematic 4 Figure 3.4 Bistable states of SR
More informationDigital Logic: Boolean Algebra and Gates
Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 CMPE2 Summer 28 Basic Logic Gates CMPE2 Summer 28 Slides by ADB 2 Truth Table The most basic representation of a logic function Lists the output
More informationDigital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
More informationSystems I: Computer Organization and Architecture
Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flipflops. Each flipflop stores one bit of data; n flipflops are required to store
More informationBasic bistable element. Chapter 6. Latches vs. flipflops. Flipflops
Basic bistable element hapter 6 It is a circuit having two stable conditions (states). It can be used to store binary symbols. FlipFlops and Simple FlipFlop Applications.. Huang, 24 igital Logic esign
More informationDigital Logic Design Sequential circuits
Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian Email: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief Email: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An nbit register
More informationState and Finite State Machines
State and Finite State Machines See P&H Appendix C.7. C.8, C.10, C.11 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Stateful Components Until now is combinatorial logic Output
More informationWEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
More informationFlipFlops and Sequential Circuit Design. ECE 152A Winter 2012
FlipFlops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 FlipFlops, Registers, Counters and a Simple Processor 7.5 T FlipFlop 7.5. Configurable FlipFlops 7.6
More informationFlipFlops and Sequential Circuit Design
FlipFlops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 FlipFlops, Registers, Counters and a Simple Processor 7.5 T FlipFlop 7.5. Configurable FlipFlops 7.6
More informationUpon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
More informationDigital Fundamentals
Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence
More informationECE380 Digital Logic
ECE38 igital Logic FlipFlops, Registers and Counters: FlipFlops r.. J. Jackson Lecture 25 Flipflops The gated latch circuits presented are level sensitive and can change states more than once during
More informationDigital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
More informationSequential Circuits: Latches & FlipFlops
Sequential Circuits: Latches & FlipFlops Sequential Circuits Combinational Logic: Output depends only on current input Able to perform useful operations (add/subtract/multiply/encode/decode/ select[mux]/etc
More informationLecture 10. Latches and FlipFlops
Logic Design Lecture. Latches and FlipFlops Prof. Hyung Chul Park & Seung Eun Lee Sequential Logic Outputs of sequential logic depend on current inputs and prior input values Sequential logic might explicitly
More informationLet s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
More informationHaving read this workbook you should be able to: recognise the arrangement of NAND gates used to form an SR flipflop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an SR flipflop. describe how such a flipflop can be SET and RESET. describe the disadvantage
More informationRAM & ROM Based Digital Design. ECE 152A Winter 2012
RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in
More informationKarnaugh Maps. Example A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1. each 1 here gives a minterm e.g.
Karnaugh Maps Yet another way of deriving the simplest Boolean expressions from behaviour. Easier than using algebra (which can be hard if you don't know where you're going). Example A B C X 0 0 0 0 0
More informationDigital Systems Design
Digital Systems Design Review of VHDL for Sequential Circuits Dr. D. J. Jackson Lecture 41 Using a D flipflop package LIBRARY altera ; USE altera.maxplus2.all ; The dff component is only one of several
More informationL4: Sequential Building Blocks (Flipflops, Latches and Registers)
L4: Sequential Building Blocks (Flipflops, Latches and Registers) Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Prof. Randy Katz (Unified
More informationFinite State Machine. RTL Hardware Design by P. Chu. Chapter 10 1
Finite State Machine Chapter 10 1 Outline 1. Overview 2. FSM representation 3. Timing and performance of an FSM 4. Moore machine versus Mealy machine 5. VHDL description of FSMs 6. State assignment 7.
More informationDesign Example: Counters. Design Example: Counters. 3Bit Binary Counter. 3Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
More informationCpE358/CS381. Switching Theory and Logical Design. Class 10
CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer 24 Copyright 24373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic
More informationChapter 14 Sequential logic, Latches and FlipFlops
Chapter 14 Sequential logic, Latches and FlipFlops Flops Lesson 2 Sequential logic circuit, Flip Flop and Latch Introduction Ch14L2"Digital Principles and Design", Raj Kamal, Pearson Education, 2006
More informationAsynchronous Counters. Asynchronous Counters
Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter
More information7. Sequential Circuits  Combinational vs. Sequential Circuits  7. Sequential Circuits  State (2)  7. Sequential Circuits  State (1) 
Sistemas Digitais I LESI  2º ano Lesson 7  Sequential Systems Principles Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática  Combinational vs. Sequential Circuits  Logic circuits are
More informationChapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann
Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7 Registers and Load Enable 72 Register Transfers 73 Register Transfer Operations 74 A Note for VHDL and Verilog Users
More informationModule 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech  3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
More informationCHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
More informationDesign: a mod8 Counter
Design: a mod8 Counter A mod8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7. So, the stored value follows
More informationMore Verilog. 8bit Register with Synchronous Reset. Shift Register Example. Nbit Register with Asynchronous Reset.
More Verilog 8bit Register with Synchronous Reset module reg8 (reset, CLK, D, Q); input reset; input [7:0] D; output [7:0] Q; reg [7:0] Q; if (reset) Q = 0; else Q = D; module // reg8 Verilog  1 Verilog
More informationOutline. Lecture 8. VHDL, Part III 28.10.2010. Sequential logic and FSMs. Sequential circuits: principles. Finite state machines.
Lecture 8 VHDL, Part III Sequential logic and FSMs Outline Sequential circuits: principles System reset Finite state machines Output buffering 2 1 Section 1 SEQUENTIAL CIRCUITS: PRINCIPLES 3 Overview on
More informationBINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
More informationChapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
More informationFlipFlops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 FlipFlops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
More informationLAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III
LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III 1 INDEX Sr. No Title of the Experiment 1 Study of BASIC Gates 3 2 Universal Gates 6 3 Study of Full & Half Adder & Subtractor
More informationSequential Circuits: Latches and FlipFlops
Sequential Circuits: Latches and FlipFlops Sequential circuits Output depends on current input and past sequence of input(s) How can we tell if the input is current or from the past? A clock pulse can
More informationDIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: SEQUENTIAL CIRCUITS BASICS AND FLIPFLOPS
DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: SEQUENTIAL CIRCUITS BASICS AND FLIPFLOPS 1st (Autumn) term 2014/2015 5. LECTURE 1. Sequential
More informationMemory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
More informationEE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
More informationDIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift
More informationShift registers. 1.0 Introduction
Shift registers 1.0 Introduction Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of flipflops connected in a chain so that the output from
More informationModeling Sequential Elements with Verilog. Prof. ChienNan Liu TEL: 034227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit
Modeling Sequential Elements with Verilog Prof. ChienNan Liu TEL: 034227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 41 Sequential Circuit Outputs are functions of inputs and present states of storage elements
More informationSequential Circuits: Latches & FlipFlops
ESD I Lecture 3.b Sequential Circuits: Latches & FlipFlops 1 Outline Memory elements Latch SR latch D latch FlipFlop SR flipflop D flipflop JK flipflop T flipflop 2 Introduction A sequential circuit
More informationSequential Logic Design
Lab #4 Sequential Logic Design Objective: To study the behavior and applications of flip flops and basic sequential circuits including shift registers and counters. Preparation: Read the following experiment.
More informationChapter 8. Sequential Circuits for Registers and Counters
Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3 "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters TFF Basic Counting element State
More informationHigher National Unit Specification. General information for centres. Unit title: Digital Electronics. Unit code: DN4E 34
Higher National Unit Specification General information for centres Unit code: DN4E 34 Unit purpose: The Unit is designed to enable candidates to know, understand and apply the basic concepts of digital
More informationDIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,
More informationModule3 SEQUENTIAL LOGIC CIRCUITS
Module3 SEQUENTIAL LOGIC CIRCUITS Till now we studied the logic circuits whose outputs at any instant of time depend only on the input signals present at that time are known as combinational circuits.
More informationUNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180A DIGITAL SYSTEMS I Winter 2015
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC180A DIGITAL SYSTEMS I Winter 2015 LAB 7. Finite State Machine Design LED Bouncing Ball Hardware Required 2 or 3 74LS74
More informationl What have discussed up until now & why: l C Programming language l More lowlevel then Java. l Better idea about what s really going on.
CS211 Computer Architecture l Topics Digital Logic l Transistors (Design & Types) l Logic Gates l Combinational Circuits l KMaps Class Checkpoint l What have discussed up until now & why: l C Programming
More informationThe equation for the 3input XOR gate is derived as follows
The equation for the 3input XOR gate is derived as follows The last four product terms in the above derivation are the four 1minterms in the 3input XOR truth table. For 3 or more inputs, the XOR gate
More informationSequential Logic Design Principles.Latches and FlipFlops
Sequential Logic Design Principles.Latches and FlipFlops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and FlipFlops SR Latch
More information7. Latches and FlipFlops
Chapter 7 Latches and FlipFlops Page 1 of 18 7. Latches and FlipFlops Latches and flipflops are the basic elements for storing information. One latch or flipflop can store one bit of information. The
More informationSequential Circuit Design
Sequential Circuit Design LanDa Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines
More informationCounters & Shift Registers Chapter 8 of R.P Jain
Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of ModuloN ripple counter, UpDown counter, design of synchronous counters with and without
More informationCascaded Counters. Page 1 BYU
Cascaded Counters Page 1 ModN Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A modn counter has N states Counts from 0 to N1 then rolls
More informationChapter 2 Digital Components. Section 2.1 Integrated Circuits
Chapter 2 Digital Components Section 2.1 Integrated Circuits An integrated circuit (IC) is a small silicon semiconductor crystal, called a chip, containing the electronic components for the digital gates
More informationProgrammable Logic Devices (PLDs)
Programmable Logic Devices (PLDs) Lesson Objectives: In this lesson you will be introduced to some types of Programmable Logic Devices (PLDs): PROM, PAL, PLA, CPLDs, FPGAs, etc. How to implement digital
More informationCounters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4bit ripplethrough decade counter with a decimal readout display. Such a counter
More informationGates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
More informationTopics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Twophase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
More informationECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog
ECE232: Hardware Organization and Design Part 3: Verilog Tutorial http://www.ecs.umass.edu/ece/ece232/ Basic Verilog module ();
More informationThe components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7segment display. 2 st. IC
More informationClocks. Sequential Logic. A clock is a freerunning signal with a cycle time.
Clocks A clock is a freerunning signal with a cycle time. A clock may be either high or low, and alternates between the two states. The length of time the clock is high before changing states is its high
More informationExperiment 5. Arithmetic Logic Unit (ALU)
Experiment 5 Arithmetic Logic Unit (ALU) Objectives: To implement and test the circuits which constitute the arithmetic logic circuit (ALU). Background Information: The basic blocks of a computer are central
More informationEdgeTriggered Dtype Flipflop
EdgeTriggered Dtype Flipflop The transparent Dtype flipflop is written during the period of time that the write control is active. However there is a demand in many circuits for a storage device (flipflop
More informationChapter 5: Sequential Circuits (LATCHES)
Chapter 5: Sequential Circuits (LATCHES) Latches We focuses on sequential circuits, where we add memory to the hardware that we ve already seen Our schedule will be very similar to before: We first show
More informationCS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flipflops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
More informationLatches and FlipFlops characterestics & Clock generator circuits
Experiment # 7 Latches and FlipFlops characterestics & Clock generator circuits OBJECTIVES 1. To be familiarized with D and JK flipflop ICs and their characteristic tables. 2. Understanding the principles
More informationCombinational Logic. Combinational Circuits in Computers (Examples) Design of Combinational Circuits. CC Design Example
Combinational Circuits in Computers (Examples) Combinational Logic Translates a set of Boolean n input variables ( or ) by a mapping function (using Boolean operations) to produce a set of Boolean m output
More information