MODULE 11- DESIGN OF SYNCHRONOUS SEQUENTIAL COUNTERS AND STATE MACHINES
|
|
|
- Angela Rose
- 9 years ago
- Views:
Transcription
1 Introduction to Digital Electronics Module 11: Design of Sequential Counters and State Machines 1 MODULE 11- DESIGN OF SYNCHRONOUS SEQUENTIAL COUNTERS AND STATE MACHINES OVERVIEW: A synchronous sequential counter is a counter where each flip flop is clocked at the same time, and has a memory of where it has been and uses that history to progress to its next designed state. This class of counter not only includes counters that count in a strict progression in an ordered sequence, it also includes counters that can count in any possible sequence. The only restraint is that each state or possible counting number can only be used once in a sequence before the sequence is repeated. There can be unused states or numbers that the counter never generates. These are called forbidden states. If the counting circuit even accidentally ends up in one of these forbidden states because of some electrical trauma such as a power fluctuation, the counter is designed to go to the reset or normal starting state on the next clock signal. The family of state machines includes synchronous sequential counters, and a class of counters that have outside generated control variables and can have several different transition paths dictated by the external control variables. The ability to externally change the counter s programmed or designed counting path using external control variables is the basis of the modern computer. There can be a separate state machine counting sequence for each binary combination of the control variables. A state machine with three counter variables (also called state variables), and two input variables (also called control variables), can have four possible counting paths with up to eight possible counts in each path. CONCEPT 11.1: BASIC STATE COUNTERS DO NOT REQUIRE EXTERNAL CONTROL VARIABLES A basic State counter uses one flip flop for each state variable or count variable that is fed back to the inputs of the control logic. There needs to be enough state variables to generate enough combinations to complete the desired number of steps. Each flip flop is parallel clocked or clocked by the same flip flop at the same time. Outside of the clock, the only other external input that the counter may have is a set or clear that is used to start the counter in its reset or desired starting state.
2 Introduction to Digital Electronics Module 11: Design of Sequential Counters and State Machines 2 CONCEPT 11.2: DESIGNING A BASIC STATE COUNTER The design of a basic state counter requires several tools. First you must map out the desired count sequence using a State Graph. A state graph has one circle for every possible state. If the counter has three state variables, the state graph will have eight circle. A four state variable design will start with a state graph that has sixteen circles and so on. The state graph transition path is next converted to a State Table. The state table is a matrix of how the state machine progresses from its present state to the next state as mapped by the state graph. The first set of columns tabulates a straight binary progression of the present state variables in much the same way as a truth table. There is one additional column that maps the states as S0 = 000, S1 = 001, and so on. The columns to the right are the next state columns that contain the destination state as mapped by the state graph. The final set of columns contain the control variables or the inputs to the flip flops or memory devices needed to force them to transition to the next state. For D flip flops, the D inputs must be the same as the next state. To make a state machine that uses D flip flops, the D inputs must have a combinational logic circuit that will cause the correct next state to be present on the D input for each present state. The best way to understand how to design a state counter is to follow a step by step procedure to design one. We will design a state counter that will count up in even steps as , and so on. 1. DRAW THE STATE GRAPH SHOWING THE COUNTER TRANSITION PATH
3 Introduction to Digital Electronics Module 11: Design of Sequential Counters and State Machines 3 2. CREATE A STATE TABLE THAT MAPS THE STATE GRAPH Notice that the D control variables are exactly the same as the next state variables. This is only true for the D flip flop. J-K flip flops must have the right combinations of J and K inputs to make the flip flop transition from the present state to the next state. 3. WRITE THE DESIGN EQUATIONS FOR THE FLIP FLOP INPUTS Here A, B, and C are the outputs of the flip flops which are fed back to the Combinational logic circuits which create the next state inputs on the D control variable inputs of the same flip flops. This is what makes the flip flops transition to the correct next state. 4. SIMPLIFY THE DESIGN LOGIC FOR THE CONTROL VARIABLE INPUTS If you are designing the state machine using programmable logic, there is no need to simplify the combinational logic circuits because the programmable logic device will have more than enough gates and inputs to cover the unsimplified equations. If you are going to build the design using discrete components, you might want to simplify the design using Karnaugh Maps.
4 Introduction to Digital Electronics Module 11: Design of Sequential Counters and State Machines 4 The design equations above simply to: J-K flip flop designs reduce much more than D flip flop designs because the J-K flip flops have don t care variables in their design equations. There would be six control variables for each of the J s and K s for each flip flop, but the control variable equations for each would reduce few or no gates. 5. DESIGN THE LOGIC FROM THE CONTROL VARIABLE EQUATIONS There are no external input variables that will change the counter. It will just continue to count the sequence it was designed to count without ever changing its order.
5 Introduction to Digital Electronics Module 11: Design of Sequential Counters and State Machines 5 CONCEPT 11.3: DESIGNING A STATE COUNTER OR STATE MACHINE WITH INPUT VARIABLES The design process for designing a state machine is basically the same as designing a state counter. The main difference is that the state machine has input variables which allow outside influences to change the state machine transition path. The design equations for the control variable inputs now have to consider input variables as well as state variables. The state graph can have multiple paths dictated by the input variables. The state tables will have separate sections for each combination of input variables. Each unique combination of input variables becomes a separate design problem. When they are combined together, the resulting design is a state machine that has multiple paths selected by external controls. The best way to understand how to complete a state machine design with external input variables is to design such a machine. Add to the earlier design an input variable X. If X=0, the sequence is as before. If X = 1, make the sequence The design steps will be similar to the original design but now much include the input variable X. 1. CREATE THE STATE GRAPH
6 Introduction to Digital Electronics Module 11: Design of Sequential Counters and State Machines 6 2. MAP THE STATE GRAPHS INTO THE STATE TABLE 3. WRITE THE CONTROL VARIABLE DESIGN EQUATIONS 4. DESIGN THE CIRCUIT FROM THE CONTROL VARIABLE EQUATIONS Even after simplifying the equations, the circuit is quite complicated. This is a good candidate for a pal design.
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
Asynchronous Counters. Asynchronous Counters
Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter
ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.
ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures
Module 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : [email protected] Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
Digital Logic Design Sequential circuits
Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: [email protected] Dr. Eng. Rania.Swief E-mail: [email protected] Dr. Eng. Ahmed H. Madian Registers An n-bit register
ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage
Upon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
Lesson 12 Sequential Circuits: Flip-Flops
Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.
DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department
Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Counters are sequential circuits which "count" through a specific state sequence.
Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:
Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
Flip-Flops and Sequential Circuit Design
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
Digital Controller for Pedestrian Crossing and Traffic Lights
Project Objective: - To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on next-state techniques
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.
DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting
Counters & Shift Registers Chapter 8 of R.P Jain
Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without
Systems I: Computer Organization and Architecture
Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store
CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS
CHAPTER IX-1 CHAPTER IX CHAPTER IX COUNTERS, SHIFT, AN ROTATE REGISTERS REA PAGES 249-275 FROM MANO AN KIME CHAPTER IX-2 INTROUCTION -INTROUCTION Like combinational building blocks, we can also develop
CHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
Cascaded Counters. Page 1 BYU
Cascaded Counters Page 1 Mod-N Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A mod-n counter has N states Counts from 0 to N-1 then rolls
Contents COUNTER. Unit III- Counters
COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo
So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
Master/Slave Flip Flops
Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave
CHAPTER 11 LATCHES AND FLIP-FLOPS
CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop
Theory of Logic Circuits. Laboratory manual. Exercise 3
Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices
The components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC
Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54
Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday
WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
Engr354: Digital Logic Circuits
Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1
Combinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift
Lecture-3 MEMORY: Development of Memory:
Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -
. (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)
Gray Code Generator and Decoder by Carsten Kristiansen Napier University. November 2004
Gray Code Generator and Decoder by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Design of a Gray Code Generator and
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,
Chapter 9 Latches, Flip-Flops, and Timers
ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary
Simplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
Copyright Peter R. Rony 2009. All rights reserved.
Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table
SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks
UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
Traffic Light Controller. Digital Systems Design. Dr. Ted Shaneyfelt
Traffic Light Controller Digital Systems Design Dr. Ted Shaneyfelt December 3, 2008 Table of Contents I. Introduction 3 A. Problem Statement 3 B. Illustration 3 C. State Machine 3 II. Procedure 4 A. State
DEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453
(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
CS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
Course Requirements & Evaluation Methods
Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:
Operating Manual Ver.1.1
4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-
Let s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
Memory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
Design Verification & Testing Design for Testability and Scan
Overview esign for testability (FT) makes it possible to: Assure the detection of all faults in a circuit Reduce the cost and time associated with test development Reduce the execution time of performing
Digital Logic Elements, Clock, and Memory Elements
Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES [email protected] BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
Napier University. School of Engineering. Electronic Engineering A Module: SE42205 Digital Design
Napier University School of Engineering Digital Design Clock + U1 out 5V "1" "2" "4" JK-FF D JK-FF C JK-FF B U8 SN7408 signal U4 SN74107 U5 SN74107 U6 SN74107 U3 SN7408 U2 J Q J Q & J Q & K CQ K CQ K CQ
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1
MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable
Chapter 7 Memory and Programmable Logic
NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array
Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann
Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users
CpE358/CS381. Switching Theory and Logical Design. Class 10
CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer- 24 Copyright 24-373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
Chapter 5. Sequential Logic
Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends
PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1
UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1 This work covers part of outcome 3 of the Edexcel standard module: Outcome 3 is the most demanding
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course
Chapter 8. Sequential Circuits for Registers and Counters
Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State
EXPERIMENT 8. Flip-Flops and Sequential Circuits
EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.
Digital Fundamentals
igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage
8-ch RAID0 Design by using SATA Host IP Manual Rev1.0 9-Jun-15
8-ch RAID0 Design by using SATA Host IP Manual Rev1.0 9-Jun-15 1 Overview RAID0 system uses multiple storages to extend total storage capacity and increase write/read performance to be N times. Assumed
2011, The McGraw-Hill Companies, Inc. Chapter 5
Chapter 5 5.1 Processor Memory Organization The memory structure for a PLC processor consists of several areas, some of these having specific roles. With rack-based memory structures addresses are derived
Wiki Lab Book. This week is practice for wiki usage during the project.
Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice
Programming A PLC. Standard Instructions
Programming A PLC STEP 7-Micro/WIN32 is the program software used with the S7-2 PLC to create the PLC operating program. STEP 7 consists of a number of instructions that must be arranged in a logical order
Registers & Counters
Objectives This section deals with some simple and useful sequential circuits. Its objectives are to: Introduce registers as multi-bit storage devices. Introduce counters by adding logic to registers implementing
Flip-Flops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online
A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online Dr. Brock J. LaMeres Assistant Professor Electrical & Computer Engineering Dept Montana
Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation
Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated
150127-Microprocessor & Assembly Language
Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an
PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics
PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit - FSM A Sequential circuit contains: Storage
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
