OPERATIONAL AMPLIFIERS
|
|
|
- Johnathan King
- 9 years ago
- Views:
Transcription
1 INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques to study circuits containing operational amplifiers. BACKGROUND Operational Amplifiers or Op Amps are undoubtedly the most versatile analog device in common use. In addition, circuit analysis of Op Amp circuits is a straightforward endeavor. It has become common practice therefore to introduce Op Amp circuits to beginning engineering students as a means to reinforce their newly acquired analysis skills. Without getting into the details of design and construction, an Op Amp can be modeled as shown in Figure 1. It can be seen in Figure 1 that the difference in voltage across the input terminals, V+ and V-, is multiplied by the gain, A, and is available at the output terminal as Vout (with respect to ground). Figure 1: Operational Amplifier Diagram The ideal Op Amp is characterized by the following parameters: Ri (the input impedance) is Infinite. Ro (the output impedance) is Zero. A (the gain) is Infinite. From this idealization, it is possible to make the following assumptions: Ii (the input current to the Op Amp) is Zero. Vd = (V+) (V-) = Zero Thus, V+ = V- These conditions make Nodal Analysis of an ideal Op Amp circuit very simple. Scott Norr Page 1 January 2005
2 THEORETICAL PROCEDURE Using circuit analysis techniques, analyze the circuit in Figure 3 to solve for Vo. Assume that the effective resistance of the LED is 50 K. Vo = Volts Figure 2: DC Voltage Divider EXPERIMENTAL PROCEDURE Connect the DC circuit shown in Figure 2 Power up the adjustable DC power supply and set it for an output voltage of 6.00 Volts. Turn ON the output of the power supply. Measure Vo, the voltage drop across the 390 K-Ohm resistor, using the DMM. Vo = Volts Turn OFF the output of the power supply. Figure 3: LED Circuit Now connect a Light Emitting Diode (LED) across Vo as shown in Figure 3. Turn ON the output of the power supply. Measure again the output voltage, Vo, using the DMM. Vo = Volts Scott Norr Page 2 January 2005
3 Obtain your Instructor s Signature: Turn OFF the output of the power supply. Why is the value of Vo different? Answer question in lab report. Calculate the effective resistance of the LED, by performing nodal analysis at the output node (between the 100 and 390 K-Ohm resistors). Since Vo is known, solve for R LED. At the Node: Vo Vs + Vo 0. = K 390K // R LED R LED = Ohms A Vo of approximately 2.0 Volts or above is sufficient to make the LED glow, provided that it receives enough current. Does the LED turn on (light up) in this circuit? It may be useful to consider the 6-Volt source and the 100 k-ohm resistor as a Thevenin Pair (i.e. Vth and Rth). If the resistance of the LED were very, very small, say zero ohms, the current delivered by the 6-Volt source would be 60 µ-a. (100 K-Ohm * 60 µ-a = 6 Volts). This is not enough current to make the LED glow. Also, if R LED were extremely small, Vo would be almost zero. Thus the Load Impedance, R LED, is too small for the resistor bridge and collapses the output voltage, Vo. Or, in other words, the Output Impedance of the source, (Rth), is too high to provide the current necessary to make the LED glow. A practical way to lower the output impedance of this bridge circuit is to use an Operational Amplifier (Op Amp). Op Amps have very high input impedance, meaning they don t draw much current from a source in order to work properly. In addition, they have reasonably low output impedance, and can supply a fair amount of current to a load. Insert an Op Amp into the previous network in order to produce the circuit shown in Figure 4 below: (Note that a minus-six volt source is needed to properly bias the op amp) Scott Norr Page 3 January 2005
4 Figure 4: Voltage Follower The Op Amp circuit above is called a Voltage Follower circuit, denoted by the unity feedback loop to the inverting input (i.e. Vout is short-circuited to V-). A voltage follower performs as denoted. Its output follows the input. An ideal voltage follower has an input of Vo volts and an output of Vo volts. One might argue that a piece of wire also acts as a voltage follower and is much cheaper and easier to use than an Op Amp. The beauty of the Op Amp voltage follower is the gain of the circuit. The circuit above has an input current of much less than the 60 µ-a available, but the output current of the Op Amp can be much higher. A wire cannot duplicate that. The Op Amp looks like a high impedance load to the resistor bridge source, and also looks like a low impedance source to the LED load. Turn ON the output of the power supply. Measure Vo and Vout with the DMM. Vo = Volts Vout = Volts Turn OFF the output of the power supply. Remove the LED. Turn ON the power supply and measure Vout now that the load (LED) has been removed. Vout (no load) = Volts Turn OFF the output of the power supply. Compare Vo for Figure 4 with Vo for Figures 2 and 3. Scott Norr Page 4 January 2005
5 Which is it closer to? Does the LED turn on (light up) in this circuit? Describe the impact of putting the Op Amp Voltage Follower between the output voltage, Vo, and the load (the LED). Note the effect on Vo and on source and load impedances. Include Discussion in lab report. The Op Amp is probably the most versatile analog chip available. It has a host of applications in a broad range of circuits. The key to making Op Amps do different things is to understand the impact of feedback on Op Amp performance. The first step to such understanding is to analyze the Inverting Amplifier circuit. Figure 5: Inverting Amplifier Connect the Op Amp circuit shown in Figure 5. Nodal analysis at the node labeled V- (between resistors R1 and R2) produces the following results: (V-) Vs + (V-) (Vout) = 0 ; and (V-) (V+) = K 390 K Vout = K * Vs = -3.9 Vs ; Vs = 1 K * 6 Volts = 0.55 Volts 100 K (1 + 10) K Vout = Volts Scott Norr Page 5 January 2005
6 Turn ON the output of the power supply and verify Vs and Vout with the DMM. Vs = Volts Vout = Volts Turn OFF the power supply output. Now exchange R1 and R2 resistors, such that the circuit is the same, but R1 = 390 K and R2 = 100K. Turn ON the output of the power supply and measure Vs and Vout with the DMM. Vs = Volts Vout = Volts Calculate Vout for R1 = 390 K and R2 = 100K in this circuit using Nodal Analysis. Include calculation in lab report. SIMULATED PROCEDURE Model the Inverting Amplifier of Figure 5 in PSPICE, Schematics. Use the OPAMP model from the parts list to represent the LM741. This model does not have external connections for V+ and V-, so there is no need to model two voltage sources. Use a single 6 Volt source and make sure to set the attributes for VPOS and VNEG to +6V and -6V respectively in the OPAMP model. Include the output file as an appendix to the report and compare its results to experimental values. CONCLUSION Summarize what has been learned about the input and output impedance of a circuit and the value of an Op Amp for changing them. Compare your experimental results for Vout versus calculated values from Step 29 above for the Inverting Amplifier. Explain any differences. Incorporating what was learned about the accuracy of resistors in Lab 1 may be helpful. Scott Norr Page 6 January 2005
Lab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
School of Engineering Department of Electrical and Computer Engineering
1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits
PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
Lab 5 Operational Amplifiers
Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties
Chapter 19 Operational Amplifiers
Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common
Series and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws
Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
Lab 1: DC Circuits. Student 1, [email protected] Partner : Student 2, [email protected]
Lab Date Lab 1: DC Circuits Student 1, [email protected] Partner : Student 2, [email protected] I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab
OPERATIONAL AMPLIFIER
MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
1Meg. 11.A. Resistive Circuit Nodal Analysis
11. Creating and Using Netlists PART 11 Creating and Using Netlists For this entire text, we have created circuits schematically and then run simulations. Behind the scenes, Capture generates a netlist
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
AC 2012-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY
AC 212-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY Dr. Tooran Emami, U.S. Coast Guard Academy Tooran Emami received her M.S. and Ph.D.
Kirchhoff s Laws Physics Lab IX
Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,
Scaling and Biasing Analog Signals
Scaling and Biasing Analog Signals November 2007 Introduction Scaling and biasing the range and offset of analog signals is a useful skill for working with a variety of electronics. Not only can it interface
Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament
Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of
Building the AMP Amplifier
Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;
SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY
SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better
Design of op amp sine wave oscillators
Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
How To Calculate The Power Gain Of An Opamp
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley
11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A
Nodal and Loop Analysis
Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important
More Op-Amp Circuits; Temperature Sensing
ECE 2A Lab #5 Lab 5 More OpAmp Circuits; Temperature Sensing Overview In this lab we will continue our exploration of opamps but this time in the context of a specific application: temperature sensing.
Conversion Between Analog and Digital Signals
ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting
Analog Signal Conditioning
Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084
Voltage/current converter opamp circuits
Voltage/current converter opamp circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
RC & RL Transient Response
EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient
The 2N3393 Bipolar Junction Transistor
The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.
Measuring Insulation Resistance of Capacitors
Application Note Measuring Insulation Resistance of Capacitors A common use of high resistance measuring instruments (often called megohmmeters or insulation resistance testers) is measuring the insulation
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
Experiment 8 : Pulse Width Modulation
Name/NetID: Teammate/NetID: Experiment 8 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
AC Transport constant current vs. low impedance modes
Application Note 184-42 AC Transport constant current vs. low impedance modes The AC Transport option offers the user the ability to put the current source in a low output impedance mode. This mode is
Dependent Sources: Introduction and analysis of circuits containing dependent sources.
Dependent Sources: Introduction and analysis of circuits containing dependent sources. So far we have explored timeindependent (resistive) elements that are also linear. We have seen that two terminal
Single Supply Op Amp Circuits Dr. Lynn Fuller
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)
Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers
TECHNICAL DATA Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers IK3051 Description IK3051 is a highly integrated solution for SMPS applications requiring constant voltage
Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip
Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying
Series and Parallel Circuits
Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There
Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial
Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:
Electronics I - Laboratory 1 Diode I/V Characteristics
Electronics I - Laboratory 1 Diode I/V Characteristics I. Objectives 1. Develop I/V characteristics of a silicon diode. 2. Develop I/V characteristics of a germanium diode. 3. Develop I/V characteristics
Lab 3 - DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
PLL frequency synthesizer
ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
Measuring Electric Phenomena: the Ammeter and Voltmeter
Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
SERIES-PARALLEL DC CIRCUITS
Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
V out. Figure 1: A voltage divider on the left, and potentiometer on the right.
Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 [email protected] Introduction Voltage dividers and potentiometers are passive circuit components
Current vs. Voltage Feedback Amplifiers
Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most
MAS.836 HOW TO BIAS AN OP-AMP
MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic
Common Base BJT Amplifier Common Collector BJT Amplifier
Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances
Lab 1: Introduction to PSpice
Lab 1: Introduction to PSpice Objectives A primary purpose of this lab is for you to become familiar with the use of PSpice and to learn to use it to assist you in the analysis of circuits. The software
Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.
Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
Diodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
Environmental Monitoring with Sensors: Hands-on Exercise
Environmental Monitoring with Sensors: Hands-on Exercise Now that you ve seen a few types of sensors, along with some circuits that can be developed to condition their responses, let s spend a bit of time
Series and Parallel Resistive Circuits Physics Lab VIII
Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
22.302 Experiment 5. Strain Gage Measurements
22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
Resistors in Series and Parallel Circuits
69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction
BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE
BJT AC Analysis 1 of 38 The r e Transistor model Remind Q-poiint re = 26mv/IE BJT AC Analysis 2 of 38 Three amplifier configurations, Common Emitter Common Collector (Emitter Follower) Common Base BJT
Simple Op-Amp Circuits
ECE A Lab #4 Lab 4 Simple OpAmp Circuits Overview In this lab we introduce the operationalamplifier (opamp), an active circuit that is designed for certain characteristics (high input resistance, low output
Common-Emitter Amplifier
Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,
DC mesh current analysis
DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
LABORATORY MANUAL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
LABORATORY MANUAL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING UNIVERSITY OF CENTRAL FLORIDA EEL 4309 Electronics II Revised January 2012 Table of Contents Safety: Introduction: Experiment #1: Experiment
EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL
260 7- I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor
Welcome to this presentation on Driving LEDs Resistors and Linear Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series.
Welcome to this presentation on Driving LEDs Resistors and Linear Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at: - Simple resistor based current
Chapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used
Using Op Amps As Comparators
TUTORIAL Using Op Amps As Comparators Even though op amps and comparators may seem interchangeable at first glance there are some important differences. Comparators are designed to work open-loop, they
W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
The Operational Amplfier Lab Guide
EECS 100 Lab Guide Bharathwaj Muthuswamy The Operational Amplfier Lab Guide 1. Introduction COMPONENTS REQUIRED FOR THIS LAB : 1. LM741 op-amp integrated circuit (IC) 2. 1k resistors 3. 10k resistor 4.
CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
Experiment 8 Series-Parallel Circuits
Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure
Measurement of Capacitance
Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
Light Bulbs in Parallel Circuits
Light Bulbs in Parallel Circuits In the last activity, we analyzed several different series circuits. In a series circuit, there is only one complete pathway for the charge to travel. Here are the basic
LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR
~. c EXPERIMENT 9 Name: LINEAR INTEGRATED-CIRCUIT FUNCTION GENERATOR OBJECTIVES: INTRODUCTION: 1. To observe the operation of a linear integrated-circuit function generator. 2. To observe the frequency-versus-timing
*For stability of the feedback loop, the differential gain must vary as
ECE137a Lab project 3 You will first be designing and building an op-amp. The op-amp will then be configured as a narrow-band amplifier for amplification of voice signals in a public address system. Part
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
Experiment 2 Diode Applications: Rectifiers
ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness
Your Multimeter. The Arduino Uno 10/1/2012. Using Your Arduino, Breadboard and Multimeter. EAS 199A Fall 2012. Work in teams of two!
Using Your Arduino, Breadboard and Multimeter Work in teams of two! EAS 199A Fall 2012 pincer clips good for working with breadboard wiring (push these onto probes) Your Multimeter probes leads Turn knob
