EE 110 Practice Problems for Exam 2: Solutions, Fall 2007


 Melinda Allison
 1 years ago
 Views:
Transcription
1 EE 110 Practice Problems for Exam 2: Solutions, Fall Circle T (true) or F (false) for each of these Boolean equations. (a). T FO An 8to1 multiplexer requires 2 select lines. (An 8to1 multiplexer requires 3 select lines). (b). T FO A half adder has a carry input. (A half adder has no carry input). (c). TO F Even parity means the data has an even number of bits that are 1. (d). T FO If a decoder has 16 outputs, it requires 3 inputs to choose all possible outputs. (A 16output decoder requires 4 inputs to choose all outputs). (e). T FO Latches are edgetriggered memory devices. (Latches are leveltriggered memory devices). 2. Signed Arithmetic: 2(a). Find using two s complement format with 8bit numbers. Then convert your result back to decimal is positive. In 8bit two s complement format, = is negative. In 8bit two s complement format, = ; flip the bits and add 1 to get two s complement of a negative number = = Add and together in two s complement format: = Convert to decimal: in two s complement is a negative number, so flip the bits and add 1 to find its magnitude = = = The solution is = = (b). Find using one s complement format with 8bit numbers. Then convert your result back to decimal is positive, so in one s complement, = is negative; = , so in one s complement format flips the bits of
2 EE 110 Practice Problems for Exam 2: Solutions, Fall = = = carry bit. One s complement uses an endaround carry if the carry bit is 1, which means add 1 to the sum: = = Convert to decimal to check your answer: = = = = = (c). Add 5F 16 + C2 16, assuming you are limited to 8bit signed numbers, and that these hex numbers are a compact representation of two s complement binary numbers. Convert your answer to decimal. Is your answer correct? Why or why not? Convert the hex numbers to binary and add the two s complement binary numbers together. It is possible to directly add the numbers in hex, but we will perform the addition in binary. Convert 5F 16 to binary: 5F 16 = Convert C2 16 to binary: C2 16 = Add together: = , drop the carry bit. The answer is positive, as the MSB=0, so we can convert directly to decimal = = Is this answer correct? Let s convert the binary equivalents of the hex numbers to decimal: 5F 16 = = = ; C2 16 has MSB=1, so it is a negative two s complement number. Therefore, we must find its magnitude by taking the two s complement again. C2 16 = Flipping all bits, we obtain , and adding 1, we get Converting to decimal, we find that the magnitude of C2 16 = = 62 10, and thus C2 16 = Our answer is 33 10, and = So our answer is correct. The answer is correct because it falls within the range of 8bit two s complement representation; 8bit two s complement numbers can accurately represent any number from +127 to Since we are adding a positive number which must be between 0 and 127 to a negative number that must be between 1 and 128, our answer must fall in the range from +126 to This is within the range of 8bit two s complement accuracy. Note that if we add two negative numbers, or add two positive numbers, the answer could be outside the range of accurate representation; whether it is or not depends on the magnitude of the numbers being added.
3 EE 110 Practice Problems for Exam 2: Solutions, Fall Combinational Logic: Design a circuit that counts the number of 1 s present in 3 inputs A, B and C. Its output is a twobit number X 1 X 0, representing that count in binary. Assume activehigh logic. 3(a). Write the truth table for this circuit. A B C X 1 X (b). Find the minimized logic equations for outputs X 1 and X 0 ; use a Kmap if needed. A Kmap for X 0 is not very helpful, as it results in 4 isolated minterms, A B C + A B C + A B C + ABC. However, we may recall from the binary adder lab that this equation can be factored further using the XOR operator. Factor out A and A from their respective terms to obtain: X 0 = A(BC + BC) + A(B C + BC) = A(B C) + A(B C) = A (B C). X0 = A B C KMap for X 1 : BC A SOP expression for X1: blue vertical pair=bc green horizontal pair=ac, red horizontal pair=ab X1 = AB + AC + BC
4 EE 110 Practice Problems for Exam 2: Solutions, Fall (c). Draw the corresponding logic diagram for this circuit. Label all inputs and outputs. A B C AND OR OR X 1 AND AND XOR XOR X 0 4. Combinational Logic: Multiplexers and Encoders 4(a). Draw a block diagram of a 4to1 multiplexer. Do not use a gatelevel diagram. Label all inputs and outputs. A 0 A 1 A 2 A 3 Y S 1 S 0 4(b). Draw a block diagram of a 4to2 encoder. Label all inputs and outputs. How is the 4to2 encoder different from a 4to1 multiplexer? A 0 A 1 A 2 A 3 Y 1 Y 0
5 EE 110 Practice Problems for Exam 2: Solutions, Fall The 4to2 encoder has 4 input lines and 2 output lines. Only one input line should be active at a time. The 2 output lines send the 2bit binary number corresponding to which input line is active. So if line A 1 is active, the output Y 1 Y 0 will be 01. The 4to1 multiplexer has 4 input lines, and 2 select lines. The 2 bits from the select lines choose the input line which will be used as output, so the data sent on that input line will be output. So if the select lines S 1 S 0 = 01, whatever data is on input line A 1 will be output on Y. 4(c). Write the truth table for a 4to2 priority encoder. Write a simplified truth table for a 4to1 multiplexer (hint: your multiplexer truth table should have 2 inputs). Truth Table for 4to2 priority encoder: A 3 A 2 A 1 A 0 Y 1 Y Truth Table for 4to1 multiplexer: S 1 S 0 Y 0 0 A A A A 3
6 EE 110 Practice Problems for Exam 2: Solutions, Fall Combinational Logic: Binary Adders You wish to add two 4bit numbers. You have half adders and full adders available to use as components. 5(a). Draw a block diagram of your 4bit adder, using half and full adders. Do not draw a gatelevel diagram. Show and label all inputs and outputs. X 3 Y 3 C 2 X 2 Y 2 C 1 X 1 Y 1 C 0 X 0 Y 0 Full Adder Full Adder Full Adder Half Adder C 3 C 2 Z 3 C 0 Z 2 C 1 Z 1 Z 0 5(b). Assume that a half adder has a maximum propagation delay of, and a full adder has a maximum propagation delay of 2. What is the maximum propagation delay for your 4bit adder, from LSB input to MSB output? You have 3 full adders and 1 half adders in your 4bit adder design, so the maximum propagation delay from the LSB input at the half adder to the MSB output at the last full adder must go through all adder components. The maximum propagation delay is = 7.
7 EE 110 Practice Problems for Exam 2: Solutions, Fall Sequential Logic: Latches and Flipflops 6(a). Draw a block diagram (not a gatelevel diagram) of a D latch and a D flipflop. Show and label all inputs and outputs. Block Diagram of a D Latch: D Q EN or C Q Block Diagram of a D FlipFlop: D Q CLK Q 6(b). Write the truth tables for both a D latch and a D flipflop. Truth Table for a D Latch: (note: Q is the next state of Q) C D Q 0 0 Q (Hold) 0 1 Q (Hold) (Reset) (Set) Truth Table for a D FlipFlop: CLK D Q 0 0 (Reset) 1 1 (Set) 0 X Q (Hold) 1 X Q (Hold) X Q (Hold)
8 EE 110 Practice Problems for Exam 2: Solutions, Fall (c). On the following graph, inputs CLK and D are shown. They are inputs to both a D latch and a D flipflop. CLK goes into the EN or C input of the D latch. Write the output of the D latch as Q DL on the graph. Then write the output of the D flipflop as Q DFF on the graph. Ignore setup and hold time requirements (assume T SU = T H = 0). Both outputs are initially 0 at the start of the graph, as shown. Do the two outputs differ, and if so, why? CLK D Q DL Q DFF The output of the D latch, Q DL, and the output of the D flipflop, Q DFF, do differ. They are different because the D latch is leveltriggered, acting when the clock is high, while the D flipflop is edgetriggered, and only acts on a rising edge of the clock. Thus the D latch output can change value at any time when CLK = H if the input D changes value. The D flipflop can only change value on the rising edge of CLK. 7. Sequential Logic: Counters 7(a). Design a 3bit binary synchronous counter using JK flipflops. First, draw the state bubble diagram, showing the 3bit outputs as the state
9 EE 110 Practice Problems for Exam 2: Solutions, Fall (b). Draw the circuit diagram, using flipflops as blocks (don t draw the individual gates in each flipflop). Show and label all inputs and outputs. A 3bit binary counter requires 3 flipflops, as each flipflop provides one bit with its output Q. The counter is synchronous, which means all flipflops are connected to the same clock. However, before we can draw the counter, we need to determine how to connect the JK inputs to produce the state bubble diagram of 7.a. Remember that the truth table for a JK flipflop is: J K Q 0 0 Q (Hold) (Reset) (Set) 1 1 Q (Toggle) Write a truth table showing the present state Q, next state Q and all required JK input values to achieve the required transition from present to next state. Present State Next State Inputs Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 J 2 K 2 J 1 K 1 J 0 K X X X X X X 1 X X X X X X 1 X 1 X 1 Note that J 0 and K 0 are either 1 or X (don t care), so they may be set high; J 0 = K 0 = 1. Also note that J 1 and K 1 are 1 or X whenever Q 0 = 1. Thus J 1 = K 1 = Q 0. This could also be determined from a 3variable Kmap of J 1, with variables Q 2, Q 1 and Q 0. Similarly, note that J 2 and K 2 are 1 or X whenever both Q 1 and Q 0 are 1. Their equation is found as J 2 = K 2 = Q 1 Q 0. Again, this could also be found from a 3variable Kmap of J 2, with variables Q 2, Q 1 and Q 0. Now that we have equations for all the JK inputs, we can draw the circuit diagram for the 3bit synchronous counter.
10 EE 110 Practice Problems for Exam 2: Solutions, Fall V AND CLK PRE J 2 Q 2 K 2 CLR PRE J 1 Q 1 K 1 CLR PRE J 0 Q 0 K 0 CLR Q 2 Q 1 Q 0 7(c). For an output cycle of 10 clock pulses, draw the 3 outputs X 0, X 1 and X 2 of the synchronous counter on the grid below. State which output is the MSB and which is the LSB. Assume that you start in the allzeros state (000) as shown below. CLK MSB=X 2 X 1 LSB=X 0 Note that the counter is counting from X 2 X 1 X 0 = 000 to up to 111 and then starts over again at 000, exactly as the state bubble diagram of 7.a. describes.
Simplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More informationDesign Example: Counters. Design Example: Counters. 3Bit Binary Counter. 3Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
More information(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
More informationEE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
More informationDigital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
More informationFlipFlops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 FlipFlops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
More informationEE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
More informationLecture3 MEMORY: Development of Memory:
Lecture3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
More informationCS 61C: Great Ideas in Computer Architecture Finite State Machines. Machine Interpreta4on
CS 61C: Great Ideas in Computer Architecture Finite State Machines Instructors: Krste Asanovic & Vladimir Stojanovic hbp://inst.eecs.berkeley.edu/~cs61c/sp15 1 Levels of RepresentaKon/ InterpretaKon High
More informationUniversity of St. Thomas ENGR 230  Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54
Fall 2005 Instructor Texts University of St. Thomas ENGR 230  Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday
More informationA single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulatorbased machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
More informationSECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks
UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very
More informationDigital Fundamentals
igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage
More informationCSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
More informationDigital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
More informationCourse Requirements & Evaluation Methods
Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:
More information1.1 The 7493 consists of 4 flipflops with JK inputs unconnected. In a TTL chip, unconnected inputs
CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.
More informationChapter 7 Memory and Programmable Logic
NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array
More informationSistemas Digitais I LESI  2º ano
Sistemas Digitais I LESI  2º ano Lesson 6  Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA  PLDs (1)  The
More informationFundamentals of Digital Electronics
Fundamentals of Digital Electronics by Professor Barry Paton Dalhousie University March 998 Edition Part Number 32948A Fundamentals of Digital Electronics Copyright Copyright 998 by National Instruments
More informationIE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
More informationDATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO
GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS Hex Invertes 74LS04 Quadruple 2 Inputs Gates 74LS00 Triple 3 Inputs Gates 74LS10 Dual 4 Inputs Gates 74LS20 8 Inputs Gates 74LS30 13 Inputs Gates
More informationWe r e going to play Final (exam) Jeopardy! "Answers:" "Questions:"  1 
. (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)
More informationLife Cycle of a Memory Request. Ring Example: 2 requests for lock 17
Life Cycle of a Memory Request (1) Use AQR or AQW to place address in AQ (2) If A[31]==0, check for hit in DCache Ring (3) Read Hit: place cache word in RQ; Write Hit: replace cache word with WQ RDDest/RDreturn
More informationThe 104 Duke_ACC Machine
The 104 Duke_ACC Machine The goal of the next two lessons is to design and simulate a simple accumulatorbased processor. The specifications for this processor and some of the QuartusII design components
More informationDM9368 7Segment Decoder/Driver/Latch with Constant Current Source Outputs
DM9368 7Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7segment decoder driver incorporating input latches and constant current output circuits
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More informationSequential Circuit Design
Sequential Circuit Design LanDa Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines
More informationPhiladelphia University Faculty of Information Technology Department of Computer Science  Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science  Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course
More informationDesigning Digital Circuits a modern approach. Jonathan Turner
Designing Digital Circuits a modern approach Jonathan Turner 2 Contents I First Half 5 1 Introduction to Designing Digital Circuits 7 1.1 Getting Started.......................... 7 1.2 Gates and Flip
More informationMICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1
MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable
More informationNapier University. School of Engineering. Electronic Engineering A Module: SE42205 Digital Design
Napier University School of Engineering Digital Design Clock + U1 out 5V "1" "2" "4" JKFF D JKFF C JKFF B U8 SN7408 signal U4 SN74107 U5 SN74107 U6 SN74107 U3 SN7408 U2 J Q J Q & J Q & K CQ K CQ K CQ
More informationIntroduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems
Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH
More informationUpon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
More informationTRUE SINGLE PHASE CLOCKING BASED FLIPFLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIPFLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
More informationCombinational Logic Design
Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (twoelement switching algebra
More informationSequential Circuits. Combinational Circuits Outputs depend on the current inputs
Principles of VLSI esign Sequential Circuits Sequential Circuits Combinational Circuits Outputs depend on the current inputs Sequential Circuits Outputs depend on current and previous inputs Requires separating
More informationMemory unit. 2 k words. n bits per word
9 k address lines Read n data input lines Memory unit 2 k words n bits per word n data output lines 24 Pearson Education, Inc M Morris Mano & Charles R Kime 92 Memory address Binary Decimal Memory contents
More informationLecture 7: Clocking of VLSI Systems
Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 TwoPhase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10  Clocking Note: The analysis
More information150127Microprocessor & Assembly Language
Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessorbased systems are designed around the Z80. The Z80 microprocessor needs an
More informationRETRIEVING DATA FROM THE DDC112
RETRIEVING DATA FROM THE by Jim Todsen This application bulletin explains how to retrieve data from the. It elaborates on the discussion given in the data sheet and provides additional information to allow
More informationComputer Engineering 290. Digital Design: I. Lecture Notes Summer 2002
Computer Engineering 290 Digital Design: I Lecture Notes Summer 2002 W.D. Little Dept. of Electrical and Computer Engineering University of Victoria 1 Preface These lecture notes complement the material
More informationAdmin. ECE 550: Fundamentals of Computer Systems and Engineering. Last time. VHDL: Behavioral vs Structural. Memory Elements
Admin C 55: Fundamentals of Computer ystems and ngineering torage and Clocking eading Finish up Chapter ecitation How is it going? VHL questions/issues? Homework Homework ubmissions vis akai C 55 (Hilton):
More informationZ80 Instruction Set. Z80 Assembly Language
75 Z80 Assembly Language The assembly language allows the user to write a program without concern for memory addresses or machine instruction formats. It uses symbolic addresses to identify memory locations
More informationDo not open this examination paper until instructed to do so. Section A: answer all the questions. Section B: answer all the questions.
N10/5/COMSC/HP1/ENG/TZ0/XX 88107011 Computer science HIGHER level Paper 1 Tuesday 16 November 2010 (afternoon) 2 hours 15 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed
More informationLab #5: Design Example: Keypad Scanner and Encoder  Part 1 (120 pts)
Dr. Greg Tumbush, gtumbush@uccs.edu Lab #5: Design Example: Keypad Scanner and Encoder  Part 1 (120 pts) Objective The objective of lab assignments 5 through 9 are to systematically design and implement
More informationLecture 11: Sequential Circuit Design
Lecture 11: Sequential Circuit esign Outline Sequencing Sequencing Element esign Max and Minelay Clock Skew Time Borrowing TwoPhase Clocking 2 Sequencing Combinational logic output depends on current
More informationLecture 10: Sequential Circuits
Introduction to CMOS VLSI esign Lecture 10: Sequential Circuits avid Harris Harvey Mudd College Spring 2004 Outline q Sequencing q Sequencing Element esign q Max and Minelay q Clock Skew q Time Borrowing
More informationStandart TTL, Serie 74... Art.Gruppe 13.15. 1...
Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... 7400 Quad 2Input Nand Gate (TP) DIL14 7402 Quad 2 Input Nor Gate (TP) DIL14 7403 Quad 2 Input Nand Gate (OC) DIL14 7404 Hex Inverter
More informationChapter 5 Instructor's Manual
The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction
More informationElectronics Merit Badge Class 3. 1/30/2014 Electronics Merit Badge Class 3 1
Electronics Merit Badge Class 3 1/30/2014 Electronics Merit Badge Class 3 1 Decimal Base 10 In base 10, there are 10 unique digits (09). When writing large numbers (more that 1 digit), each column represents
More informationCS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions
CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How
More informationDepartment of Engineering Science Syllabus
Department of Engineering Science Syllabus Course Name: Fundamentals of Digital Circuit Design Course Number: ES 112 Section: 001 Credit Hours: 1.0 Semester Offered: Spring 2016 Course Meeting Days/Time:
More informationLevent EREN levent.eren@ieu.edu.tr A306 Office Phone:4889882 INTRODUCTION TO DIGITAL LOGIC
Levent EREN levent.eren@ieu.edu.tr A306 Office Phone:4889882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n
More informationLecture 4: Binary. CS442: Great Insights in Computer Science Michael L. Littman, Spring 2006. IBeforeE, Continued
Lecture 4: Binary CS442: Great Insights in Computer Science Michael L. Littman, Spring 26 IBeforeE, Continued There are two ideas from last time that I d like to flesh out a bit more. This time, let
More informationComp 255Q  1M: Computer Organization Lab #3  Machine Language Programs for the PDP8
Comp 255Q  1M: Computer Organization Lab #3  Machine Language Programs for the PDP8 January 22, 2013 Name: Grade /10 Introduction: In this lab you will write, test, and execute a number of simple PDP8
More informationOnline Development of Digital Logic Design Course
Online Development of Digital Logic Design Course M. Mohandes, M. Dawoud, S. Al Amoudi, A. Abul Hussain Electrical Engineering Department & Deanship of Academic Development King Fahd University of Petroleum
More informationDesign and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course
Session ENG 2066 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University swain@scsu.edu Raghu Korrapati,
More informationContent Map For Career & Technology
Content Strand: Applied Academics CTET11 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
More informationMultipliers. Introduction
Multipliers Introduction Multipliers play an important role in today s digital signal processing and various other applications. With advances in technology, many researchers have tried and are trying
More informationA Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional FacetoFace vs. Fully Online
A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional FacetoFace vs. Fully Online Dr. Brock J. LaMeres Assistant Professor Electrical & Computer Engineering Dept Montana
More informationDS1621 Digital Thermometer and Thermostat
Digital Thermometer and Thermostat www.dalsemi.com FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent
More informationCpE358/CS381. Switching Theory and Logical Design. Class 10
CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer 24 Copyright 24373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic
More informationDigital Systems. Syllabus 8/18/2010 1
Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,
More informationBinary Numbering Systems
Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and
More informationUsing Logic to Design Computer Components
CHAPTER 13 Using Logic to Design Computer Components Parallel and sequential operation In this chapter we shall see that the propositional logic studied in the previous chapter can be used to design digital
More informationPART B QUESTIONS AND ANSWERS UNIT I
PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bidirectional
More informationRF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
More informationI 2 S bus specification
1.0 INTOUCTION Many digital audio systems are being introduced into the consumer audio market, including compact disc, digital audio tape, digital sound processors, and digital TVsound. The digital audio
More informationEE552. Advanced Logic Design and Switching Theory. Metastability. Ashirwad Bahukhandi. (Ashirwad Bahukhandi) bahukhan@usc.edu
EE552 Advanced Logic Design and Switching Theory Metastability by Ashirwad Bahukhandi (Ashirwad Bahukhandi) bahukhan@usc.edu This is an overview of what metastability is, ways of interpreting it, the issues
More informationDiscrete Structures. Rajmohan Rajaraman Eric Ropiak Chris Burrows Ravi Sundaram
Discrete Structures Harriet Fell Javed A. Aslam Rajmohan Rajaraman Eric Ropiak Chris Burrows Ravi Sundaram Discrete Structures Version 2.1 Harriet Fell Javed A. Aslam Rajmohan Rajaraman Eric Ropiak Chris
More informationReadonly memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards
Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Readonly memory Implementing logic with ROM Programmable logic
More informationDS1721 2Wire Digital Thermometer and Thermostat
www.dalsemi.com FEATURES Temperature measurements require no external components with ±1 C accuracy Measures temperatures from 55 C to +125 C; Fahrenheit equivalent is 67 F to +257 F Temperature resolution
More informationNumber of bits needed to address hosts 8
Advanced Subnetting Example 1: Your ISP has assigned you a Class C network address of 198.47.212.0. You have 3 networks in your company with the largest containing 134 hosts. You need to figure out if
More informationV05: Diploma in Computer Hardware maintenance and Network Technologies (Windows 2000 Server) (32 CP)
V05: Diploma in Computer Hardware maintenance and Network Technologies (Windows 2000 Server) (32 CP) DHW101: Digital Computer Electronics, Theory (4CP) DHW 102:Digital Computer Electronics, Practical (4CP)
More informationPROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics
PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit  FSM A Sequential circuit contains: Storage
More informationLatch Timing Parameters. Flipflop Timing Parameters. Typical Clock System. Clocking Overhead
Clock  key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where
More information1. Start Log Monitor. 2. Stop Log Monitor, check. Alarm State and turn on. alarm LED if alarm was. triggered. 3. Reset LED control state,
CS8304 operation MAIN flow 1. Start Log Monitor 1a. Check Alarm State Only 2. Stop Log Monitor, check Alarm State and turn on alarm LED if alarm was triggered 3. Reset LED control state, Get Number of
More informationRegister File, Finite State Machines & Hardware Control Language
Register File, Finite State Machines & Hardware Control Language Avin R. Lebeck Some slides based on those developed by Gershon Kedem, and by Randy Bryant and ave O Hallaron Compsci 04 Administrivia Homework
More informationDesign Verification & Testing Design for Testability and Scan
Overview esign for testability (FT) makes it possible to: Assure the detection of all faults in a circuit Reduce the cost and time associated with test development Reduce the execution time of performing
More informationDigital Design with VHDL
Digital Design with VHDL CSE 560M Lecture 5 Shakir James Shakir James 1 Plan for Today Announcement Commentary due Wednesday HW1 assigned today. Begin immediately! Questions VHDL help session Assignment
More information2 n. (finite state machines).
.  S,, T FIFO. ;. 2. ;,,.,, (sequential).. ( )... 3. ; (state) (state variables),.,, (state)..,,..,,. 4. ;. n 2 n., 2 n,, (finite state machines). 5. (feedback).,..,.,,. 6.,,., ( ).. ,.,. 7., ( ).,..,
More informationTopics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Twophase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
More informationPROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics
PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit A Sequential circuit contains: Storage elements:
More informationFPGA IMPLEMENTATION OF 4DPARITY BASED DATA CODING TECHNIQUE
FPGA IMPLEMENTATION OF 4DPARITY BASED DATA CODING TECHNIQUE Vijay Tawar 1, Rajani Gupta 2 1 Student, KNPCST, Hoshangabad Road, Misrod, Bhopal, Pin no.462047 2 Head of Department (EC), KNPCST, Hoshangabad
More informationCooperative Learning in a Digital Logic Course
Introduction Cooperative Learning in a Digital Logic Course Russell L. Pimmel http://www.foundationcoalition.org Active and cooperative learning (ACL) techniques have proved to be effective in a wide assortment
More informationBelow is a diagram explaining the data packet and the timing related to the mouse clock while receiving a byte from the PS2 mouse:
PS2 Mouse: The Protocol: For out mini project we designed a serial port transmitter receiver, which uses the Baud rate protocol. The PS2 port is similar to the serial port (performs the function of transmitting
More informationLecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
More informationMachine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.
1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components
More informationCHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
More informationReductions & NPcompleteness as part of Foundations of Computer Science undergraduate course
Reductions & NPcompleteness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NPcompleteness
More informationUniversity of Toronto Faculty of Applied Science and Engineering
Print : First Name :............................. Last Name :............................. Student Number:............................................... University of Toronto Faculty of Applied Science
More informationMM74HCT373 MM74HCT374 3STATE Octal DType Latch 3STATE Octal DType FlipFlop
3STATE Octal DType Latch 3STATE Octal DType FlipFlop General Description The MM74HCT373 octal Dtype latches and MM74HCT374 Octal Dtype flip flops advanced silicongate CMOS technology, which provides
More informationTechnical Note. Micron NAND Flash Controller via Xilinx Spartan 3 FPGA. Overview. TN2906: NAND Flash Controller on Spartan3 Overview
Technical Note TN2906: NAND Flash Controller on Spartan3 Overview Micron NAND Flash Controller via Xilinx Spartan 3 FPGA Overview As mobile product capabilities continue to expand, so does the demand
More informationAC 20111060: ELECTRICAL ENGINEERING STUDENT SENIOR CAP STONE PROJECT: A MOSIS FAST FOURIER TRANSFORM PROCES SOR CHIPSET
AC 20111060: ELECTRICAL ENGINEERING STUDENT SENIOR CAP STONE PROJECT: A MOSIS FAST FOURIER TRANSFORM PROCES SOR CHIPSET Peter M Osterberg, University of Portland Dr. Peter Osterberg is an associate
More informationAdvanced Computer ArchitectureCS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
More informationChapter 2 Clocks and Resets
Chapter 2 Clocks and Resets 2.1 Introduction The cost of designing ASICs is increasing every year. In addition to the nonrecurring engineering (NRE) and mask costs, development costs are increasing due
More informationThird Southern African Regional ACM Collegiate Programming Competition. Sponsored by IBM. Problem Set
Problem Set Problem 1 Red Balloon Stockbroker Grapevine Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers
More informationDS1621 Digital Thermometer and Thermostat
www.maximic.com FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is 67 F to 257 F in 0.9 F increments
More informationCAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
More information