3.4 - BJT DIFFERENTIAL AMPLIFIERS

Size: px
Start display at page:

Transcription

1 BJT Differential Amplifiers (6/4/00) Page BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the largesignal and smallsignal performance 3.) Show alternate implementations of the differential amplifier Outline Characterization and definitions Largesignal transconductance Largesignal voltage transfer Smallsignal performance Other characteristics of the differential amplifier Summary ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

2 BJT Differential Amplifiers (6/4/00) Page CHARACTERIZATION AND DEFINITIONS What is a Differential Amplifier? A differential amplifier is an amplifier that amplifies the difference between two voltages and rejects the average or common mode value of the two voltages. Symbol for a differential amplifier: v 1 v v OUT Fig. 5.1A Differential and common mode voltages: v 1 and v are called singleended voltages. They are voltages referenced to ac ground. The differentialmode input voltage, v ID, is the voltage difference between v 1 and v. The commonmode input voltage, v IC, is the average value of v 1 and v. v ID = v 1 v and v IC = v 1 v v 1 = v IC 0.5v ID and v = v IC 0.5v ID v ID v OUT = A VD v ID ± A VC v IC = A VD (v 1 v ) ± A VC v 1 v v where v ID IC v OUT A VD = differentialmode voltage gain A VC = commonmode voltage gain Fig. 5.1B ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

3 BJT Differential Amplifiers (6/4/00) Page 3 Differential Amplifier Definitions Common mode rejection rato (CMRR) CMRR = A VD A VC CMRR is a measure of how well the differential amplifier rejects the commonmode input voltage in favor of the differentialinput voltage. Input commonmode range (ICMR) The input commonmode range is the range of commonmode voltages over which the differential amplifier continues to sense and amplify the difference signal with the same gain. Typically, the ICMR is defined by the commonmode voltage range over which all MOSFETs remain in the saturation region and all BJTs remain in the active region. Output offset voltage (V OS (out)) The output offset voltage is the voltage which appears at the output of the differential amplifier when the input terminals are connected together. Input offset voltage (V OS (in) = V OS ) The input offset voltage is equal to the output offset voltage divided by the differential voltage gain. V OS = V OS (out) A VD ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

4 BJT Differential Amplifiers (6/4/00) Page 4 LARGESIGNAL TRANSCONDUCTANCE Transconductance Characteristic of the Differential Amplifier Consider the following NPNBJT differential amplifier (sometimes called an emittercoupled pair): i C1 i C v I1 Q v BE1 v BE v I BJTDA01 LargeSignal Analysis: 1.) Input loop eq.: v I1 v BE1 v BE v I = v I1 v I v BE1 v BE = v ID v BE1 v BE = 0.) Fowardactive region: v BE1 = V t ln i C1 I and v BE = V t ln i C S1 I S 3.) If I S1 = I S then i C1 i = exp v I1 v I C V = exp v ID t V t 4.) Nodal current equation at the emitters: (i E1 i E ) = = 1 α F (i C1 i C ) 5.) Combining the above equations gives: i C1 = α F α F 1 exp and i v C = ID V 1 exp v ID t V t ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

5 BJT Differential Amplifiers (6/4/00) Page 5 Transconductance Characteristic of the Differential Amplifier Continued Plotting the collect current as a function of v ID : i C i C1 0.6 i C α Transconductance: g m1 = i C1 α F v ID Q = 1exp v ID V V t t g m = i C α F v ID Q = 1exp v ID V V t t v ID BJTDA00 V t = α F 4V t = α F 4V t = I C1 V t when V ID = 0 = I C V t when V ID = 0 ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

6 BJT Differential Amplifiers (6/4/00) Page 6 LargeSignal Voltage Transfer Function Assume load resistors as shown: VOLTAGE TRANSFEHARACTERISTICS v i1 v OD i C1 ic v O1 v O1 Q v BE1 v BE v i v OD = v O1 v O = i C1 i C = (i C i C1 ) Substituting in the previous expressions and using hyperbolic trig identities gives v OD = α F tanh v ID V t Illustration v OD α F BJTDA v ID V t BJTDA04 ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

7 BJT Differential Amplifiers (6/4/00) Page 7 Emitter Degeneration of the BJT Differential Amplifier Increases the range over which the emittercoupled pair behaves as a linear amplifier with lower gain at the cost of lower gain. v i1 i C1 v OD ic Q v BE1 v BE R E RE v i v OD α F Increasing R E R E =0 1 v ID V t BJTDA05 We know that, i D = i C1 i C = α F tanh v ID (R E i D /α F ) Vt α F v ID Solving for i D gives, i D = i C1 i C = V t R E g m (DC) = di D dv ID = (α F ) V t R E = (α F )/V t 1 R E /V t α F v ID (R E i D /α F ) Vt ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

8 BJT Differential Amplifiers (6/4/00) Page 8 SMALLSIGNAL PERFORMANCE Differential and Commonmode SmallSignal Performance The smallsignal performance of a differential amplifier can be separated into a differential mode and common mode analysis. This separation allows us to take advantage of the following simplifications. HalfCircuit Concept: v i1 v od i c1 ic v o1 v o Q v be1 v be R EE Differential Mode Analysis vi Common Mode Analysis v od i c1 ic v o1 v o Q v id v be1 vid v be v od i c1 ic v o1 v o Q v be1 v be R EE R EE BJTDA06 Note: The halfcircuit concept is valid as long as the resistance seen looking into each emitter is the same. ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

9 BJT Differential Amplifiers (6/4/00) Page 9 SMALLSIGNAL PERFORMANCE Differential and Commonmode SmallSignal Performance The smallsignal performance of a differential amplifier can be separated into a differential mode and common mode analysis. This separation allows us to take advantage of the following simplifications. HalfCircuit Concept: v i1 v od i c1 ic v o1 v o Q v be1 v be R EE Differential Mode Analysis vi Common Mode Analysis v od i c1 ic v o1 v o Q v id v be1 vid v be v od i c1 ic v o1 v o Q v be1 v be R EE R EE BJTDA06 Note: The halfcircuit concept is valid as long as the resistance seen looking into each emitter is the same. ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

10 BJT Differential Amplifiers (6/4/00) Page 10 SmallSignal, Common Mode Performance of the BJT Differential Amplifier Circuit and smallsignal model: R in Rout Halfcircuit performance: i c1 v o1 v be1 R EE R in1 = r π1 (1β o1 )R EE, R out1 = r o 1 β ο1 R EE R EE r π1 Common mode performance: r π v π gm v π r o R EE v out BJTDA08 R EE r π1, and v o1 = β o1 r π1 (1β o1 )R EE R ic = r π1 (1β o1 )R EE, R oc = r o 1 β ο1 R EE R EE r π1 R EE r π1, and v oc = β o1 r π1 (1β o1 )R EE where g m1 = g m, r π1 = r π and β o1 = β o. ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

11 BJT Differential Amplifiers (6/4/00) Page 11 Common Mode Rejection Ratio (CMRR) The common mode rejection ratio is a measure of the differential amplifier s ability to reject the common mode signal and amplify the differential mode signal. A dm CMRR = A = v o1 /v id cm v o1 /v = ic g m1 R EE β o1 R g m1 R EE = C V t r π1 (1β o1 )R EE Thus, the larger the input transconductance or R EE, the larger the common mode rejection ratio. ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

12 BJT Differential Amplifiers (6/4/00) Page 1 OTHEHARACTERISTICS OF THE DIFFERENTIAL AMPLIFIER Input Common Mode Voltage Range The input common mode voltage range (ICMR) is the range of common mode input voltages over which the differential amplifier amplifies the differential signal without significant change. Consider the following: (max) Q v CE (sat) V BE1 v BE (min) Q v CE (sat) V BE1 v BE V Bias Q3 Maximum Input Common Mode Voltage: (max) = 0.5 v CE1 (sat)v BE1 Q3 V Bias v CE (sat) BJTDA03 Minimum Input Common Mode Voltage: (min) = v CE3 (sat)v BE1 ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

13 BJT Differential Amplifiers (6/4/00) Page 13 Slew Rate of the BJT Differential Amplifier Slew rate is a voltage rate limit due to the fact that the current available to charge a capacitor is constant. Slew rate = SR = dv C dt = i C C where i C and v C are the current through and voltage across a capacitor C. A differential amplifier that has a capacitive load will experience slew rate which is seen as follows: R v C OD Situation at C s i C1 ic C C s v o OD 0 Q v i1 <<0 v BE1 v BE v i >>0 C s i Cs i C1 =0 v C1 v OD 0 vc C o i Co Q v i1 <<0 v BE1 v BE v i >>0 i Cs i C = C s BJTDA09A Note that the current in is 0 and Q is. Therefore, the initial value of i Co is i Co = 0.5 i Cs. If we define the slew rate across C o as SR = i Co C, then i Cs = 0.5SR C s = i Co o C C s, i.e. dv C1 o dt = 0.5 dv OD dt SR = C i Cs o C = o C SR C s o C SR 1 C s o C = o C SR = o 0.5 C o 0.5C s = C o C s ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

14 BJT Differential Amplifiers (6/4/00) Page 14 SUMMARY A differential amplifier amplifies the difference signal between two voltages and rejects the common mode signal The transconductance characteristics of the BJT differential amplifier switches from all of the current in one side to the other side within ±100mV The largesignal differential voltage transfer function has the form of hyperbolic tangent Emitter degeneration increases the range over which the differential amplifier behaves as a linear amplifier The half circuit concept is very useful for analyzing the smallsignal differential and common mode performance The maximum and minimum input common mode range is: (max) = 0.5 v CE1 (sat)v BE1 (min) = v CE3 (sat)v BE1 The differential amplifier has a slew rate limit of /C eq where C eq is the capacitance seen to ground from either collector. ECE 4430 Analog Integrated Circuits and Systems P.E. Allen, 000

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.

The BJT Differential Amplifier. Basic Circuit. DC Solution

c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C

ESE39 ntroduction to Microelectronics Differential Amplifier Offset Causes of dc voltage and current offset Modeling dc offset mismatch S mismatch β mismatch transistor mismatch dc offsets in differential

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

Figure 1: Common-base amplifier.

The Common-Base Amplifier Basic Circuit Fig. 1 shows the circuit diagram of a single stage common-base amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

Bipolar Junction Transistors

Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and

Transistors. NPN Bipolar Junction Transistor

Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf

EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

LM741. Single Operational Amplifier. Features. Description. Internal Block Diagram. www.fairchildsemi.com

Single Operational Amplifier www.fairchildsemi.com Features Short circuit protection Excellent temperature stability Internal frequency compensation High Input voltage range Null of offset Description

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

Bipolar Junction Transistor Basics

by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

Features. Ordering Information. * Underbar marking may not be to scale. Part Identification

MIC86 Teeny Ultra Low Power Op Amp General Description The MIC86 is a rail-to-rail output, input common-mode to ground, operational amplifier in Teeny SC7 packaging. The MIC86 provides 4kHz gain-bandwidth

Differential Amplifier Common & Differential Modes

Differential Amplifier Common & Differential Modes Common & Differential Modes BJT Differential Amplifier Diff. Amp Voltage Gain and Input Impedance Small Signal Analysis Differential Mode Small Signal

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

www.jameco.com 1-800-831-4242

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

Op amp DC error characteristics and the effect on high-precision applications

Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of

OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS

1. The early effect in a bipolar junction transistor is caused by (a) fast turn-on (c) large collector-base reverse bias (b)fast turn-off (d) large emitter-base forward bias 2. MOSFET can be used as a

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp

Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

Lecture 250 Measurement and Simulation of Op amps (3/28/10) Page 250-1

Lecture 5 Measurement and Simulation of Op amps (/8/) Page 5 LECTURE 5 SIMULATION AND MEASUREMENT OF OP AMPS LECTURE ORGANIZATION Outline Introduction Open Loop Gain CMRR and PSRR A general method of measuring

Current vs. Voltage Feedback Amplifiers

Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

Fundamentals of Microelectronics

Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.

WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,

TS321 Low Power Single Operational Amplifier

SOT-25 Pin Definition: 1. Input + 2. Ground 3. Input - 4. Output 5. Vcc General Description The TS321 brings performance and economy to low power systems. With high unity gain frequency and a guaranteed

BJT Ebers-Moll Model and SPICE MOSFET model

Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits LTSpice LTSpice is a free circuit simulator based on Berkeley

LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

Loop Stability Analysis Differential Opamp Simulation

Department of Electrical and Computer Engineering Loop Stability Analysis Differential Opamp Simulation Vishal Saxena & Zhu Kehan Boise State University (vishalsaxena@boisestate.edu) Vishal Saxena -1-

Current mirrors are commonly used for current sources in integrated circuit design. This section covers other current sources that are often seen.

c Coyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Comuter Engineering. Current Sources Current mirrors are commonly used for current sources

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

11. High-Speed Differential Interfaces in Cyclone II Devices

11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost high speed JFET input operational amplifiers with very low input offset voltage and guaranteed

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

Common Emitter BJT Amplifier Design Current Mirror Design

Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination

Using the Impedance Method

Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

http://users.ece.gatech.edu/~mleach/ece3050/notes/feedback/fbexamples.pdf

c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

Analog Signal Conditioning

Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

Operational Amplifiers

Module 6 Amplifiers Operational Amplifiers The Ideal Amplifier What you ll learn in Module 6. Section 6.0. Introduction to Operational Amplifiers. Understand Concept of the Ideal Amplifier and the Need

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low

CIRCUITS LABORATORY EXPERIMENT 6 TRANSISTOR CHARACTERISTICS 6.1 ABSTRACT In this experiment, the output I-V characteristic curves, the small-signal low frequency equivalent circuit parameters, and the

CHAPTER 2 POWER AMPLIFIER

CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

Dual 20W Audio Power Amplifier with Mute and Standby Modes

LM1876 Overture Audio Power Amplifier Series Dual 20W Audio Power Amplifier with Mute and Standby Modes General Description The LM1876 is a stereo audio amplifier capable of delivering typically 20W per

School of Engineering Department of Electrical and Computer Engineering

1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

Precision, Unity-Gain Differential Amplifier AMP03

a FEATURES High CMRR: db Typ Low Nonlinearity:.% Max Low Distortion:.% Typ Wide Bandwidth: MHz Typ Fast Slew Rate: 9.5 V/ s Typ Fast Settling (.%): s Typ Low Cost APPLICATIONS Summing Amplifiers Instrumentation

Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers

TECHNICAL DATA Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers IK3051 Description IK3051 is a highly integrated solution for SMPS applications requiring constant voltage

Superposition Examples

Superposition Examples The following examples illustrate the proper use of superposition of dependent sources. All superposition equations are written by inspection using voltage division, current division,

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

HA5104/883 April 2002 Features This Circuit is Processed in Accordance to MILSTD 883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1. Low Input Noise Voltage Density at 1kHz. 6nV/ Hz (Max)

Lecture 22: Class C Power Amplifiers

Whites, EE 322 Lecture 22 Page 1 of 13 Lecture 22: lass Power Amplifiers We discovered in Lecture 18 (Section 9.2) that the maximum efficiency of lass A amplifiers is 25% with a resistive load and 50%

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

DESCRIPTIO. LT1226 Low Noise Very High Speed Operational Amplifier

FEATRES Gain of Stable GHz Gain Bandwidth V/µs Slew Rate.6nV/ Hz Input Noise Voltage V/mV Minimum DC Gain, R L = Ω mv Maximum Input Offset Voltage ±V Minimum Output Swing into Ω ide Supply Range ±.V to

An Introduction to the EKV Model and a Comparison of EKV to BSIM

An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

Fully Differential CMOS Amplifier

ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational

BJT Circuit Configurations

BJT Circuit Configurations V be ~ ~ ~ v s R L v s R L V Vcc R s cc R s v s R s R L V cc Common base Common emitter Common collector Common emitter current gain BJT Current-Voltage Characteristics V CE,

Description. 5k (10k) - + 5k (10k)

THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

Lecture 12: DC Analysis of BJT Circuits.

Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode

Design of a Fully Differential Two-Stage CMOS Op-Amp for High Gain, High Bandwidth Applications

Design of a Fully Differential Two-Stage CMOS Op-Amp for High Gain, High Bandwidth Applications Rajkumar S. Parihar Microchip Technology Inc. Rajkumar.parihar@microchip.com Anu Gupta Birla Institute of

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

INDUSTRIAL VOLTAGE AMPLIFIER IC AM401 PRINCIPLE FUNCTION

PINCIPLE FUNCTION Amplification and conversion of differential signals referenced to ground to adjustable industrial voltages (0...Vcc-5V, e.g. 0...5/10V etc.) Variable current/voltage source and integrated

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier

EE 330 Lecture 21 Small Signal Analsis Small Signal Analsis of BJT Amplifier Review from Last Lecture Comparison of Gains for MOSFET and BJT Circuits IN (t) A B BJT CC 1 R EE OUT I R C 1 t If I D R =I

Curcuits and Differential Equaitons

Objective: Curcuits and Differential Equaitons Given a circuit, find the differential equation which describes that circuit. Solve that differential equation numerically (with SPICE, MATAB, or ISSIM) Ciruits

OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

CMOS Analog IC Design - Chapter 10 Page 10.0-5 BLOCK DIAGRAM OF A DIGITAL-ANALOG CONVERTER b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

Section 3. Sensor to ADC Design Example

Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

Lecture 27: Mixers. Gilbert Cell

Whites, EE 322 Lecture 27 Page 1 of 9 Lecture 27: Mixers. Gilbert Cell Mixers shift the frequency spectrum of an input signal. This is an essential component in electrical communications (wireless or otherwise)

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

9-9; Rev ; 4/ Low-Cost, Micropower, SC7/SOT23-8, Microphone General Description The are micropower op amps optimized for use as microphone preamplifiers. They provide the ideal combination of an optimized

Chapter 11 Current Programmed Control

Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW VOLTAGE NOISE: 4.5nV/ Hz HIGH GAIN BANDWIDTH PRODUCT: 15MHz HIGH SLEW RATE: 7V/µs LOW DISTORTION:.2% EXCELLENT FREQUENCY STABILITY ESD PROTECTION 2kV DESCRIPTION

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup

Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

Collection of Solved Feedback Amplifier Problems

c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Collection of Solved Feedback Amplifier Problems This document contains

High Voltage Current Shunt Monitor AD8212

High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator

Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of