United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1


 Ashley Walsh
 3 years ago
 Views:
Transcription
1 United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety. Answer the question asked. 3. Work neatly and show all of your work to receive maximum partial credit. 4. Explicitly state any assumptions and highlight your final answer. 5. You have minutes to complete the examination. 6. When directed by your instructor, you may commence work. 7. No calculators are permitted. I will not discuss this exam with anyone until after 2 nd period on Friday 3 September 2. (Signature) Page Points Possible TOTAL Name: Section EC262 Fall 2 Page of
2 ) [5 pts] Use the Karnaugh maps to find one minimum SOP (2 possible solutions) and one minimum POS expressions for the following logic function: f = b'c' + bc + c'd' (or bd' ) f = (b' + c + d' ) (b + c' ) (,,, ) = (,, 4, 6, 7,8,5) + ( 9,,2,4) f abcd m d Minimum SOP: f(a,b,c,d) = Minimum POS: f(a,b,c,d) = EC262 Fall 2 Page 2 of
3 2) [2 pts] Using Boolean (switching) algebra, reduce the expressions below to a minimum sum of products expression. Indicate the property BY NUMBER that you used. x' y' z' a) (4 pts) f(w, x, y, z) = (x' y' + z')(x' y' + z) (x y' z + x' z') ( term and 3 literals) b) (4 pts) f(w, x, y, z) = x' y' z' + x' y' z + x' y z +x y' z' (2 terms and 4 literals) y' z' + x' z c) (4 pts) f(a, b, c) = a + (a + b + c) ' + b' c (2 terms and 2 literals) a + b' EC262 Fall 2 Page 3 of
4 3) [5 pts] Binary analysis. Show ALL WORK! (just an answer will not suffice) a) (4 pts) What are the maximum negative number and the maximum positive number (in decimal) of a 2 s complement number that has 7 bits? 63 N 64 b) (4 pts) What is the minimum number of bits you need to represent C 6 unique values? How many unused unique combinations will there be? 32 unique combinations 4 unused unique combinations c) (7 pts) Suppose we use 6 bits to store signed numbers (2 s complement). Compute f = a  b. Show a, b and f in decimal as well as binary. Indicate if overflow does or does not occur. Show all carry bits. a = 2 b = 2 f = a  b f = 2 f= 2 (6) = 6 No overflow Write your signed binary result here: Write your signed decimal result here: Overflow occurred? (YES or NO) EC262 Fall 2 Page 4 of
5 4) [2 pts] The figure below shows an intersection of a main highway with a secondary access road. Vehicle detection sensors are placed along lanes A, B, C and D. The sensors outputs are LOW () when no vehicle is present and HIGH () when a vehicle is present. The intersection traffic light is to be controlled according to the following logic: The eastwest (EW) traffic light will be green whenever both lanes C and D are occupied. The EW traffic light will be green whenever either C or D lane is occupied but lanes A and B are not both occupied. The northsouth (NS) traffic light will be green whenever both lanes A and B are occupied but C and D are not both occupied. The NS traffic light will be green whenever either A or B lane is occupied and C and D are both vacant. The EW traffic light will be green whenever no vehicles are present. A C E N S W D B a) (8 pts) Develop a truth table for a logic circuit to control the EW and NS traffic lights at this intersection (assume that logic = green light). EC262 Fall 2 Page 5 of
6 b) (6 pts) Find the minimum SOP expressions for the outputs of this circuit. EW = CD + A'B' + A'D + A'C + B'D + B'C NS = BC'D' + AC'D'+ ABC' + ABD' c) (6 pts) Draw a block diagram for the circuit that controls the NS traffic light. Assume that only uncomplemented inputs are available. EC262 Fall 2 Page 6 of
7 5) [8 pts] The figure below shows a logic circuit and a symbol for a bit comparator (a=b,a<b,a>b). a b A circuit for a bit comparator = < > bit comparator a symbol for a bit comparator = < > a) (3 pts) If the propagation delay for each gate is Δ (assume that the propagation delay of an inverter is already included in Δ), find the worst case propagation delay for this bit comparator. = 2Δ < 2Δ > 2Δ b) (5 pts) A 3bit comparator can be built by cascading 3 bit comparators as shown below, find the total (worstcase) propagation delay for this 3bit comparator. For full credit, explain or show on the figure how you obtain your answer. A 2 B 2 A B A B = = bit comparator bit comparator bit comparator < > 5Δ EC262 Fall 2 Page 7 of
8 6) [ pts] The truth table for a logic controller is shown below. Draw a block diagram of this circuit using only 2to4 decoders (shown below) and OR gates. Note that you cannot use an inverter in your circuit. xyz f g 2to4 decoder x 2to4 Decoder 2 3 y z 2to4 Decoder 2 3 f y z 2to4 Decoder 2 3 g EC262 Fall 2 Page 8 of
9 7) [ pts] We want to build a circuit to compute the of a 6bit number A (A 5 A 4 A 3 A 2 A A ). The is defined as if and only if there are an odd number of s in the number (For example: if A = then = ; if A = then = ). One way of doing this is to build the circuit bit at a time (as in the adder), such that the circuit computes the after that bit as a function of the up to that bit and the one input bit. A block diagram of such a circuit is shown below. A 5 A 4 A 3 A 2 A A Parity bit P 4 bit P 3 bit P 2 bit P bit P bit a) (5 pts) Show a circuit to compute bit using AND, OR and NOT gates only. Assume that inputs are available only uncomplemented. A i P i P (i) b) (2 pts) If the propagation delay for each gate is Δ, compute the maximum delay for each module ( bit circuit in part a). Again, assume that inputs are available only uncomplemented. State any assumptions made. 3 Δ c) (3 pts) Compute the total (worstcase) delay for 6bits. 8 Δ EC262 Fall 2 Page 9 of
10 8) [ pts] Design a circuit that accepts a 4bit input signed number (2 s complement) and produces the absolute value of that number. Assume the following components are available: Full adders AND, OR, NOT, and XOR gates. Draw a block diagram for this circuit using as many of these components as needed. X 3 X 2 X X FA FA FA Y 3 Y 2 Y Y EC262 Fall 2 Page of
11 EC262 Fall 2 Page of
exclusiveor and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576
exclusiveor and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking
More information1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
More informationKarnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
More informationGates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
More informationUnit 3 Boolean Algebra (Continued)
Unit 3 Boolean Algebra (Continued) 1. ExclusiveOR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication
More informationCSE140: Midterm 1 Solution and Rubric
CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms
More informationChapter 2: Boolean Algebra and Logic Gates. Boolean Algebra
The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used
More informationBOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
More informationCOMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
More informationDigital Logic Design. Basics Combinational Circuits Sequential Circuits. PuJen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits PuJen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationCH3 Boolean Algebra (cont d)
CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. ExclusiveOR and Equivalence operations
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More informationCSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
More informationLogic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
More informationUnderstanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
More informationA single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulatorbased machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
More informationDigital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
More informationTwolevel logic using NAND gates
CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Twolevel logic using NND gates Replace minterm ND gates with NND gates Place
More informationCSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps
CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.32.5) Standard Forms ProductofSums (PoS) SumofProducts (SoP) converting between Minterms
More informationDEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS453
More informationCDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline MultiLevel Gate Circuits NAND and NOR Gates Design of TwoLevel Circuits Using NAND and NOR Gates
More information3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
More informationBoolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris HuiRu Jiang Spring 2010
Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions ExclusiveOR and ExclusiveNOR operations The consensus theorem Summary of algebraic simplification Proving validity of an
More informationCSE140 Homework #7  Solution
CSE140 Spring2013 CSE140 Homework #7  Solution You must SHOW ALL STEPS for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting
More informationElementary Logic Gates
Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate
More informationThe string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
More informationSimplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More informationplc numbers  13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers  3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
More informationANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH218 3108 Dr. A.P. Vajpeyi Email: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
More informationEE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
More informationKarnaugh Maps. Circuitwise, this leads to a minimal twolevel implementation
Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated
More informationDesign Example: Counters. Design Example: Counters. 3Bit Binary Counter. 3Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
More informationCombinational Logic Design
Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (twoelement switching algebra
More informationwww.mohandesyar.com SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D.
27 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This publication is protected by opyright and written permission should be obtained or likewise. For information regarding permission(s),
More informationCounters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4bit ripplethrough decade counter with a decimal readout display. Such a counter
More information2.0 Chapter Overview. 2.1 Boolean Algebra
Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital
More informationCHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
More informationIntroduction. The QuineMcCluskey Method Handout 5 January 21, 2016. CSEE E6861y Prof. Steven Nowick
CSEE E6861y Prof. Steven Nowick The QuineMcCluskey Method Handout 5 January 21, 2016 Introduction The QuineMcCluskey method is an exact algorithm which finds a minimumcost sumofproducts implementation
More informationLecture 5: Gate Logic Logic Optimization
Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles or any text in boolean algebra Introduction We could design at the level of irsim
More informationSECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks
UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very
More informationBoolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra
2 Ver..4 George Boole was an English mathematician of XIX century can operate on logic (or Boolean) variables that can assume just 2 values: /, true/false, on/off, closed/open Usually value is associated
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output
More informationReadonly memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards
Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Readonly memory Implementing logic with ROM Programmable logic
More informationFORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The FullAdder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The FullAdder 1 Introduction In this lab, the student will construct
More informationINTEGRATED CIRCUITS. For a complete data sheet, please also download:
INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS
More informationLecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
More informationDigital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
More informationSistemas Digitais I LESI  2º ano
Sistemas Digitais I LESI  2º ano Lesson 6  Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA  PLDs (1)  The
More informationChapter 7 Memory and Programmable Logic
NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array
More informationFigure 81 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
More informationCombinational circuits
Combinational circuits Combinational circuits are stateless The outputs are functions only of the inputs Inputs Combinational circuit Outputs 3 Thursday, September 2, 3 Enabler Circuit (Highlevel view)
More informationAdder.PPT(10/1/2009) 5.1. Lecture 13. Adder Circuits
Adder.T(//29) 5. Lecture 3 Adder ircuits Objectives Understand how to add both signed and unsigned numbers Appreciate how the delay of an adder circuit depends on the data values that are being added together
More informationINTEGRATED CIRCUITS. For a complete data sheet, please also download:
INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS
More informationENGI 241 Experiment 5 Basic Logic Gates
ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.
More informationModule 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech  3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
More informationCS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flipflops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
More informationETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
More informationDigital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
More informationLecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
More informationChapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
More informationLatches, the D FlipFlop & Counter Design. ECE 152A Winter 2012
Latches, the D FlipFlop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 FlipFlops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR
More informationECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog
ECE232: Hardware Organization and Design Part 3: Verilog Tutorial http://www.ecs.umass.edu/ece/ece232/ Basic Verilog module ();
More informationLogic Reference Guide
Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time
More informationDigital Design. Assoc. Prof. Dr. Berna Örs Yalçın
Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 Email: siddika.ors@itu.edu.tr Grading 1st Midterm 
More informationCounters are sequential circuits which "count" through a specific state sequence.
Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:
More informationLogic gates. Chapter. 9.1 Logic gates. MIL symbols. Learning Summary. In this chapter you will learn about: Logic gates
Chapter 9 Logic gates Learning Summary In this chapter you will learn about: Logic gates Truth tables Logic circuits/networks In this chapter we will look at how logic gates are used and how truth tables
More informationPROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1
UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1 This work covers part of outcome 3 of the Edexcel standard module: Outcome 3 is the most demanding
More informationEE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
More informationGates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction
Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and
More informationNEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.
CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floatingpoint unit and for address generation in case of cache
More informationTakeHome Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
TakeHome Exercise Assume you want the counter below to count mod6 backward. That is, it would count 0543210, etc. Assume it is reset on startup, and design the wiring to make the counter count
More informationSystems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems  Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x
More informationCourse Requirements & Evaluation Methods
Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:
More informationKarnaugh Maps (Kmap) Alternate representation of a truth table
Karnaugh Maps (Kmap) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization
More informationDesign and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course
Session ENG 2066 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University swain@scsu.edu Raghu Korrapati,
More informationBINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
More informationAn Introduction to Fault Tree Analysis (FTA)
An Introduction to Fault Tree Analysis (FTA) Dr Jane Marshall Product Excellence using 6 Sigma Module PEUSS 2011/2012 FTA Page 1 Objectives Understand purpose of FTA Understand & apply rules of FTA Analyse
More informationECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8bit Microprocessor Data Path
ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8bit Microprocessor Data Path Project Summary This project involves the schematic and layout design of an 8bit microprocessor data
More information5 Combinatorial Components. 5.0 Full adder. Full subtractor
5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations  addition, subtraction, multiplication and division. logic operations  AND, OR,
More informationList of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC7447).
G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:4 th Semester[Electronics] Subject:  Digital Circuits List of Experiment Sr. Name Of Experiment
More informationCircuits and Boolean Expressions
Circuits and Boolean Expressions Provided by TryEngineering  Lesson Focus Boolean logic is essential to understanding computer architecture. It is also useful in program construction and Artificial Intelligence.
More informationHCF4028B BCD TO DECIMAL DECODER
BCD TO DECIMAL DECODER BCD TO DECIMAL DECODING OR BINARY TO OCTAL DECODING HIGH DECODED OUTPUT DRIVE CAPABILITY "POSITIVE LOGIC" INPUTS AND OUTPUTS: DECODED OUTPUTS GO HIGH ON SELECTION MEDIUM SPEED OPERATION
More informationCOMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
More informationHexadecimal and Numeric Indicators. Technical Data 50827300 50827302 50827304 50827340
H Hexadecimal and Numeric Indicators Technical Data 50827300 50827302 50827304 50827340 Features Numeric 50827300/7302 09, Test State, Minus Sign, Blank States Decimal Point 7300 Right Hand D.P.
More informationCOMPUTER SCIENCE. Paper 1 (THEORY)
COMPUTER SCIENCE Paper 1 (THEORY) (Three hours) Maximum Marks: 70 (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time) 
More informationHow to bet using different NairaBet Bet Combinations (Combo)
How to bet using different NairaBet Bet Combinations (Combo) SINGLES Singles consists of single bets. I.e. it will contain just a single selection of any sport. The bet slip of a singles will look like
More informationSystems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 9  Register Transfer and Microoperations Microoperations Digital systems are modular in nature, with modules containing registers, decoders, arithmetic
More informationLab 1: Full Adder 0.0
Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify
More informationDesigning Digital Circuits a modern approach. Jonathan Turner
Designing Digital Circuits a modern approach Jonathan Turner 2 Contents I First Half 5 1 Introduction to Designing Digital Circuits 7 1.1 Getting Started.......................... 7 1.2 Gates and Flip
More informationChapter 1. Computation theory
Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.
More informationIE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
More informationDigital Fundamentals. Lab 8 Asynchronous Counter Applications
Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:
More informationDM74LS47 BCD to 7Segment Decoder/Driver with OpenCollector Outputs
DM74LS47 BCD to 7Segment Decoder/Driver with OpenCollector Outputs General Description The DM74LS47 accepts four lines of BCD (8421) input data, generates their complements internally and decodes the
More informationearlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8bit adder.
The circuit created is an 8bit adder. The 8bit adder adds two 8bit binary inputs and the result is produced in the output. In order to create a Full 8bit adder, I could use eight Full bit adders and
More informationAsynchronous counters, except for the first block, work independently from a system clock.
Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flipflops, they can be asynchronous or synchronous and they can
More informationLesson 12 Sequential Circuits: FlipFlops
Lesson 12 Sequential Circuits: FlipFlops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
More informationRUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The InputControl/OutputDisplay
More informationECE 3401 Lecture 7. Concurrent Statements & Sequential Statements (Process)
ECE 3401 Lecture 7 Concurrent Statements & Sequential Statements (Process) Concurrent Statements VHDL provides four different types of concurrent statements namely: Signal Assignment Statement Simple Assignment
More informationPRIMARY CONTENT MODULE Algebra I Linear Equations & Inequalities T71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I Linear Equations & Inequalities T71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
More information