United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1


 Ashley Walsh
 1 years ago
 Views:
Transcription
1 United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety. Answer the question asked. 3. Work neatly and show all of your work to receive maximum partial credit. 4. Explicitly state any assumptions and highlight your final answer. 5. You have minutes to complete the examination. 6. When directed by your instructor, you may commence work. 7. No calculators are permitted. I will not discuss this exam with anyone until after 2 nd period on Friday 3 September 2. (Signature) Page Points Possible TOTAL Name: Section EC262 Fall 2 Page of
2 ) [5 pts] Use the Karnaugh maps to find one minimum SOP (2 possible solutions) and one minimum POS expressions for the following logic function: f = b'c' + bc + c'd' (or bd' ) f = (b' + c + d' ) (b + c' ) (,,, ) = (,, 4, 6, 7,8,5) + ( 9,,2,4) f abcd m d Minimum SOP: f(a,b,c,d) = Minimum POS: f(a,b,c,d) = EC262 Fall 2 Page 2 of
3 2) [2 pts] Using Boolean (switching) algebra, reduce the expressions below to a minimum sum of products expression. Indicate the property BY NUMBER that you used. x' y' z' a) (4 pts) f(w, x, y, z) = (x' y' + z')(x' y' + z) (x y' z + x' z') ( term and 3 literals) b) (4 pts) f(w, x, y, z) = x' y' z' + x' y' z + x' y z +x y' z' (2 terms and 4 literals) y' z' + x' z c) (4 pts) f(a, b, c) = a + (a + b + c) ' + b' c (2 terms and 2 literals) a + b' EC262 Fall 2 Page 3 of
4 3) [5 pts] Binary analysis. Show ALL WORK! (just an answer will not suffice) a) (4 pts) What are the maximum negative number and the maximum positive number (in decimal) of a 2 s complement number that has 7 bits? 63 N 64 b) (4 pts) What is the minimum number of bits you need to represent C 6 unique values? How many unused unique combinations will there be? 32 unique combinations 4 unused unique combinations c) (7 pts) Suppose we use 6 bits to store signed numbers (2 s complement). Compute f = a  b. Show a, b and f in decimal as well as binary. Indicate if overflow does or does not occur. Show all carry bits. a = 2 b = 2 f = a  b f = 2 f= 2 (6) = 6 No overflow Write your signed binary result here: Write your signed decimal result here: Overflow occurred? (YES or NO) EC262 Fall 2 Page 4 of
5 4) [2 pts] The figure below shows an intersection of a main highway with a secondary access road. Vehicle detection sensors are placed along lanes A, B, C and D. The sensors outputs are LOW () when no vehicle is present and HIGH () when a vehicle is present. The intersection traffic light is to be controlled according to the following logic: The eastwest (EW) traffic light will be green whenever both lanes C and D are occupied. The EW traffic light will be green whenever either C or D lane is occupied but lanes A and B are not both occupied. The northsouth (NS) traffic light will be green whenever both lanes A and B are occupied but C and D are not both occupied. The NS traffic light will be green whenever either A or B lane is occupied and C and D are both vacant. The EW traffic light will be green whenever no vehicles are present. A C E N S W D B a) (8 pts) Develop a truth table for a logic circuit to control the EW and NS traffic lights at this intersection (assume that logic = green light). EC262 Fall 2 Page 5 of
6 b) (6 pts) Find the minimum SOP expressions for the outputs of this circuit. EW = CD + A'B' + A'D + A'C + B'D + B'C NS = BC'D' + AC'D'+ ABC' + ABD' c) (6 pts) Draw a block diagram for the circuit that controls the NS traffic light. Assume that only uncomplemented inputs are available. EC262 Fall 2 Page 6 of
7 5) [8 pts] The figure below shows a logic circuit and a symbol for a bit comparator (a=b,a<b,a>b). a b A circuit for a bit comparator = < > bit comparator a symbol for a bit comparator = < > a) (3 pts) If the propagation delay for each gate is Δ (assume that the propagation delay of an inverter is already included in Δ), find the worst case propagation delay for this bit comparator. = 2Δ < 2Δ > 2Δ b) (5 pts) A 3bit comparator can be built by cascading 3 bit comparators as shown below, find the total (worstcase) propagation delay for this 3bit comparator. For full credit, explain or show on the figure how you obtain your answer. A 2 B 2 A B A B = = bit comparator bit comparator bit comparator < > 5Δ EC262 Fall 2 Page 7 of
8 6) [ pts] The truth table for a logic controller is shown below. Draw a block diagram of this circuit using only 2to4 decoders (shown below) and OR gates. Note that you cannot use an inverter in your circuit. xyz f g 2to4 decoder x 2to4 Decoder 2 3 y z 2to4 Decoder 2 3 f y z 2to4 Decoder 2 3 g EC262 Fall 2 Page 8 of
9 7) [ pts] We want to build a circuit to compute the of a 6bit number A (A 5 A 4 A 3 A 2 A A ). The is defined as if and only if there are an odd number of s in the number (For example: if A = then = ; if A = then = ). One way of doing this is to build the circuit bit at a time (as in the adder), such that the circuit computes the after that bit as a function of the up to that bit and the one input bit. A block diagram of such a circuit is shown below. A 5 A 4 A 3 A 2 A A Parity bit P 4 bit P 3 bit P 2 bit P bit P bit a) (5 pts) Show a circuit to compute bit using AND, OR and NOT gates only. Assume that inputs are available only uncomplemented. A i P i P (i) b) (2 pts) If the propagation delay for each gate is Δ, compute the maximum delay for each module ( bit circuit in part a). Again, assume that inputs are available only uncomplemented. State any assumptions made. 3 Δ c) (3 pts) Compute the total (worstcase) delay for 6bits. 8 Δ EC262 Fall 2 Page 9 of
10 8) [ pts] Design a circuit that accepts a 4bit input signed number (2 s complement) and produces the absolute value of that number. Assume the following components are available: Full adders AND, OR, NOT, and XOR gates. Draw a block diagram for this circuit using as many of these components as needed. X 3 X 2 X X FA FA FA Y 3 Y 2 Y Y EC262 Fall 2 Page of
11 EC262 Fall 2 Page of
Part 1: Logic Design. Tutorial
CPIT2 : Computer Organization and Architecture Course Lectures by Prof. Mohamed Khamis Part : Logic Design Tutorial by Teaching Assistant. Khalid Alharbi Department of Information Technology Faculty of
More informationDigital Logic Design
Digital Logic Design ENGG1015 1 st Semester, 2010 Dr. Kenneth Wong Dr. Hayden So Department of Electrical and Electronic Engineering Determining output level from a diagram Implementing Circuits From Boolean
More informationELEC 1041 Digital Electronics. Tutorial: Combinational Logic Design Examples Saeid Nooshabadi. Problem #1.
Problem #1 ELEC 1041 Digital Electronics Tutorial: Combinational Logic Design Examples Saeid Nooshabadi http://subjects.ee.unsw.edu.au/~elec1041 Develop a minimized Boolean implementation of a ones count
More informationexclusiveor and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576
exclusiveor and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking
More informationCombinational Logic Tutorial sheet
Combinational Logic Tutorial sheet 1) Redraw the following circuits into the respective ANSI symbols a. b. c. d. 2) Write the Boolean equation for each of the circuit diagrams in question 1. 3) Convert
More informationComputer Organization I. Lecture 8: Boolean Algebra and Circuit Optimization
Computer Organization I Lecture 8: Boolean Algebra and Circuit Optimization Overview The simplification from SOM to SOP and their circuit implementation Basics of Logic Circuit Optimization: Cost Criteria
More informationKarnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
More information28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using Kmap method.
Unit1 1. Show Karnaugh map for equation Y = F(A,B,C) = S m(1, 2, 3, 6, 7) 2. Show Karnaugh map for equation Y = F(A,B,C,D) = S m(1, 2, 3, 6, 8, 9, 10, 12, 13, 14) 3. Give SOP form of Y = F(A,B,C,D) =
More informationEE 110 Practice Problems for Exam 2: Solutions, Fall 2008
EE 110 Practice Problems for Exam 2: Solutions, Fall 2008 1. Circle T (true) or F (false) for each of these Boolean equations. (a). T FO An 8to1 multiplexer requires 2 select lines. (An 8to1 multiplexer
More information1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
More informationChapter 4 Boolean Algebra and Logic Simplification
ETEC 23 Programmable Logic Devices Chapter 4 Boolean Algebra and Logic Simplification Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Boolean
More informationReading and construction of logic gates
Reading and construction of logic gates A Boolean function is an expression formed with binary variables, a binary variable can take a value of 1 or 0. Boolean function may be represented as an algebraic
More information4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION
4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationCMPS 10 Winter Homework Assignment 5
CMPS 10 Winter 2011 Homework Assignment 5 Problems: Chapter 4 (p.184): 1abc, 3abcd, 4ab, 5abc, 6, 7, 9abcd, 15abcd, 17, 18, 19, 20 1. Given our discussion of positional numbering systems in Section 4.2.1,
More informationGates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
More informationUnit 3 Boolean Algebra (Continued)
Unit 3 Boolean Algebra (Continued) 1. ExclusiveOR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication
More informationCombinational Logic Circuits
Chapter 2 Combinational Logic Circuits J.J. Shann Chapter Overview 21 Binary Logic and Gates 22 Boolean Algebra 23 Standard Forms 24 TwoLevel Circuit Optimization 25 Map Manipulation 補 充 資 料 :QuineMcCluskey
More informationChapter 4. Combinational Logic. Outline. ! Combinational Circuits. ! Analysis and Design Procedures. ! Binary Adders. ! Other Arithmetic Circuits
Chapter 4 Combinational Logic 4 Outline! Combinational Circuits! Analysis and Design Procedures! Binary Adders! Other Arithmetic Circuits! Decoders and Encoders! Multiplexers 42 Combinational v.s Sequential
More informationGateLevel Minimization
Chapter 3 GateLevel Minimization 3 Outline! Karnaugh Map Method! NAND and NOR Implementations! Other TwoLevel Implementations! ExclusiveOR Function! Hardware Description Language 32 Why Logic Minimization?!
More informationCSE140: Midterm 1 Solution and Rubric
CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms
More informationENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7.
ENEE 244 (**). Spring 26 Homework 4 Due back in class on Friday, April 7.. Implement the following Boolean expression with exclusiveor and AND gates only: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D. F = AB
More informationExclusive OR/Exclusive NOR (XOR/XNOR)
Exclusive OR/Exclusive NOR (XOR/XNOR) XOR and XNOR are useful logic functions. Both have two or more inputs. The truth table for two inputs is shown at right. a XOR b = 1 if and only if (iff) a b. a XNOR
More informationChapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS
Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS Lesson 5 BOOLEAN EXPRESSION, TRUTH TABLE and product of the sums (POSs) [MAXTERMS] 2 Outline POS two variables cases POS for three variable
More information3.2 Simplify the following Boolean functions, using threevariable maps: (ay F(x, y, z) = L(o, 1,5,7)
Answers to problems marked with ~,appear at the end of the book. 3.1'~ Simplify the following Boolean functions, using threevariable maps: (a) F(x, y, z) = L(o, 2,6,7) (b) F(x, y, z) = L(o, 1,2,3,7) 3.2
More informationChapter 2: Boolean Algebra and Logic Gates. Boolean Algebra
The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used
More informationCOMBINATIONAL LOGIC CIRCUITS
COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic
More informationDEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Lab Manual Digital Electronics Laboratory (EC39) BACHELOR OF TECHNOLOGY Subject Code: EC 39 Subject Name: Digital Electronics Laboratory Teaching
More informationBOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
More informationCH3 Boolean Algebra (cont d)
CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. ExclusiveOR and Equivalence operations
More informationChapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates
Chapter Goals Chapter 4 Gates and Circuits Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the
More informationCombinational Circuits (Part II) Notes
Combinational Circuits (Part II) Notes This part of combinational circuits consists of the class of circuits based on data transmission and code converters. These circuits are multiplexers, de multiplexers,
More informationTutorial 5 Special Combinational Logic Circuit
Tutorial 5 Special Combinational Logic Circuit Question 1 a) What is the function of an adder circuit? b) A halfadder adds two binary bits, true or false? c) A halfadder has a sum output only, true or
More informationAnalog & Digital Electronics Course No: PH218
Analog & Digital Electronics Course No: PH218 Lec29: Combinational Logic Modules Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Combinational
More informationDigital Logic Design. Basics Combinational Circuits Sequential Circuits. PuJen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits PuJen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
More informationCOMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
More informationSystems I Fall 2013 Midterm exam solutions
Systems I Fall 203 Midterm exam solutions. Question: (20 points) Prove that nor is a universal operator. That is, prove that any logic function is equivalent to some expression that uses only the nor
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More information4.203 Write the truth table for each of the following logic functions:
3e4.5 4.201 According to DeMorgan s theorem, the complement of X + Y Z is X Y +Z. Yet both functions are 1 for XYZ = 110. How can both a function and its complement be 1 for the same input combination?
More informationModule 3 Digital Gates and Combinational Logic
Introduction to Digital Electronics, Module 3: Digital Gates and Combinational Logic 1 Module 3 Digital Gates and Combinational Logic INTRODUCTION: The principles behind digital electronics were developed
More informationUNIT I NUMBER SYSTEM AND BINARY CODES
1 UNIT I NUMBER SYSTEM AND BINARY CODES 1.0 Aims and Objectives 1.1 Introduction 1.2 Number System 1.2.1 Decimal Number System 1.2.2 Bistable Devices 1.2.3 Binary Number System 1.2.4 Octal number System
More informationCSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More informationChapter 4 Combinational Logic
Chapter 4 Combinational Logic ChihTsun Huang ( 黃稚存 ) Department of Computer Science National Tsing Hua University Outline Introduction Combinational Circuits Analysis Procedure Design Procedure Binary
More informationPoints Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 5: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London (Floyd 4.54.) (Tocci 4.4.5) Standard form of Boolean Expressions
More informationChapter 6 Digital Arithmetic: Operations & Circuits
Chapter 6 Digital Arithmetic: Operations & Circuits Chapter 6 Objectives Selected areas covered in this chapter: Binary addition, subtraction, multiplication, division. Differences between binary addition
More informationUnderstanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
More informationFundamentals of Computer Systems
Fundamentals of Computer Systems Combinational Logic Martha A. Kim Columbia University Fall 23 / Combinational Circuits Combinational circuits are stateless. Their output is a function only of the current
More informationExamples of Solved Problems for Chapter3,5,6,7,and8
Chapter 3 Examples of Solved Problems for Chapter3,5,6,7,and8 This document presents some typical problems that the student may encounter, and shows how such problems can be solved. Note that the numbering
More informationComputer Systems Lab 1. Basic Logic Gates
Computer Systems Lab Basic Logic Gates Object To investigate the properties of the various types of logic gates, and construct some useful combinations of these gates. Parts () 700 Quad input NAND gate
More informationA single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulatorbased machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
More informationDesign with Multiplexers
Design with Multiplexers Consider the following design, taken from the 5 th edition of my textbook. This is a correct implementation of the Carry Out of a Full Adder. In terms of Boolean expressions, this
More informationPROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 3
UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 3 This work covers part of outcome 2 of the Edexcel standard module. The material is
More informationDigital Circuit and Logic Design /2
Homework# Digital Circuit and Logic Design / Page / Solution of Homework# () Draw block diagram to show how to use to8 lines decoders to produce the following: (ll decoders have one activelow ENBLE
More informationLogic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
More informationOutput depends on sequence of previous inputs Sequence of previous this is history History is a state that captures how you got here
Sequential Logic Output depends on sequence of previous inputs Sequence of previous this is history History is a state that captures how you got here " E.g., 35 cents vending = cents + cents + cents +
More informationQuineMcClusky Minimization Procedure
QuineMcClusky Minimization Procedure This is basically a tabular method of minimization and as much it is suitable for computer applications. The procedure for optimization as follows: Step : Describe
More informationDigital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
More information2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as
Chapter 2 Digital Logic asics 2 Implementation using NND gates: We can write the XOR logical expression + using double negation as + = + = From this logical expression, we can derive the following NND
More informationTwolevel logic using NAND gates
CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Twolevel logic using NND gates Replace minterm ND gates with NND gates Place
More informationNOT AND OR XOR NAND NOR
NOT AND OR XOR NAND NOR Expression 1: It is raining today Expression 2: Today is my birthday X Meaning True False It is raining today It is not raining Binary representation of the above: X Meaning 1 It
More informationLAB 2: BOOLEAN THEOREMS
LAB 2: BOOLEAN THEOREMS OBJECTIVES 1. To implement DeMorgan's theorems in circuit simplification. 2. To design a combinational logic circuit with simplest logic gates representation using Karnaugh Mapping
More informationCombinational circuit. Fig. 41 Block Diagram of Combinational Circuit Prentice Hall, Inc. M. Morris Mano DIGITAL DESIGN, 3e.
n inputs ombinational circuit m outputs Fig. 4 Block Diagram of ombinational ircuit 22 Prentice Hall, Inc. A B T 2 F A B T T 3 F 2 A B A F 2 B Fig. 42 Logic Diagram for Analysis Example 22 Prentice Hall,
More informationENEE244 (sec ) Spring Time alloted: 50 minutes. Student ID: Maximum score: 50 points
ENEE244 (sec 4) Spring 26 Midterm Examination II Pages: 7 printed sides Name: Answer key Time alloted: 5 minutes. Student ID: Maximum score: 5 points University rules dictate strict penalties for any
More informationProgrammable Logic Devices (PLDs)
Programmable Logic Devices (PLDs) Lesson Objectives: In this lesson you will be introduced to some types of Programmable Logic Devices (PLDs): PROM, PAL, PLA, CPLDs, FPGAs, etc. How to implement digital
More informationl What have discussed up until now & why: l C Programming language l More lowlevel then Java. l Better idea about what s really going on.
CS211 Computer Architecture l Topics Digital Logic l Transistors (Design & Types) l Logic Gates l Combinational Circuits l KMaps Class Checkpoint l What have discussed up until now & why: l C Programming
More informationCombinational logic design case studies
Combinational logic design case studies General design procedure Case studies CD to 7segment display controller logical function unit process line controller calendar subsystem rithmetic circuits integer
More informationInterpreting Logic Gates
Logic gates are the mechanism used to convert Boolean logic into the circuitry the computer needs to solve such problems. We have learned about three(3) different gates. The AND Gate takes two or more
More informationEXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION TECHNIQUES
DEPARTMENT OF ELECTRICAL AND ELECTROINC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 304 : Digital Electronics Laboratory EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION
More informationCDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline MultiLevel Gate Circuits NAND and NOR Gates Design of TwoLevel Circuits Using NAND and NOR Gates
More informationCS61c: Representations of Combinational Logic Circuits
CS61c: Representations of Combinational Logic Circuits J. Wawrzynek October 12, 2007 1 Introduction In the previous lecture we looked at the internal details of registers. We found that every register,
More information3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
More informationChapter 4 Combinational Logic
EEA051  Digital Logic 數位邏輯 Chapter 4 Combinational Logic 吳俊興國立高雄大學資訊工程學系 November 2005 Chapter 4 Combinational Logic 41 Combinational Circuits 42 Analysis Procedure 43 Design Procedure 44 Binary AdderSubtractor
More informationKarnaugh Maps. Example A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1. each 1 here gives a minterm e.g.
Karnaugh Maps Yet another way of deriving the simplest Boolean expressions from behaviour. Easier than using algebra (which can be hard if you don't know where you're going). Example A B C X 0 0 0 0 0
More informationCSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps
CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.32.5) Standard Forms ProductofSums (PoS) SumofProducts (SoP) converting between Minterms
More informationSum of Products (SOP) Expressions
Sum of Products (SOP) Expressions The Sum of Products (SOP) form of Boolean expressions and equations contains a list of terms (called minterms) in which all variables are ANDed (products). These minterms
More informationDEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS453
More informationBoolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris HuiRu Jiang Spring 2010
Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions ExclusiveOR and ExclusiveNOR operations The consensus theorem Summary of algebraic simplification Proving validity of an
More informationDepartment of Computer Science & Technology o14
Department of Computer Science & Technology 232o4 64 Digital Electronics Unit : Codes Short Question Define signal. List out the advantages of using digital circuitry. What do you mean by radix of the
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE/NAME YEAR/ SEMESTER : EC6302/ DIGITAL ELECTRONICS : II
More informationFinal Exam review: chapter 4 and 5. Supplement 3 and 4
Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flipflop has the following characteristic table. Find the corresponding excitation table with don t cares used as much
More informationComp 150 Booleans and Digital Logic
Comp 150 Booleans and Digital Logic Recall the bool date type in Python has the two literals True and False and the three operations: not, and, or. The operations are defined by truth tables (see page
More informationON THE USE OF ASHENHURST DECOMPOSITION CHART AS AN ALTERNATIVE TO ALGORITHMIC TECHNIQUES IN THE SYNTHESIS OF MULTIPLEXERBASED LOGIC CIRCUITS
Nigerian Journal of Technology, Vol. 18, No. 1, September, 1997 OSUAGWU 28 ON THE USE OF ASHENHURST DECOMPOSITION CHART AS AN ALTERNATIVE TO ALGORITHMIC TECHNIQUES IN THE SYNTHESIS OF MULTIPLEXERBASED
More informationA Little Perspective Combinational Logic Circuits
A Little Perspective Combinational Logic Circuits COMP 251 Computer Organization and Architecture Fall 2009 Motivating Example Recall our machine s architecture: A Simple ALU Consider an ALU that can perform
More informationCombinational Logic Building Blocks and Bus Structure
Combinational Logic Building Blocks and Bus Structure ECE 5A Winter 0 Reading Assignment Brown and Vranesic Implementation Technology.8 Practical Aspects.8.7 Passing s and 0s Through Transistor Switches.8.8
More informationLogic Design. Dr. Yosry A. Azzam
Logic Design Dr. Yosry A. Azzam Binary systems Chapter 1 Agenda Binary Systems : Binary Numbers, Binary Codes, Binary Logic ASCII Code (American Standard Code for Information Interchange) Boolean Algebra
More informationElementary Logic Gates
Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate
More informationinputs output Complementary CMOS Comlementary CMOS Logic Gates: nmos pulldown network pmos pullup network Static CMOS
Complementary CMOS Comlementary CMOS Logic Gates: nmos pulldown network pmos pullup network Static CMOS inputs pmos pullup network nmos pulldown network output Pullup O Pullup ON Pulldown O Z (float)
More informationStudy Guide. Part 1,Combinational Logic Questions. 1.1 Implicants. ab cd
824 Fun of CE 824 Study Guide Part,Combinational Logic Questions This study guide is provided as an aid in helping you to study for the ECE Department s 824, Fundamentals of Computer Engineering. The
More informationDigital Logic Circuits
Digital Logic Circuits Digital describes any system based on discontinuous data or events. Typically digital is computer data or electronic sampling of an analog signal. Computers are digital machines
More informationRita Lovassy. Digital Technics
Rita Lovassy Digital Technics Kandó Kálmán Faculty of Electrical Engineering Óbuda University Budapest, 2013 Preface Digital circuits address the growing need for computer networking communications in
More informationSimplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More information14:332:231 DIGITAL LOGIC DESIGN. Multiplexers (Data Selectors)
4:: DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall Lecture #: Multiplexers, Exclusive OR Gates, and Parity Circuits Multiplexers (Data Selectors) A multiplexer
More informationDigital Circuits. Frequently Asked Questions
Digital Circuits Frequently Asked Questions Module 1: Digital & Analog Signals 1. What is a signal? Signals carry information and are defined as any physical quantity that varies with time, space, or any
More informationLab Manual. Digital System Design (Pr): COT215 Digital Electronics (P): IT211
Lab Manual Digital System Design (Pr): COT215 Digital Electronics (P): IT211 Lab Instructions Several practicals / programs? Whether an experiment contains one or several practicals /programs One practical
More informationChapter 3: Combinational Logic Design
Chapter 3: Combinational Logic Design 1 Introduction We have learned all the prerequisite material: Truth tables and Boolean expressions describe functions Expressions can be converted into hardware circuits
More informationChapter 7 Memory and Programmable Logic
1 Chapter 7 Memory and Programmable Logic 2 71. Introduction There are two types of memories that are used in digital systems: Randomaccess memory(ram): perform both the write and read operations. Readonly
More informationCombinational logic lab
ECE2883 HP: Lab 3 Logic Experts (LEs) Combinational logic lab Implementing combinational logic with Quartus We should be starting to realize that you, the SMEs in this course, are just a specific type
More informationMost decoders accept an input code and produce a HIGH ( or a LOW) at one and only one output line. In otherworlds, a decoder identifies, recognizes,
Encoders Encoder An encoder is a combinational logic circuit that essentially performs a reverse of decoder functions. An encoder accepts an active level on one of its inputs, representing digit, such
More informationObjectives: 1. Half Adder. 2. Full Adder. 3. Binary Adder. 4. Binary Subtractor. 5. Binary AdderSubtractor. 1. Half Adder
Objectives:. Half Adder. 2. Full Adder. 3. Bary Adder. 4. Bary ubtractor. 5. Bary Adderubtractor.. Half Adder Half Adder: is a combational circuit that performs the addition of two bits, this circuit
More informationUnit 2: Number Systems, Codes and Logic Functions
Unit 2: Number Systems, Codes and Logic Functions Introduction A digital computer manipulates discrete elements of data and that these elements are represented in the binary forms. Operands used for calculations
More information