BJT Circuit Analysis

Size: px
Start display at page:

Download "BJT Circuit Analysis"

Transcription

1 BJT Circuit Analysis Assuming that the transistor is in the active region, solve for the voltages and currents --- why this assumption? In general, the problem requires solution of a set of nonlinear equations: RC 1E3Ω VIN 2V + RB 100E3Ω Q1 I S =1e-16 β = V VCC 1

2 BJT Circuit Analysis SPICE solves the system of nonlinear equations to obtain the voltages and currents Is this circuit in the active region? IC ma RC 1E3Ω IB RB 100E3Ω Q1 Default VOUT µa + VIN VBE V - + 2V mv - VCC + 5V 2

3 BE Diode Characteristic We can effectively use a simplified model for the diode if we know the approximate operating range of the BE diode characteristic ma VBE + 0V pa Q1 Default IE 3

4 BE Diode Characteristic Note that V ON changes if we re analyzing an order of magnitude less current So how do we know what the real V ON is? ma VBE + 0V pa Q1 Default IE 4

5 Simplified BJT Circuit Analysis Assuming V BE is 0.78 volts, we can approximate this circuit solution by hand analysis RC 1E3Ω VIN 2V + RB 100E3Ω Q1 I S =1e-16 β = V VCC 5

6 Simplified BJT Circuit Analysis What happens as R C is decreased? Will it remain in the active region? RC 500Ω VIN 2V + RB 100E3Ω Q1 I S =1e-16 β = V VCC 6

7 Simplified BJT Circuit Analysis What happens as R C is increased? Will it remain in the active region? RC 5000Ω VIN 2V + RB 100E3Ω Q1 I S =1e-16 β = V VCC 7

8 Saturation When both the EBJ and CBJ are forward biased, the transistor is no longer in the active region, but it is in the saturation region of operation We can easily solve for the maximum i C that we can have before we reach saturation for this circuit RC VIN + RB Q1 + 5V VCC 8

9 Saturation With both diodes forward biased, the collector-to-emitter voltage, v CE, saturates toward a constant value _ V BC + + V BE _ ma 2 ~0.4 volts ~ volts V BC + + V BE + v CEsat 0.3volts _ V CE IC 9

10 Saturation In saturation, increasing i C shows little increase in i B. Why? V CE ma 1 0 IC -1

11 Regions of Operation The complete i-v characteristic is: I C V CE ma 1 I B =20µA I B =15µA I B =10µA I B =5µA I B =1µA -1

12 Regions of Operation I C ma saturation active 1 cut-off V CE I B =20µA I B =15µA I B =10µA I B =5µA I B =1µA

13 Temperature Variations The collector current vs. the base-emitter voltage follows a diode characteristic, which like a diode, is temperature dependent Q1 Default R4 1E3Ω I C V BE ma T=32ºC T=27ºC VBE + 0V VCC + 15V 2 T=22ºC 0 Does this value of R C significantly impact the values for i C in this example?

14 Temperature Variations In saturation, the collector current no longer increases with increasing V BE. Why not? I C 0.2 V BE Q1 Default R4 100E3Ω ma T=32ºC T=27ºC VBE + 0V VCC + 15V 0.1 T=22ºC 0.0

15 Base Width Variation In the active region, i C does vary somewhat with V CB (hence R C in our previous examples) due to the variation it causes in the base width. Effective base width, W *, decreases with increasing V CB What do you expect would happen to i C as W * decreases? E n-type p-type n-type C V BE B V CB W * x

16 Early Voltage The I C vs. V CE curves in the active region have a finite slope to them due to this i C dependence on V CB Early showed that these slopes all converge to one negative voltage point I C V CE 10 3 I B =20µA ma VAF=20 in SPICE (VA in the book) I B =15µA I B =10µA 1 I B =5µA I B =1µA -1 -VA

17 Early Voltage The finite slope in the active region due to decreasing base width can be approximated by v ce i c I s e v be V T = This means that the output resistance between the collector and emitter is not infinite --- very important for analog design V A v ce 6 i C (ma) i C = g o 0 v ce at some fixed i b point 1-1

18 Early Voltage The output conductance, or resistance, at a fixed i b point represents the slope of the line tangent to that point on the curve: i c I s e v be V T = 1 v ce V A Generally not considered for dc bias point calculations, but r o can have a significant impact on a transistor amplifier gain

19 Early Voltage The equivalent circuit models can be modified accordingly: C i e = B I s ---e v be α i b V T αi e r o = V A i C E or C i b = I s ---e v be β V T B βi b r o = V A i C E

20 dc Bias Point Calculations r o is generally not considered for hand calculations of dc bias point -- why? For hand calculations: use V BE =0.7 and assume that the transistor is in the active region; Later verify that your assumptions were correct. What s the maximum value that R C can be without reaching saturation? Assume β = V R C 4V 3.3kΩ

21 dc Bias Point Calculationsdc Bias Point Calculations 10V R C 4V 3.3kΩ

22 What value of R C saturates the transistor? 10V 2kΩ β = 100 R C -10V

23 dc Bias Point Calculations What value of VCC saturates the transistor for this same circuit? 10V 2kΩ β = 100 1kΩ VCC

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

Voltage Divider Bias

Voltage Divider Bias Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

BJT Circuit Configurations

BJT Circuit Configurations BJT Circuit Configurations V be ~ ~ ~ v s R L v s R L V Vcc R s cc R s v s R s R L V cc Common base Common emitter Common collector Common emitter current gain BJT Current-Voltage Characteristics V CE,

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics 192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing

More information

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Bob York. Transistor Basics - BJTs

Bob York. Transistor Basics - BJTs ob York Transistor asics - JTs ipolar Junction Transistors (JTs) Key points: JTs are current-controlled devices very JT has a base, collector, and emitter The base current controls the collector current

More information

Transistor Models. ampel

Transistor Models. ampel Transistor Models Review of Transistor Fundamentals Simple Current Amplifier Model Transistor Switch Example Common Emitter Amplifier Example Transistor as a Transductance Device - Ebers-Moll Model Other

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002 Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

More information

05 Bipolar Junction Transistors (BJTs) basics

05 Bipolar Junction Transistors (BJTs) basics The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN

More information

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:

More information

I-V Characteristics of BJT Common-Emitter Output Characteristics

I-V Characteristics of BJT Common-Emitter Output Characteristics I-V Characteristics of BJT Common-Emitter Output Characteristics C i C C i C B v CE B v EC i B E i B E Lecture 26 26-1 To illustrate the I C -V CE characteristics, we use an enlarged β R Collector Current

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical

More information

Common Emitter BJT Amplifier Design Current Mirror Design

Common Emitter BJT Amplifier Design Current Mirror Design Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors). 1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

More information

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above. Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination

More information

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C ESE39 ntroduction to Microelectronics Differential Amplifier Offset Causes of dc voltage and current offset Modeling dc offset mismatch S mismatch β mismatch transistor mismatch dc offsets in differential

More information

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low CIRCUITS LABORATORY EXPERIMENT 6 TRANSISTOR CHARACTERISTICS 6.1 ABSTRACT In this experiment, the output I-V characteristic curves, the small-signal low frequency equivalent circuit parameters, and the

More information

School of Engineering Department of Electrical and Computer Engineering

School of Engineering Department of Electrical and Computer Engineering 1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

More information

BIPOLAR JUNCTION TRANSISTORS

BIPOLAR JUNCTION TRANSISTORS CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

More information

TWO PORT NETWORKS h-parameter BJT MODEL

TWO PORT NETWORKS h-parameter BJT MODEL TWO PORT NETWORKS h-parameter BJT MODEL The circuit of the basic two port network is shown on the right. Depending on the application, it may be used in a number of different ways to develop different

More information

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

More information

Regulated D.C. Power Supply

Regulated D.C. Power Supply 442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator

More information

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

More information

Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued

Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued 1 Lecture-7 ipolar Junction Transistors (JT) Part-I ontinued 1. ommon-emitter (E) onfiguration: Most JT circuits employ the common-emitter configuration shown in Fig.1. This is due mainly to the fact that

More information

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL 3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement

More information

Design of op amp sine wave oscillators

Design of op amp sine wave oscillators Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation

More information

What Does Rail-to-Rail Operation Really Mean?

What Does Rail-to-Rail Operation Really Mean? What Does Rail-to-Rail Operation Really Mean? 2004 Microchip Technology Incorporated. All Rights Reserved. What does Rail-to-Rail Operation really mean? 1 Agenda What does Rail-to-Rail output operation

More information

Figure 1: Common-base amplifier.

Figure 1: Common-base amplifier. The Common-Base Amplifier Basic Circuit Fig. 1 shows the circuit diagram of a single stage common-base amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output

More information

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C 2N6284 (NPN); 2N6286, Preferred Device Darlington Complementary Silicon Power Transistors These packages are designed for general purpose amplifier and low frequency switching applications. Features High

More information

DISCRETE SEMICONDUCTORS DATA SHEET

DISCRETE SEMICONDUCTORS DATA SHEET DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1999 Apr 23 2001 Oct 10 FEATURES High current (max. 1 A) Low voltage (max. 80 V). APPLICATIONS Audio and video amplifiers. PINNING

More information

Collection of Solved Feedback Amplifier Problems

Collection of Solved Feedback Amplifier Problems c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Collection of Solved Feedback Amplifier Problems This document contains

More information

A Comparison of Various Bipolar Transistor Biasing Circuits Application Note 1293

A Comparison of Various Bipolar Transistor Biasing Circuits Application Note 1293 A omparison of Various Bipolar Transistor Biasing ircuits Application Note 1293 Introduction The bipolar junction transistor (BJT) is quite often used as a low noise amplifier in cellular, PS, and pager

More information

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors TIP140, TIP141, TIP142, (); TIP145, TIP146, TIP147, () Darlington Complementary Silicon Power Transistors Designed for generalpurpose amplifier and low frequency switching applications. Features High DC

More information

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

More information

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS NPN Darlington Silicon Power Transistor The NPN Darlington silicon power transistor is designed for general purpose amplifier and low frequency switching applications. High DC Current Gain h FE = 3000

More information

V-I CHARACTERISTICS OF DIODE

V-I CHARACTERISTICS OF DIODE V-I CHARACTERISTICS OF DIODE RAVITEJ UPPU 1 1. Aim We try to see the Voltage-Current realtion in Diodes and compare the difference between various types of diodes including Zener Diode. 2. Theory The diode

More information

BJT Ebers-Moll Model and SPICE MOSFET model

BJT Ebers-Moll Model and SPICE MOSFET model Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll

More information

BC327, BC327-16, BC327-25, BC327-40. Amplifier Transistors. PNP Silicon. These are Pb Free Devices* http://onsemi.com. Features MAXIMUM RATINGS

BC327, BC327-16, BC327-25, BC327-40. Amplifier Transistors. PNP Silicon. These are Pb Free Devices* http://onsemi.com. Features MAXIMUM RATINGS BC327, BC327-16, BC327-25, BC327-4 Amplifier Transistors PNP Silicon Features These are PbFree Devices* MAXIMUM RATINGS Rating Symbol Value Unit CollectorEmitter Voltage V CEO 45 Vdc CollectorEmitter Voltage

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics B3 - Using nonlinearity» Tuned amplifier» Frequency multiplier» Gain compressor» Adding feedback AY 2015-16 15/03/2016-1 ATLCE

More information

COMMON-SOURCE JFET AMPLIFIER

COMMON-SOURCE JFET AMPLIFIER EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC

More information

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller

Single Supply Op Amp Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

More information

Electronic Devices and Circuit Theory

Electronic Devices and Circuit Theory Instructor s Resource Manual to accompany Electronic Devices and Circuit Theory Tenth Edition Robert L. Boylestad Louis Nashelsky Upper Saddle River, New Jersey Columbus, Ohio Copyright 2009 by Pearson

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Lecture 12: DC Analysis of BJT Circuits.

Lecture 12: DC Analysis of BJT Circuits. Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode

More information

SEMICONDUCTOR APPLICATION NOTE

SEMICONDUCTOR APPLICATION NOTE SEMICONDUCTOR APPLICATION NOTE Order this document by AN7A/D Prepared by: Francis Christian INTRODUCTION The optical coupler is a venerable device that offers the design engineer new freedoms in designing

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

Series AMLDL-Z Up to 1000mA LED Driver

Series AMLDL-Z Up to 1000mA LED Driver FEATURES: Click on Series name for product info on aimtec.com Series Up to ma LED Driver Models Single output Model Input Voltage (V) Step Down DC/DC LED driver Operating Temperature range 4ºC to 85ºC

More information

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS 2N6388 is a Preferred Device Plastic MediumPower Silicon Transistors These devices are designed for generalpurpose amplifier and lowspeed switching applications. Features High DC Current Gain h FE = 2500

More information

TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process) 2SA1020

TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process) 2SA1020 2SA12 TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process) 2SA12 Power Amplifier Applications Power Switching Applications Unit: mm Low Collector saturation voltage: V CE (sat) =.5 V (max) (I C

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

TIP31, TIP32 High Power Bipolar Transistor

TIP31, TIP32 High Power Bipolar Transistor Features: Collector-Emitter sustaining voltage - V CEO(sus) = 60V (Minimum) - TIP31A, TIP32A = 100V (Minimum) - TIP31C,. Collector-Emitter saturation voltage - V CE(sat) = 1.2V (Maximum) at I C = 3.0A.

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

Lecture 22: Class C Power Amplifiers

Lecture 22: Class C Power Amplifiers Whites, EE 322 Lecture 22 Page 1 of 13 Lecture 22: lass Power Amplifiers We discovered in Lecture 18 (Section 9.2) that the maximum efficiency of lass A amplifiers is 25% with a resistive load and 50%

More information

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS OUTPUT SWITCH CURRENT IN EXCESS OF 1.5A 2% REFERENCE ACCURACY LOW QUIESCENT CURRENT: 2.5mA (TYP.) OPERATING FROM 3V TO 40V FREQUENCY OPERATION TO 100KHz

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

LM134-LM234 LM334 THREE TERMINAL ADJUSTABLE CURRENT SOURCES. OPERATES from 1V to 40V

LM134-LM234 LM334 THREE TERMINAL ADJUSTABLE CURRENT SOURCES. OPERATES from 1V to 40V LM134-LM234 LM334 THREE TERMINAL USTABLE CURRENT SOURCES OPERATES from 1 to 40. 0.02% CURRENT REGULATION PROGRAMMABLE from 1µA to 10mA ±3% INITIAL ACCURACY DESCRIPTION The LM134/LM234/LM334 are 3-terminal

More information

The two simplest atoms. Electron shells and Orbits. Electron shells and Orbits

The two simplest atoms. Electron shells and Orbits. Electron shells and Orbits EET140/ET1 Electronics Semiconductors and Diodes Electrical and Telecommunications Engineering Technology Department Prepared by textbook based on Electronics Devices by Floyd, Prentice Hall, 7 th edition.

More information

Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers

Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers TECHNICAL DATA Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers IK3051 Description IK3051 is a highly integrated solution for SMPS applications requiring constant voltage

More information

Environmental Monitoring with Sensors: Hands-on Exercise

Environmental Monitoring with Sensors: Hands-on Exercise Environmental Monitoring with Sensors: Hands-on Exercise Now that you ve seen a few types of sensors, along with some circuits that can be developed to condition their responses, let s spend a bit of time

More information

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor Low voltage PNP power transistor Features Low saturation voltage PNP transistor Applications Audio, power linear and switching applications Description The device is manufactured in planar technology with

More information

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE BJT AC Analysis 1 of 38 The r e Transistor model Remind Q-poiint re = 26mv/IE BJT AC Analysis 2 of 38 Three amplifier configurations, Common Emitter Common Collector (Emitter Follower) Common Base BJT

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

Temperature Sensors. Resistance Temperature Detectors (RTDs) Thermistors IC Temperature Sensors

Temperature Sensors. Resistance Temperature Detectors (RTDs) Thermistors IC Temperature Sensors Temperature Sensors Resistance Temperature Detectors (RTDs) Thermistors IC Temperature Sensors Drew Gilliam GE/MfgE 330: Introduction to Mechatronics 03.19.2003 Introduction There are a wide variety of

More information

Features: Characteristic Symbol Rating Unit. Collector-Emitter Voltage V CEO 100 Collector-Base Voltage I C

Features: Characteristic Symbol Rating Unit. Collector-Emitter Voltage V CEO 100 Collector-Base Voltage I C Designed for use in general purpose power amplifier and switching applications. Features: Collector-Emitter Sustaining Voltage V CEO(sus) = 100V (Minimum) - TIP35C, TIP36C DC Current Gain h FE = 25 (Minimum)

More information

Application Note 82 Using the Dallas Trickle Charge Timekeeper

Application Note 82 Using the Dallas Trickle Charge Timekeeper www.maxim-ic.com Application Note 82 Using the Dallas Trickle Charge Timekeeper DESCRIPTION The Dallas Semiconductor/Maxim real-time clock (RTC) family contains a number of parts within an integrated trickle-charging

More information

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS 40 80 VOLTS, 30 WATTS

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS 40 80 VOLTS, 30 WATTS ,, Medium-Power Plastic NPN Silicon Transistors These highperformance plastic devices are designed for driver circuits, switching, and amplifier applications. Features Low Saturation Voltage Excellent

More information

KA7500C. SMPS Controller. Features. Description. Internal Block Diagram. www.fairchildsemi.com

KA7500C. SMPS Controller. Features. Description. Internal Block Diagram. www.fairchildsemi.com SMPS Controller www.fairchildsemi.com Features Internal Regulator Provides a Stable 5V Reference Supply Trimmed to ±1% Accuracy. Uncommitted Output TR for 200mA Sink or Source Current Output Control for

More information

The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6)

The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6) The FET Constant-Current ource/limiter Introduction The combination of low associated operating voltage and high output impedance makes the FET attractive as a constant-current source. An adjustable-current

More information

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57] Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

More information

Log and AntiLog Amplifiers. Recommended Text: Pallas-Areny, R. & Webster, J.G., Analog Signal Processing, Wiley (1999) pp. 293-321

Log and AntiLog Amplifiers. Recommended Text: Pallas-Areny, R. & Webster, J.G., Analog Signal Processing, Wiley (1999) pp. 293-321 Log and AntiLog Amplifiers Recommended Text: Pallas-Areny, R. & Webster, J.G., Analog Signal Processing, Wiley (999) pp. 93-3 ntroduction Log and Antilog Amplifiers are non-linear circuits in which the

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

3.4 - BJT DIFFERENTIAL AMPLIFIERS

3.4 - BJT DIFFERENTIAL AMPLIFIERS BJT Differential Amplifiers (6/4/00) Page 1 3.4 BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the

More information

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER 20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

More information

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential

More information

PHOTOTRANSISTOR OPTOCOUPLERS

PHOTOTRANSISTOR OPTOCOUPLERS MCT2 MCT2E MCT20 MCT27 WHITE PACKAGE (-M SUFFIX) BLACK PACKAGE (NO -M SUFFIX) DESCRIPTION The MCT2XXX series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor

More information

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II 1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.

More information