Understanding Logic Design


 April Armstrong
 2 years ago
 Views:
Transcription
1 Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1 dder R0 R2 What kind of hardware can DD two binary integers? We need to learn about GTES and BOOLEN LGEBR that are foundations of logic design.
2 ND gate X Y X.Y X X.Y Y OR gate X Y X+Y X X+Y Y NOT gate ( x = x ) X X 0 1 X X 1 0 Typically, logical 1 = +3.5 volt, and logical 0 = 0 volt. Other representations are possible.
3 nalysis of logical circuits X X.Y F Y X.Y What is the value of F when X=0 and Y=1? Draw a truth table. X Y F This is the exclusive or (XOR) function. In algebraic form F= X.Y + X.Y
4 More practice 1. Let.B +.C = 0. What are the values of, B, C? 2. Let ( + B + C).( + B + C) = 0. What are the possible values of, B, C? Draw truth tables. Draw the logic circuits for the above two functions. B C
5 Boolean lgebra + 0 = + = 1. 1 =. = = 1 + B = B + 0. = 0. B = B. + (B + C) = ( + B) + C. (B. C) = (. B). C + =. =. (B + C) =.B +.C Distributive Law + B.C = (+B). (+C). B = + B De Morgan s theorem + B =. B
6 De Morgan s theorem. B = + B + B =. B Thus, is equivalent to Verify it using truth tables. Similarly, is equivalent to These can be generalized to more than two variables: to. B. C = + B + C + B + C =. B. C
7 Synthesis of logic circuits Many problems of logic design can be specified using a truth table. Give such a table, can you design the logic circuit? Design a logic circuit with three inputs, B, C and one output F such that F=1 only when a majority of the inputs is equal to 1. B C F Sum of product form F =.B.C +.B.C +.B.C +.B.C Draw a logic circuit to generate F
8 Simplification of Boolean functions Using the theorems of Boolean lgebra, the algebraic forms of functions can often be simplified, which leads to simpler (and cheaper) implementations. Example 1 F =.B +.B + B.C =. (B + B) + B.C How many gates do you save =.1 + B.C from this simplification? = + B.C F B B C F C
9 Example 2 F =.B.C +.B.C +.B.C +.B.C =.B.C +.B.C +.B.C +.B.C +.B.C +.B.C = (.B.C +.B.C) + (.B.C +.B.C) + (.B.C +.B.C) = ( + ). B.C + (B + B). C. + (C + C)..B = B.C + C. +.B Example 3 Show that +.B = + B =.1 +.B =. (1 + B) =. 1 =
10 Other types of gates.b B +B B NND gate NOR gate Be familiar with the truth tables of these gates. B + B =.B +.B Exclusive OR (XOR) gate
11 NND and NOR are universal gates ny function can be implemented using only NND or only NOR gates. How can we prove this? (Proof for NND gates) ny boolean function can be implemented using ND, OR and NOT gates. So if ND, OR and NOT gates can be implemented using NND gates only, then we prove our point. 1. Implement NOT using NND
12 2. Implementation of ND using NND.B B 3. Implementation of OR using NND.B = +B B B Exercise. Prove that NOR is a universal gate.
13 Logic Design (continued) XOR Revisited XOR is also called modulo2 addition. B C F B = 1 only when there are an odd number of 1 s in (,B). The same is true for B C also = Why? 0 =
14 Logic Design Examples Half dder B S C Half dder Sum (S) B Carry (C) S = B C =.B Carry B Sum
15 Full dder Sum (S) B C in S C out Full dder B C in Carry (C out ) S = B C in C out =.B + B.C in +.C in Design a full adder using two halfadders (and a few gates if necessary) Can you design a 1bit subtracter?
16 Decoders typical decoder has n inputs and 2 n outputs. Enable B D3 D2 D1 D0 D D B D D to4 decoder and its truth table D3 =.B Draw the circuit of this decoder. D2 =.B D1 =.B The decoder works per specs D0 =.B when (Enable = 1). When Enable = 0, all the outputs are 0. Exercise. Design a 3to8 decoder. Question. Where are decoders used? Can you design a 24 decoder using 12 decoders?
17 Encoders typical encoder has 2 n inputs and n outputs. D0 D1 D2 D3 B D D D2 B D to2 encoder and its truth table = D1 + D3 B = D2 + D3
18 Multiplexor It is a manytoone switch, also called a selector. 0 F S = 0, F = B 1 S = 1, F = B Control S Specifications of the mux 2to1 mux F = S. + S. B Exercise. Design a 4to1 multiplexor using two 2to 1 multiplexors.
19 Demultiplexors demux is a onetomany switch. 0 X S = 0, X = 1 Y S = 1, Y = S 1to2 demux, and its specification. So, X = S., and Y = S. Exercise. Design a 14 demux using 12 demux.
20 1bit LU Operation Operation = 00 implies ND Result Operation = 01 implies OR B Operation = 10 implies DD? Operation Carry in B Result dder 10 Carry out Understand how this circuit works.
21 Converting an adder into a subtractor  B (here  means arithmetic subtraction) = + 2 s complement of B = + 1 s complement of B + 1 operation Carry in B Result 0 10 dder 1 11 B invert Carry out 1bit adder/subtractor For subtraction, B invert = 1 and Carry in = 1
22 32bit LU B invert C in operation 0 LU B0 Result 0 Cout C in 1 LU B1 Result 1 Cout LU B31 Result 31 Cout overflow
23 Combinational vs. Sequential Circuits Combinational circuits The output depends only on the current values of the inputs and not on the past values. Examples are adders, subtractors, and all the circuits that we have studied so far Sequential circuits The output depends not only on the current values of the inputs, but also on their past values. These hold the secret of how to memorize information. We will study sequential circuits later.
Exclusive OR/Exclusive NOR (XOR/XNOR)
Exclusive OR/Exclusive NOR (XOR/XNOR) XOR and XNOR are useful logic functions. Both have two or more inputs. The truth table for two inputs is shown at right. a XOR b = 1 if and only if (iff) a b. a XNOR
More informationTutorial 5 Special Combinational Logic Circuit
Tutorial 5 Special Combinational Logic Circuit Question 1 a) What is the function of an adder circuit? b) A halfadder adds two binary bits, true or false? c) A halfadder has a sum output only, true or
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationDesign with Multiplexers
Design with Multiplexers Consider the following design, taken from the 5 th edition of my textbook. This is a correct implementation of the Carry Out of a Full Adder. In terms of Boolean expressions, this
More informationCombinational logic design case studies
Combinational logic design case studies General design procedure Case studies CD to 7segment display controller logical function unit process line controller calendar subsystem rithmetic circuits integer
More informationCOMBINATIONAL LOGIC CIRCUITS
COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic
More informationDigital Logic Design. Basics Combinational Circuits Sequential Circuits. PuJen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits PuJen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
More informationChapter 4 Combinational Logic
Chapter 4 Combinational Logic ChihTsun Huang ( 黃稚存 ) Department of Computer Science National Tsing Hua University Outline Introduction Combinational Circuits Analysis Procedure Design Procedure Binary
More informationLogic Design. Dr. Yosry A. Azzam
Logic Design Dr. Yosry A. Azzam Binary systems Chapter 1 Agenda Binary Systems : Binary Numbers, Binary Codes, Binary Logic ASCII Code (American Standard Code for Information Interchange) Boolean Algebra
More informationCombinational Logic Building Blocks and Bus Structure
Combinational Logic Building Blocks and Bus Structure ECE 5A Winter 0 Reading Assignment Brown and Vranesic Implementation Technology.8 Practical Aspects.8.7 Passing s and 0s Through Transistor Switches.8.8
More informationA single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulatorbased machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More information2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as
Chapter 2 Digital Logic asics 2 Implementation using NND gates: We can write the XOR logical expression + using double negation as + = + = From this logical expression, we can derive the following NND
More informationCombinational Circuits (Part II) Notes
Combinational Circuits (Part II) Notes This part of combinational circuits consists of the class of circuits based on data transmission and code converters. These circuits are multiplexers, de multiplexers,
More informationChapter 4. Combinational Logic. Outline. ! Combinational Circuits. ! Analysis and Design Procedures. ! Binary Adders. ! Other Arithmetic Circuits
Chapter 4 Combinational Logic 4 Outline! Combinational Circuits! Analysis and Design Procedures! Binary Adders! Other Arithmetic Circuits! Decoders and Encoders! Multiplexers 42 Combinational v.s Sequential
More information8bit 4to1 Line Multiplexer
Project Part I 8bit 4to1 Line Multiplexer Specification: This section of the project outlines the design of a 4to1 multiplexor which takes two 8bit buses as inputs and produces a single 8bit bus
More informationCOMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
More information1. Digital Logic Circuits
1 Digital Logic ircuits 1. Digital Logic ircuits Many scientific, industrial and commercial advances have been made possible by the advent of computers. Digital Logic ircuits form the basis of any digital
More informationGates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction
Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and
More information5 Combinatorial Components. 5.0 Full adder. Full subtractor
5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations  addition, subtraction, multiplication and division. logic operations  AND, OR,
More informationArithmetic Circuits Addition, Subtraction, & Multiplication
Arithmetic Circuits Addition, Subtraction, & Multiplication The adder is another classic design example which we are obliged look at. Simple decimal arithmetic is something which we rarely give a second
More informationExp. No. (2) Exclusive OR Gate and it's Applications
University of Technology Laser & Optoelectronics Engineering Department Digital Electronics lab. Object Exp. No. (2) Exclusive OR Gate and it's pplications To study the logic function of exclusive OR (OR)
More informationExperiment 5. Arithmetic Logic Unit (ALU)
Experiment 5 Arithmetic Logic Unit (ALU) Objectives: To implement and test the circuits which constitute the arithmetic logic circuit (ALU). Background Information: The basic blocks of a computer are central
More informationENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7.
ENEE 244 (**). Spring 26 Homework 4 Due back in class on Friday, April 7.. Implement the following Boolean expression with exclusiveor and AND gates only: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D. F = AB
More information1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
More informationDigital Logic: Boolean Algebra and Gates
Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 CMPE2 Summer 28 Basic Logic Gates CMPE2 Summer 28 Slides by ADB 2 Truth Table The most basic representation of a logic function Lists the output
More informationUNIT I NUMBER SYSTEM AND BINARY CODES
1 UNIT I NUMBER SYSTEM AND BINARY CODES 1.0 Aims and Objectives 1.1 Introduction 1.2 Number System 1.2.1 Decimal Number System 1.2.2 Bistable Devices 1.2.3 Binary Number System 1.2.4 Octal number System
More informationCombinational Logic. Combinational Circuits in Computers (Examples) Design of Combinational Circuits. CC Design Example
Combinational Circuits in Computers (Examples) Combinational Logic Translates a set of Boolean n input variables ( or ) by a mapping function (using Boolean operations) to produce a set of Boolean m output
More informationObjectives: 1. Half Adder. 2. Full Adder. 3. Binary Adder. 4. Binary Subtractor. 5. Binary AdderSubtractor. 1. Half Adder
Objectives:. Half Adder. 2. Full Adder. 3. Bary Adder. 4. Bary ubtractor. 5. Bary Adderubtractor.. Half Adder Half Adder: is a combational circuit that performs the addition of two bits, this circuit
More information201213 Department of Electronics & Communication
(A constituent college of Sri Siddhartha University) 201213 Department of Electronics & Communication LOGIC DESIGN LAB MANUAL III SEM BE Name : Sem :. Sec: Logic Design Lab Manual Contents Exp No Title
More informationCHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
More informationTwolevel logic using NAND gates
CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Twolevel logic using NND gates Replace minterm ND gates with NND gates Place
More information6. Combinational Circuits. Building Blocks. Digital Circuits. Wires. Q. What is a digital system? A. Digital: signals are 0 or 1.
Digital Circuits 6 Combinational Circuits Q What is a digital system? A Digital: signals are or analog: signals vary continuously Q Why digital systems? A Accurate, reliable, fast, cheap Basic abstractions
More informationComp 150 Booleans and Digital Logic
Comp 150 Booleans and Digital Logic Recall the bool date type in Python has the two literals True and False and the three operations: not, and, or. The operations are defined by truth tables (see page
More informationArithmeticlogic units
Arithmeticlogic units An arithmeticlogic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the heart of a processor you could say that everything else in the CPU is there
More informationEE 110 Practice Problems for Exam 2: Solutions, Fall 2008
EE 110 Practice Problems for Exam 2: Solutions, Fall 2008 1. Circle T (true) or F (false) for each of these Boolean equations. (a). T FO An 8to1 multiplexer requires 2 select lines. (An 8to1 multiplexer
More information28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using Kmap method.
Unit1 1. Show Karnaugh map for equation Y = F(A,B,C) = S m(1, 2, 3, 6, 7) 2. Show Karnaugh map for equation Y = F(A,B,C,D) = S m(1, 2, 3, 6, 8, 9, 10, 12, 13, 14) 3. Give SOP form of Y = F(A,B,C,D) =
More informationUnited States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1
United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.
More informationSAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 5. Combinational & Sequential Circuits
SAMPLE OF THE STUD MATERIAL PART OF CHAPTER 5 5. Introduction Digital circuits can be classified into two types: Combinational digital circuits and Sequential digital circuits. 5.2 Combinational Digital
More informationComputer Science. 19. Combinational Circuits. Computer Science. Building blocks Boolean algebra Digital circuits Adder circuit. Arithmetic/logic unit
PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science 9. Combinational Circuits Computer Science 9.
More informationA Little Perspective Combinational Logic Circuits
A Little Perspective Combinational Logic Circuits COMP 251 Computer Organization and Architecture Fall 2009 Motivating Example Recall our machine s architecture: A Simple ALU Consider an ALU that can perform
More informationDEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Lab Manual Digital Electronics Laboratory (EC39) BACHELOR OF TECHNOLOGY Subject Code: EC 39 Subject Name: Digital Electronics Laboratory Teaching
More informationearlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8bit adder.
The circuit created is an 8bit adder. The 8bit adder adds two 8bit binary inputs and the result is produced in the output. In order to create a Full 8bit adder, I could use eight Full bit adders and
More informationCombinational circuit. Fig. 41 Block Diagram of Combinational Circuit Prentice Hall, Inc. M. Morris Mano DIGITAL DESIGN, 3e.
n inputs ombinational circuit m outputs Fig. 4 Block Diagram of ombinational ircuit 22 Prentice Hall, Inc. A B T 2 F A B T T 3 F 2 A B A F 2 B Fig. 42 Logic Diagram for Analysis Example 22 Prentice Hall,
More informationLet s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
More informationReview of Gates in Digital Electronics
pp. 2226 Krishi Sanskriti Publications http://www.krishisanskriti.org/areee.html Review of Gates in Digital Electronics Divya Aggarwal Student, Department of Physics, University of Delhi Abstract: Digital
More informationLogic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
More informationChapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates
Chapter Goals Chapter 4 Gates and Circuits Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the
More informationCSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
More informationCombinational circuits
Combinational circuits Combinational circuits are stateless The outputs are functions only of the inputs Inputs Combinational circuit Outputs 3 Thursday, September 2, 3 Enabler Circuit (Highlevel view)
More informationGates, Circuits and Boolean Functions
Lecture 2 Gates, Circuits and Boolean Functions DOC 112: Hardware Lecture 2 Slide 1 In this lecture we will: Introduce an electronic representation of Boolean operators called digital gates. Define a schematic
More informationLAB 2: BOOLEAN THEOREMS
LAB 2: BOOLEAN THEOREMS OBJECTIVES 1. To implement DeMorgan's theorems in circuit simplification. 2. To design a combinational logic circuit with simplest logic gates representation using Karnaugh Mapping
More informationDEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS453
More informationGates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
More informationFundamentals of Computer Systems
Fundamentals of Computer Systems Combinational Logic Martha A. Kim Columbia University Fall 23 / Combinational Circuits Combinational circuits are stateless. Their output is a function only of the current
More informationECE3281 Electronics Laboratory
ECE328 Electronics Laboratory Experiment #4 TITLE: EXCLUSIVEOR FUNCTIONS and INRY RITHMETIC OJECTIVE: Synthesize exclusiveor and the basic logic functions necessary for execution of binary arithmetic.
More informationl What have discussed up until now & why: l C Programming language l More lowlevel then Java. l Better idea about what s really going on.
CS211 Computer Architecture l Topics Digital Logic l Transistors (Design & Types) l Logic Gates l Combinational Circuits l KMaps Class Checkpoint l What have discussed up until now & why: l C Programming
More informationLab Manual. Digital System Design (Pr): COT215 Digital Electronics (P): IT211
Lab Manual Digital System Design (Pr): COT215 Digital Electronics (P): IT211 Lab Instructions Several practicals / programs? Whether an experiment contains one or several practicals /programs One practical
More informationDigital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand
Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary
More informationChapter # 5: Arithmetic Circuits
Chapter # 5: rithmetic Circuits Contemporary Logic Design 5 Number ystems Representation of Negative Numbers Representation of positive numbers same in most systems Major differences are in how negative
More information4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION
4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationDigital Circuit and Logic Design /2
Homework# Digital Circuit and Logic Design / Page / Solution of Homework# () Draw block diagram to show how to use to8 lines decoders to produce the following: (ll decoders have one activelow ENBLE
More informationLogic Revision. AQA ASLevel Computing COMP2. 98 minutes. 95 marks. Page 1 of 40
Logic Revision AQA ASLevel Computing COMP2 2014 98 minutes 95 marks Page 1 of 40 Q1. The figure below shows a logic circuit. (a) Complete the truth table below for the logic circuit shown in the above
More informationCombinational Logic Design
Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (twoelement switching algebra
More informationExamples of Solved Problems for Chapter3,5,6,7,and8
Chapter 3 Examples of Solved Problems for Chapter3,5,6,7,and8 This document presents some typical problems that the student may encounter, and shows how such problems can be solved. Note that the numbering
More informationChapter 4 Combinational Logic
EEA051  Digital Logic 數位邏輯 Chapter 4 Combinational Logic 吳俊興國立高雄大學資訊工程學系 November 2005 Chapter 4 Combinational Logic 41 Combinational Circuits 42 Analysis Procedure 43 Design Procedure 44 Binary AdderSubtractor
More informationIntroduction Number Systems and Conversion
UNIT 1 Introduction Number Systems and Conversion Objectives 1. Introduction The first part of this unit introduces the material to be studied later. In addition to getting an overview of the material
More informationTwo s Complement Arithmetic
Two s Complement Arithmetic We now address the issue of representing integers as binary strings in a computer. There are four formats that have been used in the past; only one is of interest to us. The
More informationEE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
More informationLAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III
LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III 1 INDEX Sr. No Title of the Experiment 1 Study of BASIC Gates 3 2 Universal Gates 6 3 Study of Full & Half Adder & Subtractor
More informationDigital Logic Design 1. Truth Tables. Truth Tables. OR Operation With OR Gates
2007 oolean Constants and Variables K TP.HCM Tran Ngoc Thinh HCMC University of Technology http://www.cse.hcmut.edu.vn/~tnthinh oolean algebra is an important tool in describing, analyzing, designing,
More informationNOT AND OR XOR NAND NOR
NOT AND OR XOR NAND NOR Expression 1: It is raining today Expression 2: Today is my birthday X Meaning True False It is raining today It is not raining Binary representation of the above: X Meaning 1 It
More information1.10 (a) Effects of logic gates AND, OR, NOT on binary signals in a processor
Chapter 1.10 Logic Gates 1.10 (a) Effects of logic gates AND, OR, NOT on binary signals in a processor Microprocessors are the central hardware that runs computers. There are several components that make
More informationCS/EE 260 Homework 5 Solutions Spring 2000
CS/EE 6 Homework 5 Solutions Spring (MK ) Construct a to line multiplexer with three 4to line multiplexers The multiplexers should be interconnected and inputs labeled so that the selection codes
More informationECE Digital Logic Design. Laboratory Manual
ECE 1315 Digital Logic Design Laboratory Manual Guide to Assembling your Circuits Dr. Fernando RíosGutiérrez Dr. Rocio AlbaFlores Dr. Chris Carroll Department of Electrical and Computer Engineering University
More informationChapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
More informationFigure 81 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
More information(Or Gate) (And Gate) (Not Gate)
6 March 2015 Today we will be abstracting away the physical representation of logical gates so we can more easily represent more complex circuits. Specifically, we use the shapes themselves to represent
More informationL2: Combinational Logic Design (Construction and Boolean Algebra)
L2: Combinational Logic Design (Construction and oolean lgebra) cknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Prof. Randy Katz (Unified
More informationDigital Logic Circuits
Digital Logic Circuits Digital describes any system based on discontinuous data or events. Typically digital is computer data or electronic sampling of an analog signal. Computers are digital machines
More informationSistemas Digitais I LESI  2º ano
Sistemas Digitais I LESI  2º ano Lesson 6  Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA  PLDs (1)  The
More informationBasics of Digital Logic Design
CSE 675.2: Introduction to Computer Architecture Basics of Digital Logic Design Presentation D Study: B., B2, B.3 Slides by Gojko Babi From transistors to chips Chips from the bottom up: Basic building
More informationComputer Organization I. Lecture 8: Boolean Algebra and Circuit Optimization
Computer Organization I Lecture 8: Boolean Algebra and Circuit Optimization Overview The simplification from SOM to SOP and their circuit implementation Basics of Logic Circuit Optimization: Cost Criteria
More informationCS61c: Representations of Combinational Logic Circuits
CS61c: Representations of Combinational Logic Circuits J. Wawrzynek October 12, 2007 1 Introduction In the previous lecture we looked at the internal details of registers. We found that every register,
More informationDigital Logic Design
Digital Logic Design ENGG1015 1 st Semester, 2010 Dr. Kenneth Wong Dr. Hayden So Department of Electrical and Electronic Engineering Determining output level from a diagram Implementing Circuits From Boolean
More informationWEEK 2.2 CANONICAL FORMS
WEEK 2.2 CANONICAL FORMS 1 Canonical SumofProducts (SOP) Given a truth table, we can ALWAYS write a logic expression for the function by taking the OR of the minterms for which the function is a 1. This
More informationCombinational Logic Tutorial sheet
Combinational Logic Tutorial sheet 1) Redraw the following circuits into the respective ANSI symbols a. b. c. d. 2) Write the Boolean equation for each of the circuit diagrams in question 1. 3) Convert
More informationPart 1: Logic Design. Tutorial
CPIT2 : Computer Organization and Architecture Course Lectures by Prof. Mohamed Khamis Part : Logic Design Tutorial by Teaching Assistant. Khalid Alharbi Department of Information Technology Faculty of
More information4.203 Write the truth table for each of the following logic functions:
3e4.5 4.201 According to DeMorgan s theorem, the complement of X + Y Z is X Y +Z. Yet both functions are 1 for XYZ = 110. How can both a function and its complement be 1 for the same input combination?
More informationTwo's Complement Adder/Subtractor Lab L03
Two's Complement Adder/Subtractor Lab L03 Introduction Computers are usually designed to perform indirect subtraction instead of direct subtraction. Adding B to A is equivalent to subtracting B from A,
More informationFORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The FullAdder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The FullAdder 1 Introduction In this lab, the student will construct
More informationSystems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 9  Register Transfer and Microoperations Microoperations Digital systems are modular in nature, with modules containing registers, decoders, arithmetic
More informationThe equation for the 3input XOR gate is derived as follows
The equation for the 3input XOR gate is derived as follows The last four product terms in the above derivation are the four 1minterms in the 3input XOR truth table. For 3 or more inputs, the XOR gate
More informationBinary full adder. 2bit ripplecarry adder. CSE 370 Spring 2006 Introduction to Digital Design Lecture 12: Adders
SE 370 Spring 2006 Introduction to Digital Design Lecture 12: dders Last Lecture Ls and Ls Today dders inary full 1bit full omputes sum, carryout arryin allows cascaded s = xor xor = + + 32 ND2 11 ND2
More informationChapter 6 Digital Arithmetic: Operations & Circuits
Chapter 6 Digital Arithmetic: Operations & Circuits Chapter 6 Objectives Selected areas covered in this chapter: Binary addition, subtraction, multiplication, division. Differences between binary addition
More informationBoolean Algebra and Digital Circuits Part 3: Logic Gates and Combinatorial Circuits
Boolean Algebra and Digital Circuits Part 3: Logic Gates and Combinatorial Circuits Logic Gates a gate implements a simple boolean function such as AND, OR or NOT constructed using a few transistors basic
More informationBasics of Digital Logic Design
Basics of Digital Logic Design Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70810 Durresi@Csc.LSU.Edu LSUEd These slides are available at: http://www.csc.lsu.edu/~durresi/csc3501_07/ Louisiana
More informationELG3331: Lab 3 Digital Logic Circuits
ELG3331: Lab 3 Digital Logic Circuits What does Digital Means? Digital describes any system based on discontinuous data or events. Typically digital is computer data or electronic sampling of an analog
More informationDigital Circuits. Frequently Asked Questions
Digital Circuits Frequently Asked Questions Module 1: Digital & Analog Signals 1. What is a signal? Signals carry information and are defined as any physical quantity that varies with time, space, or any
More informationDigital Systems Design
Digital Systems Design Review of Combinatorial Circuit Building Blocks: VHDL for Combinational Circuits Dr. D. J. Jackson Lecture 31 Introduction to VHDL Designer writes a logic circuit description in
More information