Collection of Solved Feedback Amplifier Problems


 Damian Mills
 1 years ago
 Views:
Transcription
1 c Copyright W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Collection of Solved Feedback Amplifier Problems This document contains a collection of solved feedback amplifier problems involving one or more active devices. The solutions make use of a graphical tool for solving simultaneous equations that is called the Mason Flow Graph (also called the Signal Flow Graph). When set up properly, the graph can be used to obtain by inspection the gain of a feedback amplifier, its input resistance, and its output resistance without solving simultaneous equations. Some background on how the equations are written and how the flow graph is used to solve them can be found at The gain of a feedback amplifier is usually written in the form A ( + ba), wherea is the gain with feedback removed and b is the feedback factor. In order for this equation to apply to the four types of feedback amplifiers, the input and output variables must be chosen correctly. For amplifiers that employ series summing at the input (alson called voltage summing), the input variable must be a voltage. In this case, the source is modeled as a Thévenin equivalent circuit. For amplifiers that employ shunt summing at the input (also called current summing), the input variable must be a current. In this case, the source is modeled as a Norton equivalent circuit. When the output sampling is in shunt with the load (also called voltage sampling), the output variable must be a voltage. When the output sampling is in series with the load (also called current sampling), the output variable must be a current. These conventions are followed in the following examples. The quantity Ab is called the loop gain. For the feedback to be negative, the algebraic sign of Ab must be positive. If Ab is negative the feedback is positive and the amplifier is unstable. Thus if A is positive, b must also be positive. If A is negative, b must be negative. The quantity ( + Ab) is called the amount of feedback. It is often expressed in db with the relation 20 log ( + Ab). For series summing at the input, the expression for the input resistance is of the form R IN ( + ba), where R IN is the input resistance without feedback. For shunt summing at the input, the expression for the input resistance is of the form R IN ( + ba). For shunt sampling at the output, the expression for the output resistance is of the form R O ( + ba), wherer O is the output resistance without feedback. To calculate this in the examples, a test current source is added in shunt with the load. For series sampling at the output, the expression for the output resistance is of the form R O ( + ba). To calculate this in the examples, a test voltage source is added in series with the load. Most texts neglect the feedforward gain through the feedback network in calculating the forward gain A. When the flow graph is used for the analysis, this feedforward gain can easily be included in the analysis without complicating the solution. This is done in all of the examples here. The dc bias sources in the examples are not shown. It is assumed that the solutions for the dc voltages and currents in the circuits are known. In addition, it is assumed that any dc coupling capacitors in the circuits are ac short circuits for the smallsignal analysis. SeriesShunt Example Figure (a) shows the ac signal circuit of a seriesshunt feedback amplifier. The input variable is v and the output variable is. The input signal is applied to the gate of M and the feedback signal is applied to the source of M. Fig. (b) shows the circuit with feedback removed. A test current source i t is added in shunt with the output to calculate the output resistance R B. The feedback at the source of M is modeled by a Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of in this source, i.e. b R / (R + R 3 ). The circuit values are g m 0.00 S, r s g m R 3 9kΩ, R 4 kω, andr 5 00 kω. The following equations can be written for the circuit with feedback removed: kω, r 0, R kω, R 2 0kΩ, i d G m v a G m R v a v v ts v ts r s + R kr 3 R + R 3 i d2 g m v tg2
2 Figure : (a) Amplifier circuit. (b) Circuit with feedback removed. R R 4 v tg2 i d R 2 i d2 R C + i t R C + i d R D R C R 4 k (R + R 3 ) R D R + R 3 + R 4 The voltage v a is the error voltage. The negative feedback tends to reduce v a,making v a 0 as the amount of feedback becomes infinite. When this is the case, setting v a 0yields the voltage gain /v b +R 3 /R. Although the equations can be solved algebraically, the signalflow graph simplifies the solution. Figure 2 shows the signalflow graph for the equations. The determinant of the graph is given by G m [ R 2 ( g m2 ) R C + R D ] R R + R 3 ( ) Figure 2: Signalflow graph for the equations. The voltage gain /v is calculated with i t 0.Itisgivenby G m [ R 2 ( g m2 ) R C + R D ] v (R 2 g m2 R C + R D ) r s + R kr 3 + (R 2 g m2 R C + R D ) R r s + R kr 3 R + R 3 2
3 This is of the form where A A v +Ab r s + R kr 3 (R 2 g m2 R C + R D )4.83 R b 0. R + R 3 Note that Ab is dimensionless. Numerical evaluation yields 4.83 v The output resistance R B is calculated with v 0.Itisgivenby R B i t R C R C +Ab 63 Ω Note that the feedback tends to decrease R B. Because the gate current of M is zero, the input resistance is R A R 5 00 kω. SeriesShunt Example 2 A seriesshunt feedback BJT amplifier is shown in Fig. 3(a). A test current source is added to the output to solve for the output resistance. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 00, r π 0kΩ, α β/( + β), g m β/r π, r e α/g m, r 0, r x 0, R kω, R 2 kω, R 3 2kΩ, R 4 4kΩ, andr 5 0kΩ. The circuit with feedback removed is shown in Fig. 3(b). The circuit seen looking out of the emitter of Q is replaced with a Thévenin equivalent circuit made with respect to. A test current source i t is added to the output to solve for the output resistance. Figure 3: (a) Amplifier circuit. (b) Circuit with feedback removed. For the circuit with feedback removed, we can write R 3 i e G v a v a v G R 3 + R 4 re 0 + R re 0 R 3kR 4 +β + r e i c αi e i b i c β v tb2 i c R 2 i e2 G 2 v tb2 G 2 r 0 e2 r 0 e2 R 2 +β + r e 3
4 R 3 R 5 i c2 αi e2 i c2 R a + i t R a + i e R b R a R 5 k (R 3 + R 4 ) R b R 3 + R 4 + R 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 4. The determinant is G [α R 2 G 2 α R a + R b ] R 3 R 3 + R 4 +G [α R 2 G 2 α R a + R b ] R 3 R 3 + R Figure 4: Signalflow graph for the equations. The voltage gain is G [α R 2 G 2 α R a + R b ] v G [α R 2 G 2 α R a + R b ] +G [α R 2 G 2 α R a + R b ] R 3 R 3 + R 4 This is of the form where A i +Ab A G [α R 2 G 2 α R a + R b ] re 0 + R α R 2 R 3 R 5 3kR 4 re2 0 α R 5 k (R 3 + R 4 )+ R 3 + R 4 + R R 3 b R 3 + R 4 Notice that the product Ab ispositive.thismustbetrueforthefeedbacktobenegative. Numerical evaluation of the voltage gain yields The resistances R A and R B are given by v A 2.67 R A ib v G α/β βr0 e α R B i t β α (r0 e + R 3 kr 4 ).32 MΩ R a R 5k (R 3 + R 4 ) 42.5 Ω 4
5 SeriesShunt Example 3 A seriesshunt feedback BJT amplifier is shown in Fig. 5(a). Solve for the voltage gain /v, the input resistance R A, and the output resistance R B.ForJ,assumeg m S, andr 0. ForQ 2,assume β 2 00, r π2 2.5kΩ, α 2 β 2 / ( + β 2 ), g m2 β 2 /r π2, r e2 α 2 /g m2, r 02, r x2 0. The circuit elements are R MΩ. R 2 0kΩ, R 3 kω, R 4 20kΩ, andr 5 0kΩ. The circuit with feedback removed is shown in Fig. 5(b). The circuit seen looking out of the source of J is replaced with a Thévenin equivalent circuit made with respect to. A test current source i t is added in shunt with the output to solve for the output resistance. Figure 5: (a) Amplifier circuit. (b) Circuit with feedback removed. For the circuit with feedback removed, we can write v a v R 3 R 3 + R 4 i d G v a G r s + R 3 kr 4 v tb2 i d R 2 i e2 G 2 v tb2 G 2 r 0 e2 r 0 e2 R 2 +β 2 + r e2 R 3 R 5 i c2 α 2 i e2 i c2 R a + i t R a + i d R b R a R 5 k (R 3 + R 4 ) R b R 3 + R 4 + R 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 6. The determinant is The voltage gain is G [ R 2 G 2 α R a + R b ] R 3 R 3 + R 4 +G [R 3 G 2 α R a + R b ] R 3 R 3 + R G [ R 2 G 2 α 2 R a + R b ] v G [R 2 G 2 α 2 R a + R b ] +G [R 3 G 2 α R a + R b ] R 3 R 3 + R 4 5
6 Figure 6: Signalflow graph for the equations. This is of the form where A i A +Ab A G [R 2 G 2 α 2 R a + R b ] R 2 R 3 R 4 r s + R 3 kr 4 re 0 α R 5 k (R 3 + R 4 )+ R 3 + R 4 + R R 3 b R 3 + R 4 Notice that the product Ab ispositive.thismustbetrueforthefeedbacktobenegative. Numerical evaluation of the voltage gain yields 42.8 v The resistances R A and R B are given by R B i t SeriesShunt Example 4 R A R MΩ R a R 5k (R 3 + R 4 ) 32.3 Ω A seriesshunt feedback BJT amplifier is shown in Fig. 7(a). A test current source is added to the output to solve for the output resistance. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 50, r π 2.5kΩ, α β/( + β), g m β/r π, r e α/g m, r 0, r x 0, R kω, R 2 00 Ω, R 3 9.9kΩ, R 4 0kΩ, andr 5 0kΩ. The circuit with feedback removed is shown in Fig. 8. The circuit seen looking out of the base of Q 2 is a Thévenin equivalent circuit made with respect to the voltage. A test current source i t is added in shunt with the output to solve for the output resistance. The emitter equivalent circuit for calculating i e and i e2 is shown in Fig. 7(b). For this circuit and the circuit with feedback removed, we can write i e G v e v e v R 2 R 2 + R 3 G i b i c β r e + r 0 e2 v tb3 i c R i e3 G 2 v tb3 G 2 r 0 e3 r 0 e2 R 2kR 3 +β + r e i c αi e r 0 e3 R +β + r e R 2 R 4 i c3 αi e3 i c3 R a + i t R a i b2 R b R a R 4 k (R 2 + R 3 ) R b R 2 + R 3 + R 4 6
7 Figure 7: (a) Amplifier circuit. (b) Emitter equivalent circuit for calculating i e and i e2. Figure 8: Circuit with feedback removed. 7
8 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 9. The determinant is G α R G 2 α R a R b R 2 +β R 2 + R 3 +G α R G 2 α R a R b R 2 +β R 2 + R The voltage gain is This is of the form where v v Figure 9: Flow graph for the equations. G α R G 2 α R a R b +β G α R G 2 α R a R b +G α R G 2 α R a A i +Ab R b +β +β R 2 R 2 + R 3 A G α R G 2 α R a R b +β r e + re2 0 α R re3 0 α R 4 k (R 2 + R 3 ) R 2 R 4 +β R 2 + R 3 + R R 2 b 0.0 R 2 + R 3 Notice that the product Ab ispositive.thismustbetrueforthefeedbacktobenegative. Numerical evaluation of the voltage gain yields A v 87.5 The resistances R A and R B are given by ib G α/β R A R 5 k R 5 k R 5 k [ ( + β) (r e + r 0 e2)] kω R B i t R a R 4k (R 2 + R 3 ) Ω 8
9 ShuntShunt Example Figure 0(a) shows the ac signal circuit of a shuntseries feedback amplifier. The input variable is v and the output variable is. The input signal and the feedback signal are applied to the base of Q. A test current source i t is added in shunt with the output to calculate the output resistance R B.Fortheanalysis to follow convention, the input source consisting of v in series with R must be converted into a Norton equivalent. This circuit is the current i v /R in parallel with the resistor R. Fig. 0(b) shows the circuit with feedback removed and the source replaced with the Norton equivalent. The feedback at the base of Q is modeled by a Norton equivalent circuit /R 4 in parallel with the resistor R 4. The feedback factor or feedback ratio b is the negative of the coefficient of in this source, i.e. b R4. The circuit values are β 00, g m 0.05 S, r x 0, r ib β /g m 2kΩ, r 0, g m S, r s2 gm2 kω, r 02, R kω, R 2 kω, R 3 0kΩ, andr 4 0kΩ. Figure 0: (a) Amplifier circuit. (b) Circuit with feedback removed. The following equations can be written for the circuit with feedback removed: v b i a R b i a i + R 4 R b R kr 4 kr ib i c g m v b i d i c R 2 r s + R 2 i d R c + i t R c + v b R 3 R 3 + R 4 R c R 3 kr 4 The current i a is the error current. The negative feedback tends to reduce i a,making i a 0 as the amount of feedback becomes infinite. When this is the case, setting i a 0yields the current gain /i R 4. Although the equations can be solved algebraically, the signalflow graph simplifies the solution. Figure shows the flow graph for the equations. The determinant of the graph is given by R b g m R 2 r s + R 2 R c + R 3 R 3 + R 4 The transresistance gain is calculated with i t 0.Itisgivenby R b g m R 2 R c + R 3 r s2 + R 2 R 3 + R 4 i + R 4 g m R 2 r s2 + R 2 (R 3 kr 4 )+ R 3 (R kr 4 kr ib ) R 3 + R 4 (R kr 4 kr ib ) g m R 2 (R 3 kr 4 )+ R 3 r s2 + R 2 R 3 + R 4 9 R 4
10 Figure : Signalflow graph for the equations. This is of the form A i +Ab where A (R kr 4 kr ib ) g m R 2 (R 3 kr 4 )+ R kω r s2 + R 2 R 3 + R 4 b R S Note that Ab is dimensionless and positive. Numerical evaluation yields i +( ) ( kω ) The voltage gain is given by i 8.86 v i v i R The resistance R a is calculated with i t 0.Itisgivenby R a v b i R b R kr 4 kr ib 7.7 Ω +Ab Note that the feedback tends to decrease R a.theresistancer A is calculated as follows: R A R + R a The resistance R B is calculated with i 0.Itisgivenby R B i t R.077 kω R c R 3kR 4 +Ab Ω ShuntShunt Example 2 A shuntshunt feedback JFET amplifier is shown in Fig. 2(a). Solve for the voltage gain /v, the input resistance R A, and the output resistance R B.Assumeg m S, r s gm 200 Ω, r 0, R 3kΩ, R 2 7kΩ, R 3 kω, R 4 0kΩ. The circuit with feedback removed is shown in Fig. 2(b) In this circuit, the source is replaced by a Norton equivalent circuit consisting of a current i v /R in parallel with the resistor R. This is necessary for the feedback analysis to conform to convention for shuntshunt feedback.. The circuit seen looking up into R 2 is replaced with a Norton equivalent circuit made with respect to.a test current source i t is added in shunt with the output to solve for the output resistance. 0
11 Figure 2: (a) Amplifier circuit. (b) Circuit with feedback removed. For the circuit with feedback removed, we can write v g i R b + R 2 R b R b R kr 2 i d G m v g G m i d R c + i t R c + v g R 4 R 2 + R 4 R c R 2 kr 4 r s + R 3 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 3. The determinant is R b G m R c + R 4 R 2 + R 4 R 2 +R b G m R c R 4 R 2 + R 4 R Ω Figure 3: Signalflow graph for the equations.
12 The transresistance gain is i R b G m R c + R 4 R 2 + R 4 R b G m R c R 4 R 2 + R 4 +R b G m R c + R 4 R 2 + R 4 R 2 This is of the form where A i +Ab A R b G m R c R 4 R 2 + R 4 (R kr 2 ) G m R 2 kr 4 R 4 R 2 + R kω b R ms Note that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation yields A 3.22 kω i The voltage gain is given by i A v i v.074 R The resistances R a, R A,andR B are given by ShuntShunt Example 3 R a v g R b.3 kω i R A R kω R a R R B i t R c 2.22 kω A shuntshunt feedback BJT amplifier is shown in Fig. 4. The input variable is the v and the output variable is the voltage. The feedback resistor is R 2. The summing at the input is shunt because the input through R and the feedback through R 2 connect in shunt to the same node, i.e. the v b node. The output sampling is shunt because R 2 connects to the output node. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 00, r π 2.5kΩ, g m β/r π, α β/( + β), r e α/g m, r 0, r x 0, V T 25mV. The resistor values are R kω, R 2 20kΩ, R Ω, R 4 kω, andr 5 5kΩ. The circuit with feedback removed is shown in Fig. 5. A test current source i t isaddedinshuntwith the output to solve for the output resistance R B. In the circuit, the source is replaced by a Norton equivalent circuit consisting of a current i v R 2
13 Figure 4: Amplifier circuit. Figure 5: Circuit with feedback removed. in parallel with the resistor R. This is necessary for the feedback analysis to conform to convention for shunt summing. The circuit seen looking into R 2 from the collector of Q 3 is replaced with a Thevenin equivalent circuit made with respect with v b. For the circuit with feedback removed, we can write i e i + R 2 v b i e R b R b R kr 2 kr π i c g m v b v b2 i c R c R c R 3 kr π v b3 i c2 R d R d R 4 kr π i c3 g m v b3 ( i c3 + i t ) R e + v b R 5 R 2 + R 5 R e R 2 kr 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 6. The determinant is R b g m R c g m R d g m R e + R 5 R 2 + R 5 R 2 +R b g m R c g m R d g m R e R 5 R 2 + R 5 R
14 Figure 6: Signalflow graph for the equations. The transresistance gain is R b g m R c g m R d g m R e + R 2 R 2 + R 5 i R b g m R c g m R d g m R e R 2 R 2 + R 5 +R b g m R c g m R d g m R e R 2 R 2 + R 5 R 2 R b g m R c g m R d g m R e R 2 R 2 + R 5 + R b g m R c g m R d g m R e R 2 R 2 + R 5 R 2 This is of the form i e2 v A +Ab where A and b are given by A R b g m R c g m R d g m R e R 5 R 2 + R 5 R kr 2 kr π g m R 3 kr π g m R 4 kr π g m R 2 kr 5 R 5 R 2 + R MΩ b 50 S R 2 Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transresistance gain yields A 9.94 kω i The resistances R a and R A are R a v b R c i.945 Ω R A R kω R a R 4
15 The resistance R B is The voltage gain is v b i R B i t vb i R e.28 Ω A 9.9 R A ShuntShunt Example 4 A shuntshunt feedback BJT amplifier is shown in Fig. 7. The input variable is the v and the output variable is the voltage. The feedback resistor is R 2. The summing at the input is shunt because the input through R and the feedback through R 2 connect in shunt to the same node, i.e. the v e node. The output sampling is shunt because R 2 connects to the output node. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. For Q and Q 2,assumeβ 00, r π 2.5kΩ, g m β/r π, α β/( + β), r e α/g m, r 0, r x 0, V T 25mV.ForJ 3,assumeg m S and r 03. The resistor values are R kω, R 2 00 kω, R 3 0Ω, R 4 30kΩ, andr 5 0kΩ. Figure 7: Amplifier circuit. The circuit with feedback removed is shown in Fig. 8. A test current source i t isaddedinshuntwith the output to solve for the output resistance R B. In the circuit, the source is replaced by a Norton equivalent circuit consisting of a current i v R in parallel with the resistor R. This is necessary for the feedback analysis to conform to convention for shunt summing. The circuit seen looking into R 2 from the collector of Q 3 is replaced with a Thévenin equivalent circuit made with respect with v e. Figure 8: Circuit with feedback removed. 5
16 For the circuit with feedback removed, we can write i e i + R 2 v e i e R b R b R kr 2 kr e i c g m v e v tg3 i c R 3 i d3 g m3 v tg3 v tb2 i d3 R 4 i e2 G v tb2 G re2 0 + R 2kR 5 r 0 e2 R 4 + r e2 R 5 ( i e2 + i t ) R c + v e R c R 2 kr 5 R 2 + R 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 9. The determinant is R b g m R 3 g m2 R 4 G R c + R 5 R 2 + R 5 +R b g m R 3 g m2 R 4 G R c R 5 R 2 + R 5 R R 2 Figure 9: Signalflow graph for the equations. The transresistance gain is R b g m R 3 g m2 R 4 G R c + R 2 R 2 + R 5 i R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 +R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 R 2 R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 + R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 R 2 R 2 + R 5 R 2 This is of the form i e2 A v +Ab where A and b are given by A R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 R kr 2 kr e g m R 3 g m2 R 4 re2 0 + R R 2 kr 5 R 5 2kR 5 R 2 + R 5.2MΩ 6
17 b 0 S R 2 Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transresistance gain yields The resistances R a and R A are The resistance R B is The voltage gain is A 99. kω i R a v e R b i 0.24 Ω R A R + kω R a R v e i SeriesSeries Example R B i t ve i R c Ω A R A Figure 20(a) shows the ac signal circuit of a seriesseries feedback amplifier. The input variable is v and the output variable is i d2. The input signal is applied to the gate of M and the feedback signal is applied to thesourceofm. Fig. 20(b) shows the circuit with feedback removed. A test voltage source v t is added in series with the output to calculate the output resistance R b. The feedback at the source of M is modeled by a Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of i d2 in this source, i.e. b R 5. The circuit values are g m 0.00 S, r s gm kω, r 0, R 50kΩ, R 2 0kΩ, R 3 kω, R 4 9kΩ, andr 5 kω. Figure 20: (a) Amplifier circuit. (b) Circuit with feedback removed. 7
18 The following equations can be written for the circuit with feedback removed: i d G m v a G m i d2 G m2 v b G m2 r s + R 5 v a v v ts v ts i d2 R 5 r s2 + R 3 v b v t v tg2 v tg2 i d R 2 The voltage v a is the error voltage. The negative feedback tends to reduce v a,making v a 0 as the amount of feedback becomes infinite. When this is the case, setting v a 0yields the transconductance gain i d2 /v b R5. Although the equations can be solved algebraically, the signalflow graph simplifies the solution. Figure 2 shows the signalflow graph for the equations. The determinant of the graph is given by G m ( R 2 ) ( ) G m2 R 5 ( ) Figure 2: Flow graph for the equations. The transconductance gain i d2 /v is calculated with v t 0.Itisgivenby i d2 G m ( R 2 ) ( ) G m2 v R 2 r s + R 5 r s + R 5 + R 2 R 5 r s + R 5 r s + R 5 This is of the form i d2 A v +Ab where A G m ( R 2 ) ( ) G m2 R S r s + R 5 r s2 + R 3 b R 5 000Ω Note that ba is dimensionless. Numerical evaluation yields i d v S The resistance R b is calculated with v 0.Itisgivenby id2 Gm2 R b (+ba)(r s2 + R 3 )7kΩ v t Note that the feedback tends to increase R b.theresistancer B is calculated as follows: R B (R b R 3 ) kr Ω Because the gate current of M is zero, the input resistance is R A R 50kΩ. 8
19 SeriesSeries Example 2 A seriesseries feedback BJT amplifier is shown in Fig. 22. The input variable is the voltage v and the output variable is the voltage. The feedback is from i e2 to the emitter of Q. Because the feedback does not connect to the input node, the input summing is series. The output sampling is series because the feedback is proportional to the current that flows in series with the output rather than the output voltage. Solve for the transconductance gain i c3 /v, the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 00, I C 0.6mA, I C2 ma, I C3 4mA, α β/( + β), g m I C /V T, r e αv T /I C, r 0, r x 0, V T 25mV, R 00 Ω, R 2 9kΩ, R 3 5kΩ, R Ω, R Ω, and R 6 00 Ω. The circuit with feedback removed is shown in Fig. 23. Figure 22: Amplifier circuit. The circuit looking out of the emitter of Q is a Thévenin equivalent made with respect to the current i e3. The output current is proportional to this current, i.e. i c3 αi e3. Because r 0 for Q 3, the feedback does not affect the output resistance seen looking down through R 4 because it is infinite. For a finite r 0,a testvoltagesourcecanbeaddedinserieswithr 4 to solve for this resistance. It would be found that a finite r 0 for Q 3 considerably complicates the circuit equations and the flow graph. Figure 23: Circuit with feedback removed. 9
20 For the circuit with feedback removed, we can write R 6 R v e v i e3 i e G v e G R 6 + R 5 + R r e + R k (R 5 + R 6 ) i b i c β v tb2 i c R 2 i e2 G 2 v tb2 G 2 r 0 e2 i c2 αi e2 v tb3 i c2 R 3 i e3 G 3 v tb3 k i e G 3 R R 6 i c αi e re2 0 R 2 +β + r e re3 0 + R 6k (R + R 5 ) k R + R 5 + re3 0 kr 6 R 6 + re3 0 i c3 αi e3 i c2 R 4 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 24. The determinant is ½ ¾ R 6 R G [(α R 2 G 2 α R 3 G 3 ) k ] R 6 + R 5 + R R 6 R +G (α R 2 G 2 α R a k ) R 6 + R 5 + R 25.5 r e + R k (R 5 + R 6 ) Figure 24: Signalflow graph for the circuit. The transconductance gain is i c3 G (α R 2 G 2 α R 3 G 3 k ) α v G (α R 2 G 2 α R 3 G 3 k ) α R 6 R +[G (α R 2 G 2 α R a k )] R 6 + R 5 + R G [(α R 2 G 2 α R 3 G 3 ) k ] α R 6 R +[G (α R 2 G 2 α R a k ) α] R 6 + R 5 + R α This is of the form i c3 A v +Ab where A and b are given by A G [(α R 2 G 2 α R 3 G 3 ) k ] α α R 2 α R 3 R R 6 R + R 5 + re3 0 kr 6 R 6 + re S α r 0 e2 re3 0 + R 6k (R + R 5 ) α 20
21 R 6 R b R 6 + R 5 + R α 2.02 Ω Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transconductance gain yields i c3 v A The voltage gain is given by i c3 A v v i c3 R The resistances R A and R B are given by R A ib v G α/β ( + β) G ( + β) [r e + R k (R 5 + R 6 )] MΩ R B R Ω SeriesSeries Example 3 A seriesseries feedback BJT amplifier is shown in Fig. 25(a). The input variable is the voltage v and the output variable is the voltage. The feedback is from i e2 to i c2 to the emitter of Q. Because the feedback does not connect to the input node, the input summing is series. Because the feedback does not sample the output voltage, the sampling is series. That is, the feedback network samples the current in series with the outpu. Solve for the transconductance gain i e2 /v, the voltage gain /v, the input resistance R A,and the output resistance R B. Assume β 00, r π 2.5kΩ, α β/( + β), r e α/g m, r 0, r x 0, V T 25mV, R 00 Ω, R 2 kω, R 3 20kΩ, andr 4 0kΩ. Figure 25: (a) Amplifier circuit. (b) Circuit with feedback removed. The circuit with feedback removed is shown in Fig. 25(b). The circuit seen looking out of the emitter of Q is replaced with a Thévenin equivalent circuit made with respect with i c2. The output current i e2 is proportional to this current, i.e. i e2 αi c2. A test voltage source v t is added in series with the output to solve for the output resistance. The resistance seen by the test source is labeled R b. For the circuit with feedback removed, we can write v e v i c2 R 2 i e G v e G i c αi e i b i c r e + R + R 2 β 2
22 v tb2 i c R 3 i e2 G 2 (v t v tb2 ) G 2 re2 0 + R re2 0 R 3 4 +β + r e i c2 αi e2 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 26. The determinant is (G α R 3 G 2 α R 2 ) +G α R 2 G 2 α R 2.8 The transconductance gain is Figure 26: Signalflow graph for the equations. This is of the form where A and b are given by i e2 G α R 3 G 2 v (G α R 3 G 2 ) +(G α R 3 G 2 ) α R 2 i e2 v A +Ab A G α R 3 G 2 α R 3 r e + R + R 2 re2 0 + R ms b αr 2.98 kω Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transconductance gain yields i e2 A ms v The voltage gain is given by i e2 A v v i e2 R The resistances R A and R B are given by ib G α/β R A ( + β)(r e + R + R 2 ) 602 kω v ie2 Gm2 R b (R 4 + r 0 v t e2) kω R B (R b R 4 ) kr kω 22
23 SeriesSeries Example 4 A seriesseries feedback BJT amplifier is shown in Fig. 27(a). The input variable is the voltage v and the output variable is the current i c2. The feedback is from i c2 to i e2 to the gate of J. The input summing is series because the feedback does not connect to the same node that the source connects. The output sampling is series because the feedback is proportional to the output current i c2. Solve for the transconductance gain i c2 /v, the voltage gain /v, the input resistance R A, and the output resistance R B.ForJ, assume that g m 0.00 S, r s gm 000 Ω, andr 0. ForQ 2,assumeβ 2 00, r π2 2.5kΩ, α 2 β 2 / ( + β 2 ), r e2 α 2 /g m2, r 02, r x2 0, V T 25mV. The resistor values are R kω, R 2 0kΩ, R 3 kω, R 4 0kΩ, R 5 kω, andr 6 0kΩ. Figure 27: (a) Amplifier circuit. (b) Circuit with feedback removed. The circuit with feedback removed is shown in Fig. 27(b). The circuit seen looking out of the emitter of Q is replaced with a Thévenin equivalent circuit made with respect with i e2. The output current is proportional to this current, i.e. i c2 α 2 i e2. Because r 02, the feedback does not affect the output resistance seen looking down through R 6 because it is infinite. For a finite r 02, a test voltage source can be added in series with R 6 to solve for this resistance. It would be found that a finite r 02 considerably complicates the circuit equations and the flow graph. For the circuit with feedback removed, we can write i d g m v e v e i e2 R 5 R 3 R 3 + R 4 + R 5 v v tb2 i d R 2 i e2 G v tb2 G r 0 e2 + R 5k (R 3 + R 4 ) r 0 e2 R 2 +β 2 + r e2 i c2 α 2 i e2 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 28. The determinant is R 5 R 3 g m R 2 G R 3 + R 4 + R 5 R 5 R 3 +g m R 2 G R 3 + R 4 + R
24 Figure 28: Signalflow graph for the equations. The transconductance gain is This is of the form where A and b are given by i e2 g m R 2 G α 2 v g m R 2 G α 2 R 5 R 3 +g m R 2 G R 3 + R 4 + R 5 (g m R 2 G α 2 ) R 5 R 3 +(g m R 2 G α 2 ) R 3 + R 4 + R 5 α 2 i e2 v A +Ab A g m R 2 G α 2 g m R 2 re2 0 + R 5k (R 3 + R 4 ) α ms R 5 R 3 b 84.7 Ω R 3 + R 4 + R 5 α 2 Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transconductance gain yields i c2 v A ms The voltage gain is given by i c2 A v v i c2 R The resistances R A and R B are given by R A R k id v ³ gm R k R k 643 Ω g m R B R 6 0kΩ SeriesSeries Example 5 A seriesseries feedback BJT amplifier is shown in Fig. 29. The input variable is the current i and the output variable is the current i e2. The feedback path is the path from i e2 to i c2 to i e3 to i c3 to the emitter of Q. The input summing is series because the feedback does not connect to the input node. The output 24
Filters. Description. 7 Vcc. Ec+ Ec Vbe MULTI PLIER. 8 Output 4 Sym. Iadj V 5 Iset
Blackmer PreTrimmed IC Voltage Controlled Amplifiers THAT 2180A, 2180B, 2180C FEATURES Wide Dynamic Range: >120 db Wide Gain Range: >130 db Exponential (db) Gain Control Low Distortion: < 0.01 % (2180A)
More informationAgilent Time Domain Analysis Using a Network Analyzer
Agilent Time Domain Analysis Using a Network Analyzer Application Note 128712 0.0 0.045 0.6 0.035 Cable S(1,1) 0.4 0.2 Cable S(1,1) 0.025 0.015 0.005 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) 0.005
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationHighSpeed Digital System Design A Handbook of Interconnect Theory and Design Practices
HighSpeed Digital System Design A Handbook of Interconnect Theory and Design Practices Stephen H. Hall Garrett W. Hall James A. McCall A WileyInterscience Publication JOHN WILEY & SONS, INC. New York
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationCHAPTER 4 RF/IF CIRCUITS
RF/IF CIRCUITS CHAPTER 4 RF/IF CIRCUITS INTRODUCTION 4.1 SECTION 4.1: MIXERS 4.3 THE IDEAL MIXER 4.3 DIODERING MIXER 4.6 BASIC OPERATION OF THE ACTIVE MIXER 4.8 REFERENCES 4.10 SECTION 4.2: MODULATORS
More informationBalanced Line Receiver ICs
THAT 0,, FEATURES High CMRR: typ. 90 db at 0Hz Excellent audio performance Wide bandwidth: typ. >8. MHz High slew rate: typ. V/μs Low distortion: typ. 0.000% THD Low noise: typ. 0 dbu Low current: typ.
More informationDescription. Vout REF 24K
THAT Corporation FEATURES High CMRR: typ. 90 db at 60 Hz Extremely high commonmode input impedance Maintains balance under realworld conditions Transformerlike performance in an IC Excellent audio performance
More informationhow to use dual base log log slide rules
how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102
More informationExample: Determine the power supplied by each of the sources, independent and dependent, in this circuit:
Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the
More informationUsing PreEmphasis and Equalization with Stratix GX
Introduction White Paper Using PreEmphasis and Equalization with Stratix GX New high speed serial interfaces provide a major benefit to designers looking to provide greater data bandwidth across the backplanes
More informationSwitching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
More informationApplication Note 120 March 2010. 1ppm Settling Time Measurement for a Monolithic 18Bit DAC AN1201
1ppm Settling Time Measurement for a Monolithic 18Bit DAC When Does the Last Angel Stop Dancing on a Speeding Pinhead? Jim Williams Application Note 120 March 2010 Introduction Performance requirements
More informationDiscreteTime Signals and Systems
2 DiscreteTime Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior
More informationGaussian Processes in Machine Learning
Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl
More informationCommunication Theory of Secrecy Systems
Communication Theory of Secrecy Systems By C. E. SHANNON 1 INTRODUCTION AND SUMMARY The problems of cryptography and secrecy systems furnish an interesting application of communication theory 1. In this
More informationApplication Note AN1138
Application Note AN IRS0(S) Functional Description By Jun Honda, Xiaochang Cheng, Wenduo Liu Table of Contents Page General Description... Typical Implementation... PWM Modulator... MOSFET Selection...
More informationProgramming Your Calculator Casio fx7400g PLUS
Programming Your Calculator Casio fx7400g PLUS Barry Kissane Programming Your Calculator: Casio fx7400g PLUS Published by Shriro Australia Pty Limited 7274 Gibbes Street, Chatswood NSW 2067, Australia
More informationAN0971 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 020629106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com Recommendations for Control of Radiated Emissions with isopower Devices
More informationUnderstanding the FiniteDifference TimeDomain Method. John B. Schneider
Understanding the FiniteDifference TimeDomain Method John B. Schneider June, 015 ii Contents 1 Numeric Artifacts 7 1.1 Introduction...................................... 7 1. Finite Precision....................................
More informationSensing and Control. A Process Control Primer
Sensing and Control A Process Control Primer Copyright, Notices, and Trademarks Printed in U.S.A. Copyright 2000 by Honeywell Revision 1 July 2000 While this information is presented in good faith and
More informationHighperformance lowpower FM IF system
Rev. 4.1 30 March 2015 Product data sheet 1. General description The is an improved monolithic lowpower FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector,
More informationVOICE OVER WIFI CAPACITY PLANNING
VOICE OVER WIFI CAPACITY PLANNING Version 1.0 Copyright 2003 Table of Contents Introduction...3 WiFi RF Technology Options...3 Spectrum Availability and NonOverlapping WiFi Channels...4 Limited
More informationInductor and Magnetic Product Terminology
INTRODUCTION IFC LPT ILB IHSM IM IMC LPE TJ LPC IRF IHB The scope of this application note is to define the terminology associated with inductors and their applications. Some of these terms are listed
More informationA Formal Theory of Inductive Inference. Part II
A Formal Theory of Inductive Inference. Part II Ray J. Solomonoff Visiting Professor, Computer Learning Research Center Royal Holloway, University of London IDSIA, Galleria, CH 698 Manno Lugano, Switzerland
More informationThe Capital Asset Pricing Model: Some Empirical Tests
The Capital Asset Pricing Model: Some Empirical Tests Fischer Black* Deceased Michael C. Jensen Harvard Business School MJensen@hbs.edu and Myron Scholes Stanford University  Graduate School of Business
More informationMiSeq: Imaging and Base Calling
MiSeq: Imaging and Page Welcome Navigation Presenter Introduction MiSeq Sequencing Workflow Narration Welcome to MiSeq: Imaging and. This course takes 35 minutes to complete. Click Next to continue. Please
More informationAn Introduction to Regression Analysis
The Inaugural Coase Lecture An Introduction to Regression Analysis Alan O. Sykes * Regression analysis is a statistical tool for the investigation of relationships between variables. Usually, the investigator
More informationUnderstanding and Using ACS SingleYear and Multiyear Estimates
Appendix. Understanding and Using ACS SingleYear and Multiyear Estimates What Are SingleYear and Multiyear Estimates? Understanding Period Estimates The ACS produces period estimates of socioeconomic
More informationImprove TwoTone, ThirdOrder Intermodulation Testing
Improve TwoTone, ThirdOrder Intermodulation Testing First, it's important to define the significance of input levels. Then, details on the measurement technique will be given. Twotone, thirdorder intermodulation
More information