Collection of Solved Feedback Amplifier Problems


 Damian Mills
 3 years ago
 Views:
Transcription
1 c Copyright W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Collection of Solved Feedback Amplifier Problems This document contains a collection of solved feedback amplifier problems involving one or more active devices. The solutions make use of a graphical tool for solving simultaneous equations that is called the Mason Flow Graph (also called the Signal Flow Graph). When set up properly, the graph can be used to obtain by inspection the gain of a feedback amplifier, its input resistance, and its output resistance without solving simultaneous equations. Some background on how the equations are written and how the flow graph is used to solve them can be found at The gain of a feedback amplifier is usually written in the form A ( + ba), wherea is the gain with feedback removed and b is the feedback factor. In order for this equation to apply to the four types of feedback amplifiers, the input and output variables must be chosen correctly. For amplifiers that employ series summing at the input (alson called voltage summing), the input variable must be a voltage. In this case, the source is modeled as a Thévenin equivalent circuit. For amplifiers that employ shunt summing at the input (also called current summing), the input variable must be a current. In this case, the source is modeled as a Norton equivalent circuit. When the output sampling is in shunt with the load (also called voltage sampling), the output variable must be a voltage. When the output sampling is in series with the load (also called current sampling), the output variable must be a current. These conventions are followed in the following examples. The quantity Ab is called the loop gain. For the feedback to be negative, the algebraic sign of Ab must be positive. If Ab is negative the feedback is positive and the amplifier is unstable. Thus if A is positive, b must also be positive. If A is negative, b must be negative. The quantity ( + Ab) is called the amount of feedback. It is often expressed in db with the relation 20 log ( + Ab). For series summing at the input, the expression for the input resistance is of the form R IN ( + ba), where R IN is the input resistance without feedback. For shunt summing at the input, the expression for the input resistance is of the form R IN ( + ba). For shunt sampling at the output, the expression for the output resistance is of the form R O ( + ba), wherer O is the output resistance without feedback. To calculate this in the examples, a test current source is added in shunt with the load. For series sampling at the output, the expression for the output resistance is of the form R O ( + ba). To calculate this in the examples, a test voltage source is added in series with the load. Most texts neglect the feedforward gain through the feedback network in calculating the forward gain A. When the flow graph is used for the analysis, this feedforward gain can easily be included in the analysis without complicating the solution. This is done in all of the examples here. The dc bias sources in the examples are not shown. It is assumed that the solutions for the dc voltages and currents in the circuits are known. In addition, it is assumed that any dc coupling capacitors in the circuits are ac short circuits for the smallsignal analysis. SeriesShunt Example Figure (a) shows the ac signal circuit of a seriesshunt feedback amplifier. The input variable is v and the output variable is. The input signal is applied to the gate of M and the feedback signal is applied to the source of M. Fig. (b) shows the circuit with feedback removed. A test current source i t is added in shunt with the output to calculate the output resistance R B. The feedback at the source of M is modeled by a Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of in this source, i.e. b R / (R + R 3 ). The circuit values are g m 0.00 S, r s g m R 3 9kΩ, R 4 kω, andr 5 00 kω. The following equations can be written for the circuit with feedback removed: kω, r 0, R kω, R 2 0kΩ, i d G m v a G m R v a v v ts v ts r s + R kr 3 R + R 3 i d2 g m v tg2
2 Figure : (a) Amplifier circuit. (b) Circuit with feedback removed. R R 4 v tg2 i d R 2 i d2 R C + i t R C + i d R D R C R 4 k (R + R 3 ) R D R + R 3 + R 4 The voltage v a is the error voltage. The negative feedback tends to reduce v a,making v a 0 as the amount of feedback becomes infinite. When this is the case, setting v a 0yields the voltage gain /v b +R 3 /R. Although the equations can be solved algebraically, the signalflow graph simplifies the solution. Figure 2 shows the signalflow graph for the equations. The determinant of the graph is given by G m [ R 2 ( g m2 ) R C + R D ] R R + R 3 ( ) Figure 2: Signalflow graph for the equations. The voltage gain /v is calculated with i t 0.Itisgivenby G m [ R 2 ( g m2 ) R C + R D ] v (R 2 g m2 R C + R D ) r s + R kr 3 + (R 2 g m2 R C + R D ) R r s + R kr 3 R + R 3 2
3 This is of the form where A A v +Ab r s + R kr 3 (R 2 g m2 R C + R D )4.83 R b 0. R + R 3 Note that Ab is dimensionless. Numerical evaluation yields 4.83 v The output resistance R B is calculated with v 0.Itisgivenby R B i t R C R C +Ab 63 Ω Note that the feedback tends to decrease R B. Because the gate current of M is zero, the input resistance is R A R 5 00 kω. SeriesShunt Example 2 A seriesshunt feedback BJT amplifier is shown in Fig. 3(a). A test current source is added to the output to solve for the output resistance. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 00, r π 0kΩ, α β/( + β), g m β/r π, r e α/g m, r 0, r x 0, R kω, R 2 kω, R 3 2kΩ, R 4 4kΩ, andr 5 0kΩ. The circuit with feedback removed is shown in Fig. 3(b). The circuit seen looking out of the emitter of Q is replaced with a Thévenin equivalent circuit made with respect to. A test current source i t is added to the output to solve for the output resistance. Figure 3: (a) Amplifier circuit. (b) Circuit with feedback removed. For the circuit with feedback removed, we can write R 3 i e G v a v a v G R 3 + R 4 re 0 + R re 0 R 3kR 4 +β + r e i c αi e i b i c β v tb2 i c R 2 i e2 G 2 v tb2 G 2 r 0 e2 r 0 e2 R 2 +β + r e 3
4 R 3 R 5 i c2 αi e2 i c2 R a + i t R a + i e R b R a R 5 k (R 3 + R 4 ) R b R 3 + R 4 + R 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 4. The determinant is G [α R 2 G 2 α R a + R b ] R 3 R 3 + R 4 +G [α R 2 G 2 α R a + R b ] R 3 R 3 + R Figure 4: Signalflow graph for the equations. The voltage gain is G [α R 2 G 2 α R a + R b ] v G [α R 2 G 2 α R a + R b ] +G [α R 2 G 2 α R a + R b ] R 3 R 3 + R 4 This is of the form where A i +Ab A G [α R 2 G 2 α R a + R b ] re 0 + R α R 2 R 3 R 5 3kR 4 re2 0 α R 5 k (R 3 + R 4 )+ R 3 + R 4 + R R 3 b R 3 + R 4 Notice that the product Ab ispositive.thismustbetrueforthefeedbacktobenegative. Numerical evaluation of the voltage gain yields The resistances R A and R B are given by v A 2.67 R A ib v G α/β βr0 e α R B i t β α (r0 e + R 3 kr 4 ).32 MΩ R a R 5k (R 3 + R 4 ) 42.5 Ω 4
5 SeriesShunt Example 3 A seriesshunt feedback BJT amplifier is shown in Fig. 5(a). Solve for the voltage gain /v, the input resistance R A, and the output resistance R B.ForJ,assumeg m S, andr 0. ForQ 2,assume β 2 00, r π2 2.5kΩ, α 2 β 2 / ( + β 2 ), g m2 β 2 /r π2, r e2 α 2 /g m2, r 02, r x2 0. The circuit elements are R MΩ. R 2 0kΩ, R 3 kω, R 4 20kΩ, andr 5 0kΩ. The circuit with feedback removed is shown in Fig. 5(b). The circuit seen looking out of the source of J is replaced with a Thévenin equivalent circuit made with respect to. A test current source i t is added in shunt with the output to solve for the output resistance. Figure 5: (a) Amplifier circuit. (b) Circuit with feedback removed. For the circuit with feedback removed, we can write v a v R 3 R 3 + R 4 i d G v a G r s + R 3 kr 4 v tb2 i d R 2 i e2 G 2 v tb2 G 2 r 0 e2 r 0 e2 R 2 +β 2 + r e2 R 3 R 5 i c2 α 2 i e2 i c2 R a + i t R a + i d R b R a R 5 k (R 3 + R 4 ) R b R 3 + R 4 + R 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 6. The determinant is The voltage gain is G [ R 2 G 2 α R a + R b ] R 3 R 3 + R 4 +G [R 3 G 2 α R a + R b ] R 3 R 3 + R G [ R 2 G 2 α 2 R a + R b ] v G [R 2 G 2 α 2 R a + R b ] +G [R 3 G 2 α R a + R b ] R 3 R 3 + R 4 5
6 Figure 6: Signalflow graph for the equations. This is of the form where A i A +Ab A G [R 2 G 2 α 2 R a + R b ] R 2 R 3 R 4 r s + R 3 kr 4 re 0 α R 5 k (R 3 + R 4 )+ R 3 + R 4 + R R 3 b R 3 + R 4 Notice that the product Ab ispositive.thismustbetrueforthefeedbacktobenegative. Numerical evaluation of the voltage gain yields 42.8 v The resistances R A and R B are given by R B i t SeriesShunt Example 4 R A R MΩ R a R 5k (R 3 + R 4 ) 32.3 Ω A seriesshunt feedback BJT amplifier is shown in Fig. 7(a). A test current source is added to the output to solve for the output resistance. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 50, r π 2.5kΩ, α β/( + β), g m β/r π, r e α/g m, r 0, r x 0, R kω, R 2 00 Ω, R 3 9.9kΩ, R 4 0kΩ, andr 5 0kΩ. The circuit with feedback removed is shown in Fig. 8. The circuit seen looking out of the base of Q 2 is a Thévenin equivalent circuit made with respect to the voltage. A test current source i t is added in shunt with the output to solve for the output resistance. The emitter equivalent circuit for calculating i e and i e2 is shown in Fig. 7(b). For this circuit and the circuit with feedback removed, we can write i e G v e v e v R 2 R 2 + R 3 G i b i c β r e + r 0 e2 v tb3 i c R i e3 G 2 v tb3 G 2 r 0 e3 r 0 e2 R 2kR 3 +β + r e i c αi e r 0 e3 R +β + r e R 2 R 4 i c3 αi e3 i c3 R a + i t R a i b2 R b R a R 4 k (R 2 + R 3 ) R b R 2 + R 3 + R 4 6
7 Figure 7: (a) Amplifier circuit. (b) Emitter equivalent circuit for calculating i e and i e2. Figure 8: Circuit with feedback removed. 7
8 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 9. The determinant is G α R G 2 α R a R b R 2 +β R 2 + R 3 +G α R G 2 α R a R b R 2 +β R 2 + R The voltage gain is This is of the form where v v Figure 9: Flow graph for the equations. G α R G 2 α R a R b +β G α R G 2 α R a R b +G α R G 2 α R a A i +Ab R b +β +β R 2 R 2 + R 3 A G α R G 2 α R a R b +β r e + re2 0 α R re3 0 α R 4 k (R 2 + R 3 ) R 2 R 4 +β R 2 + R 3 + R R 2 b 0.0 R 2 + R 3 Notice that the product Ab ispositive.thismustbetrueforthefeedbacktobenegative. Numerical evaluation of the voltage gain yields A v 87.5 The resistances R A and R B are given by ib G α/β R A R 5 k R 5 k R 5 k [ ( + β) (r e + r 0 e2)] kω R B i t R a R 4k (R 2 + R 3 ) Ω 8
9 ShuntShunt Example Figure 0(a) shows the ac signal circuit of a shuntseries feedback amplifier. The input variable is v and the output variable is. The input signal and the feedback signal are applied to the base of Q. A test current source i t is added in shunt with the output to calculate the output resistance R B.Fortheanalysis to follow convention, the input source consisting of v in series with R must be converted into a Norton equivalent. This circuit is the current i v /R in parallel with the resistor R. Fig. 0(b) shows the circuit with feedback removed and the source replaced with the Norton equivalent. The feedback at the base of Q is modeled by a Norton equivalent circuit /R 4 in parallel with the resistor R 4. The feedback factor or feedback ratio b is the negative of the coefficient of in this source, i.e. b R4. The circuit values are β 00, g m 0.05 S, r x 0, r ib β /g m 2kΩ, r 0, g m S, r s2 gm2 kω, r 02, R kω, R 2 kω, R 3 0kΩ, andr 4 0kΩ. Figure 0: (a) Amplifier circuit. (b) Circuit with feedback removed. The following equations can be written for the circuit with feedback removed: v b i a R b i a i + R 4 R b R kr 4 kr ib i c g m v b i d i c R 2 r s + R 2 i d R c + i t R c + v b R 3 R 3 + R 4 R c R 3 kr 4 The current i a is the error current. The negative feedback tends to reduce i a,making i a 0 as the amount of feedback becomes infinite. When this is the case, setting i a 0yields the current gain /i R 4. Although the equations can be solved algebraically, the signalflow graph simplifies the solution. Figure shows the flow graph for the equations. The determinant of the graph is given by R b g m R 2 r s + R 2 R c + R 3 R 3 + R 4 The transresistance gain is calculated with i t 0.Itisgivenby R b g m R 2 R c + R 3 r s2 + R 2 R 3 + R 4 i + R 4 g m R 2 r s2 + R 2 (R 3 kr 4 )+ R 3 (R kr 4 kr ib ) R 3 + R 4 (R kr 4 kr ib ) g m R 2 (R 3 kr 4 )+ R 3 r s2 + R 2 R 3 + R 4 9 R 4
10 Figure : Signalflow graph for the equations. This is of the form A i +Ab where A (R kr 4 kr ib ) g m R 2 (R 3 kr 4 )+ R kω r s2 + R 2 R 3 + R 4 b R S Note that Ab is dimensionless and positive. Numerical evaluation yields i +( ) ( kω ) The voltage gain is given by i 8.86 v i v i R The resistance R a is calculated with i t 0.Itisgivenby R a v b i R b R kr 4 kr ib 7.7 Ω +Ab Note that the feedback tends to decrease R a.theresistancer A is calculated as follows: R A R + R a The resistance R B is calculated with i 0.Itisgivenby R B i t R.077 kω R c R 3kR 4 +Ab Ω ShuntShunt Example 2 A shuntshunt feedback JFET amplifier is shown in Fig. 2(a). Solve for the voltage gain /v, the input resistance R A, and the output resistance R B.Assumeg m S, r s gm 200 Ω, r 0, R 3kΩ, R 2 7kΩ, R 3 kω, R 4 0kΩ. The circuit with feedback removed is shown in Fig. 2(b) In this circuit, the source is replaced by a Norton equivalent circuit consisting of a current i v /R in parallel with the resistor R. This is necessary for the feedback analysis to conform to convention for shuntshunt feedback.. The circuit seen looking up into R 2 is replaced with a Norton equivalent circuit made with respect to.a test current source i t is added in shunt with the output to solve for the output resistance. 0
11 Figure 2: (a) Amplifier circuit. (b) Circuit with feedback removed. For the circuit with feedback removed, we can write v g i R b + R 2 R b R b R kr 2 i d G m v g G m i d R c + i t R c + v g R 4 R 2 + R 4 R c R 2 kr 4 r s + R 3 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 3. The determinant is R b G m R c + R 4 R 2 + R 4 R 2 +R b G m R c R 4 R 2 + R 4 R Ω Figure 3: Signalflow graph for the equations.
12 The transresistance gain is i R b G m R c + R 4 R 2 + R 4 R b G m R c R 4 R 2 + R 4 +R b G m R c + R 4 R 2 + R 4 R 2 This is of the form where A i +Ab A R b G m R c R 4 R 2 + R 4 (R kr 2 ) G m R 2 kr 4 R 4 R 2 + R kω b R ms Note that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation yields A 3.22 kω i The voltage gain is given by i A v i v.074 R The resistances R a, R A,andR B are given by ShuntShunt Example 3 R a v g R b.3 kω i R A R kω R a R R B i t R c 2.22 kω A shuntshunt feedback BJT amplifier is shown in Fig. 4. The input variable is the v and the output variable is the voltage. The feedback resistor is R 2. The summing at the input is shunt because the input through R and the feedback through R 2 connect in shunt to the same node, i.e. the v b node. The output sampling is shunt because R 2 connects to the output node. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 00, r π 2.5kΩ, g m β/r π, α β/( + β), r e α/g m, r 0, r x 0, V T 25mV. The resistor values are R kω, R 2 20kΩ, R Ω, R 4 kω, andr 5 5kΩ. The circuit with feedback removed is shown in Fig. 5. A test current source i t isaddedinshuntwith the output to solve for the output resistance R B. In the circuit, the source is replaced by a Norton equivalent circuit consisting of a current i v R 2
13 Figure 4: Amplifier circuit. Figure 5: Circuit with feedback removed. in parallel with the resistor R. This is necessary for the feedback analysis to conform to convention for shunt summing. The circuit seen looking into R 2 from the collector of Q 3 is replaced with a Thevenin equivalent circuit made with respect with v b. For the circuit with feedback removed, we can write i e i + R 2 v b i e R b R b R kr 2 kr π i c g m v b v b2 i c R c R c R 3 kr π v b3 i c2 R d R d R 4 kr π i c3 g m v b3 ( i c3 + i t ) R e + v b R 5 R 2 + R 5 R e R 2 kr 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 6. The determinant is R b g m R c g m R d g m R e + R 5 R 2 + R 5 R 2 +R b g m R c g m R d g m R e R 5 R 2 + R 5 R
14 Figure 6: Signalflow graph for the equations. The transresistance gain is R b g m R c g m R d g m R e + R 2 R 2 + R 5 i R b g m R c g m R d g m R e R 2 R 2 + R 5 +R b g m R c g m R d g m R e R 2 R 2 + R 5 R 2 R b g m R c g m R d g m R e R 2 R 2 + R 5 + R b g m R c g m R d g m R e R 2 R 2 + R 5 R 2 This is of the form i e2 v A +Ab where A and b are given by A R b g m R c g m R d g m R e R 5 R 2 + R 5 R kr 2 kr π g m R 3 kr π g m R 4 kr π g m R 2 kr 5 R 5 R 2 + R MΩ b 50 S R 2 Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transresistance gain yields A 9.94 kω i The resistances R a and R A are R a v b R c i.945 Ω R A R kω R a R 4
15 The resistance R B is The voltage gain is v b i R B i t vb i R e.28 Ω A 9.9 R A ShuntShunt Example 4 A shuntshunt feedback BJT amplifier is shown in Fig. 7. The input variable is the v and the output variable is the voltage. The feedback resistor is R 2. The summing at the input is shunt because the input through R and the feedback through R 2 connect in shunt to the same node, i.e. the v e node. The output sampling is shunt because R 2 connects to the output node. Solve for the voltage gain /v, the input resistance R A, and the output resistance R B. For Q and Q 2,assumeβ 00, r π 2.5kΩ, g m β/r π, α β/( + β), r e α/g m, r 0, r x 0, V T 25mV.ForJ 3,assumeg m S and r 03. The resistor values are R kω, R 2 00 kω, R 3 0Ω, R 4 30kΩ, andr 5 0kΩ. Figure 7: Amplifier circuit. The circuit with feedback removed is shown in Fig. 8. A test current source i t isaddedinshuntwith the output to solve for the output resistance R B. In the circuit, the source is replaced by a Norton equivalent circuit consisting of a current i v R in parallel with the resistor R. This is necessary for the feedback analysis to conform to convention for shunt summing. The circuit seen looking into R 2 from the collector of Q 3 is replaced with a Thévenin equivalent circuit made with respect with v e. Figure 8: Circuit with feedback removed. 5
16 For the circuit with feedback removed, we can write i e i + R 2 v e i e R b R b R kr 2 kr e i c g m v e v tg3 i c R 3 i d3 g m3 v tg3 v tb2 i d3 R 4 i e2 G v tb2 G re2 0 + R 2kR 5 r 0 e2 R 4 + r e2 R 5 ( i e2 + i t ) R c + v e R c R 2 kr 5 R 2 + R 5 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 9. The determinant is R b g m R 3 g m2 R 4 G R c + R 5 R 2 + R 5 +R b g m R 3 g m2 R 4 G R c R 5 R 2 + R 5 R R 2 Figure 9: Signalflow graph for the equations. The transresistance gain is R b g m R 3 g m2 R 4 G R c + R 2 R 2 + R 5 i R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 +R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 R 2 R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 + R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 R 2 R 2 + R 5 R 2 This is of the form i e2 A v +Ab where A and b are given by A R b g m R 3 g m2 R 4 G R c R 2 R 2 + R 5 R kr 2 kr e g m R 3 g m2 R 4 re2 0 + R R 2 kr 5 R 5 2kR 5 R 2 + R 5.2MΩ 6
17 b 0 S R 2 Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transresistance gain yields The resistances R a and R A are The resistance R B is The voltage gain is A 99. kω i R a v e R b i 0.24 Ω R A R + kω R a R v e i SeriesSeries Example R B i t ve i R c Ω A R A Figure 20(a) shows the ac signal circuit of a seriesseries feedback amplifier. The input variable is v and the output variable is i d2. The input signal is applied to the gate of M and the feedback signal is applied to thesourceofm. Fig. 20(b) shows the circuit with feedback removed. A test voltage source v t is added in series with the output to calculate the output resistance R b. The feedback at the source of M is modeled by a Thévenin equivalent circuit. The feedback factor or feedback ratio b is the coefficient of i d2 in this source, i.e. b R 5. The circuit values are g m 0.00 S, r s gm kω, r 0, R 50kΩ, R 2 0kΩ, R 3 kω, R 4 9kΩ, andr 5 kω. Figure 20: (a) Amplifier circuit. (b) Circuit with feedback removed. 7
18 The following equations can be written for the circuit with feedback removed: i d G m v a G m i d2 G m2 v b G m2 r s + R 5 v a v v ts v ts i d2 R 5 r s2 + R 3 v b v t v tg2 v tg2 i d R 2 The voltage v a is the error voltage. The negative feedback tends to reduce v a,making v a 0 as the amount of feedback becomes infinite. When this is the case, setting v a 0yields the transconductance gain i d2 /v b R5. Although the equations can be solved algebraically, the signalflow graph simplifies the solution. Figure 2 shows the signalflow graph for the equations. The determinant of the graph is given by G m ( R 2 ) ( ) G m2 R 5 ( ) Figure 2: Flow graph for the equations. The transconductance gain i d2 /v is calculated with v t 0.Itisgivenby i d2 G m ( R 2 ) ( ) G m2 v R 2 r s + R 5 r s + R 5 + R 2 R 5 r s + R 5 r s + R 5 This is of the form i d2 A v +Ab where A G m ( R 2 ) ( ) G m2 R S r s + R 5 r s2 + R 3 b R 5 000Ω Note that ba is dimensionless. Numerical evaluation yields i d v S The resistance R b is calculated with v 0.Itisgivenby id2 Gm2 R b (+ba)(r s2 + R 3 )7kΩ v t Note that the feedback tends to increase R b.theresistancer B is calculated as follows: R B (R b R 3 ) kr Ω Because the gate current of M is zero, the input resistance is R A R 50kΩ. 8
19 SeriesSeries Example 2 A seriesseries feedback BJT amplifier is shown in Fig. 22. The input variable is the voltage v and the output variable is the voltage. The feedback is from i e2 to the emitter of Q. Because the feedback does not connect to the input node, the input summing is series. The output sampling is series because the feedback is proportional to the current that flows in series with the output rather than the output voltage. Solve for the transconductance gain i c3 /v, the voltage gain /v, the input resistance R A, and the output resistance R B. Assume β 00, I C 0.6mA, I C2 ma, I C3 4mA, α β/( + β), g m I C /V T, r e αv T /I C, r 0, r x 0, V T 25mV, R 00 Ω, R 2 9kΩ, R 3 5kΩ, R Ω, R Ω, and R 6 00 Ω. The circuit with feedback removed is shown in Fig. 23. Figure 22: Amplifier circuit. The circuit looking out of the emitter of Q is a Thévenin equivalent made with respect to the current i e3. The output current is proportional to this current, i.e. i c3 αi e3. Because r 0 for Q 3, the feedback does not affect the output resistance seen looking down through R 4 because it is infinite. For a finite r 0,a testvoltagesourcecanbeaddedinserieswithr 4 to solve for this resistance. It would be found that a finite r 0 for Q 3 considerably complicates the circuit equations and the flow graph. Figure 23: Circuit with feedback removed. 9
20 For the circuit with feedback removed, we can write R 6 R v e v i e3 i e G v e G R 6 + R 5 + R r e + R k (R 5 + R 6 ) i b i c β v tb2 i c R 2 i e2 G 2 v tb2 G 2 r 0 e2 i c2 αi e2 v tb3 i c2 R 3 i e3 G 3 v tb3 k i e G 3 R R 6 i c αi e re2 0 R 2 +β + r e re3 0 + R 6k (R + R 5 ) k R + R 5 + re3 0 kr 6 R 6 + re3 0 i c3 αi e3 i c2 R 4 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 24. The determinant is ½ ¾ R 6 R G [(α R 2 G 2 α R 3 G 3 ) k ] R 6 + R 5 + R R 6 R +G (α R 2 G 2 α R a k ) R 6 + R 5 + R 25.5 r e + R k (R 5 + R 6 ) Figure 24: Signalflow graph for the circuit. The transconductance gain is i c3 G (α R 2 G 2 α R 3 G 3 k ) α v G (α R 2 G 2 α R 3 G 3 k ) α R 6 R +[G (α R 2 G 2 α R a k )] R 6 + R 5 + R G [(α R 2 G 2 α R 3 G 3 ) k ] α R 6 R +[G (α R 2 G 2 α R a k ) α] R 6 + R 5 + R α This is of the form i c3 A v +Ab where A and b are given by A G [(α R 2 G 2 α R 3 G 3 ) k ] α α R 2 α R 3 R R 6 R + R 5 + re3 0 kr 6 R 6 + re S α r 0 e2 re3 0 + R 6k (R + R 5 ) α 20
21 R 6 R b R 6 + R 5 + R α 2.02 Ω Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transconductance gain yields i c3 v A The voltage gain is given by i c3 A v v i c3 R The resistances R A and R B are given by R A ib v G α/β ( + β) G ( + β) [r e + R k (R 5 + R 6 )] MΩ R B R Ω SeriesSeries Example 3 A seriesseries feedback BJT amplifier is shown in Fig. 25(a). The input variable is the voltage v and the output variable is the voltage. The feedback is from i e2 to i c2 to the emitter of Q. Because the feedback does not connect to the input node, the input summing is series. Because the feedback does not sample the output voltage, the sampling is series. That is, the feedback network samples the current in series with the outpu. Solve for the transconductance gain i e2 /v, the voltage gain /v, the input resistance R A,and the output resistance R B. Assume β 00, r π 2.5kΩ, α β/( + β), r e α/g m, r 0, r x 0, V T 25mV, R 00 Ω, R 2 kω, R 3 20kΩ, andr 4 0kΩ. Figure 25: (a) Amplifier circuit. (b) Circuit with feedback removed. The circuit with feedback removed is shown in Fig. 25(b). The circuit seen looking out of the emitter of Q is replaced with a Thévenin equivalent circuit made with respect with i c2. The output current i e2 is proportional to this current, i.e. i e2 αi c2. A test voltage source v t is added in series with the output to solve for the output resistance. The resistance seen by the test source is labeled R b. For the circuit with feedback removed, we can write v e v i c2 R 2 i e G v e G i c αi e i b i c r e + R + R 2 β 2
22 v tb2 i c R 3 i e2 G 2 (v t v tb2 ) G 2 re2 0 + R re2 0 R 3 4 +β + r e i c2 αi e2 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 26. The determinant is (G α R 3 G 2 α R 2 ) +G α R 2 G 2 α R 2.8 The transconductance gain is Figure 26: Signalflow graph for the equations. This is of the form where A and b are given by i e2 G α R 3 G 2 v (G α R 3 G 2 ) +(G α R 3 G 2 ) α R 2 i e2 v A +Ab A G α R 3 G 2 α R 3 r e + R + R 2 re2 0 + R ms b αr 2.98 kω Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transconductance gain yields i e2 A ms v The voltage gain is given by i e2 A v v i e2 R The resistances R A and R B are given by ib G α/β R A ( + β)(r e + R + R 2 ) 602 kω v ie2 Gm2 R b (R 4 + r 0 v t e2) kω R B (R b R 4 ) kr kω 22
23 SeriesSeries Example 4 A seriesseries feedback BJT amplifier is shown in Fig. 27(a). The input variable is the voltage v and the output variable is the current i c2. The feedback is from i c2 to i e2 to the gate of J. The input summing is series because the feedback does not connect to the same node that the source connects. The output sampling is series because the feedback is proportional to the output current i c2. Solve for the transconductance gain i c2 /v, the voltage gain /v, the input resistance R A, and the output resistance R B.ForJ, assume that g m 0.00 S, r s gm 000 Ω, andr 0. ForQ 2,assumeβ 2 00, r π2 2.5kΩ, α 2 β 2 / ( + β 2 ), r e2 α 2 /g m2, r 02, r x2 0, V T 25mV. The resistor values are R kω, R 2 0kΩ, R 3 kω, R 4 0kΩ, R 5 kω, andr 6 0kΩ. Figure 27: (a) Amplifier circuit. (b) Circuit with feedback removed. The circuit with feedback removed is shown in Fig. 27(b). The circuit seen looking out of the emitter of Q is replaced with a Thévenin equivalent circuit made with respect with i e2. The output current is proportional to this current, i.e. i c2 α 2 i e2. Because r 02, the feedback does not affect the output resistance seen looking down through R 6 because it is infinite. For a finite r 02, a test voltage source can be added in series with R 6 to solve for this resistance. It would be found that a finite r 02 considerably complicates the circuit equations and the flow graph. For the circuit with feedback removed, we can write i d g m v e v e i e2 R 5 R 3 R 3 + R 4 + R 5 v v tb2 i d R 2 i e2 G v tb2 G r 0 e2 + R 5k (R 3 + R 4 ) r 0 e2 R 2 +β 2 + r e2 i c2 α 2 i e2 The equations can be solved algebraically or by a flow graph. The flow graph for the equations is shown in Fig. 28. The determinant is R 5 R 3 g m R 2 G R 3 + R 4 + R 5 R 5 R 3 +g m R 2 G R 3 + R 4 + R
24 Figure 28: Signalflow graph for the equations. The transconductance gain is This is of the form where A and b are given by i e2 g m R 2 G α 2 v g m R 2 G α 2 R 5 R 3 +g m R 2 G R 3 + R 4 + R 5 (g m R 2 G α 2 ) R 5 R 3 +(g m R 2 G α 2 ) R 3 + R 4 + R 5 α 2 i e2 v A +Ab A g m R 2 G α 2 g m R 2 re2 0 + R 5k (R 3 + R 4 ) α ms R 5 R 3 b 84.7 Ω R 3 + R 4 + R 5 α 2 Notice that the product Ab is dimensionless and positive. The latter must be true for the feedback to be negative. Numerical evaluation of the transconductance gain yields i c2 v A ms The voltage gain is given by i c2 A v v i c2 R The resistances R A and R B are given by R A R k id v ³ gm R k R k 643 Ω g m R B R 6 0kΩ SeriesSeries Example 5 A seriesseries feedback BJT amplifier is shown in Fig. 29. The input variable is the current i and the output variable is the current i e2. The feedback path is the path from i e2 to i c2 to i e3 to i c3 to the emitter of Q. The input summing is series because the feedback does not connect to the input node. The output 24
http://users.ece.gatech.edu/~mleach/ece3050/notes/feedback/fbexamples.pdf
c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. Ideal vs Nonideal Op Amps
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) vs Nonideal Op Amps Op Amp A 0 Nonideal Op Amp A < < > 0 Other nonideal characteristics:
More informationFEEDBACK INTRODUCTION
FEEDBACK INTRODUCTION Most physical systems incorporate some form of feedback. Feedback can be either negative (degenerative) or positive (regenerative). In amplifier design, negative feedback is applied
More informationRevision on Basic Transistor Amplifiers
Electronic Circuits Revision on Basic Transistor Amplifiers Contents Biasing Amplification principles Smallsignal model development for BJT Aim of this chapter To show how transistors can be used to amplify
More informationHomework#5 for Microelectronics (I)
Homework#5 for Microelectronics (I) Sections:5.5,5.6,5.7 Deadline:1 月 3 日 ( 四 ) 課堂上繳交 provided by 陳旻珓助教 5.82 The pnp transistor in the circuit of Fig. 5.82 has β = 50. Find the value for R C to obtain
More informationVoltage Divider Bias
Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine
More informationTutorial #5: Designing a CommonEmitter Amplifier
SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #5: Designing a CommonEmitter Amplifier BACKGROUND There
More informationThe BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
More informationTutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers)
Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers) Part A. CommonEmitter Amplifier 1. For the circuit shown in Figure 1, the transistor parameters are β = 100 and V A =. Design the
More informationCHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
More informationApplication Report. Mixed Signal Products SLAA067
Application Report July 1999 Mixed Signal Products SLAA067 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
More informationFigure 6.2 An amplifier with voltagedivider bias driven by an ac voltage source with an internal resistance, R S. [5]
Chapter 6 BJT Amplifiers Amplifier Operations [5], [7] 6.1.1 AC Quantities In the previous chapters, dc quantities were identified by nonitalic uppercase (capital) subscripts such as I C, I E, V C, and
More informationDC Circuits: Operational Amplifiers Hasan Demirel
DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.
More informationBJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008
by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: commonemitter,
More informationTransistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
More informationHow to Bias BJTs for Fun and Profit
How to Bias BJTs for Fun and Profit Standard BJT biasing configuration: The standard biasing configuration for bipolar junction transistors, sometimes called the Hbias configuration because the resistors
More informationFigure 1: Commonbase amplifier.
The CommonBase Amplifier Basic Circuit Fig. 1 shows the circuit diagram of a single stage commonbase amplifier. The object is to solve for the smallsignal voltage gain, input resistance, and output
More informationChapter 4 BJT BIASING CIRCUIT
Chapter 4 BJT BIASING CIRCUIT Introduction Biasing The analysis or design of a transistor amplifier requires knowledge of both the dc and ac response of the system. In fact, the amplifier increases the
More informationCurrent Source Biasing
Current Source Biasing ntegrated circuits have transistors which are manufactured simultaneously with the same device parameters (parameters from chip to chip will vary) As a result, different bias techniques
More informationLab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
More informationLecture 27: Frequency response. Context
Lecture 27: Frequency response Prof J. S. Smith Context Today, we will continue the discussion of single transistor amplifiers by looking at common source amplifiers with source degeneration (also common
More informationOperational Amplifiers
Operational Amplifiers Introduction The operational amplifier (opamp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the opamp
More informationChapter 4. DC Biasing of BJTs
Chapter 4. Outline: Selection of operating point Various bias circuits Fixed bias Emitter bias Voltagedivider bias Introduction The dc and ac response are necessary to the analysis of a transistor amplifier.
More informationTransistors. Transistor Basics
Transistors Bipolar Junction Transistors (BJT) Transistor Basics A Bipolar Junction Transistor is a three layer (npn or pnp) semiconductor device. There are two pn junctions in the transistor. The three
More informationBJT Circuit Analysis
BJT Circuit Analysis Assuming that the transistor is in the active region, solve for the voltages and currents  why this assumption? In general, the problem requires solution of a set of nonlinear equations:
More informationSmall Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function
More informationSeries and Parallel Circuits
Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)
More informationApplication Note AN1017401. A Low Impedance PIN Diode Driver Circuit with Temperature Compensation
Application Note AN74 A Low mpedance PN Diode Driver Circuit with Temperature Compensation Two Philips BAP5 PN diodes are used in an RF attenuator with a low impedance driver circuit to significantly
More informationHow can we deal with a network branch which is part of two networks each with a source? R3 is carrying current supplied by each battery
Network nalysis ims: Consolidate use of KCL in circuit analysis. Use Principle of Superposition. Learn basics of Node Voltage nalysis (uses KCL) Learn basics of Mesh Current nalysis (uses KVL) Lecture
More informationBipolar Junction Transistors
Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) ntype Emitter region ptype Base region ntype Collector region Collector (C) B C Emitterbase junction (EBJ) Base (B) (a) Collectorbase
More informationANALOG ELECTRONICS EE202F IMPORTANT QUESTIONS
ANALOG ELECTRONICS EE202F IMPORTANT QUESTIONS 1].Explain the working of PN junction diode. 2].How the PN junction diode acts as a rectifier. 3].Explain the switching characteristics of diode 4].Derive
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationBasic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
More informationCommon Base BJT Amplifier Common Collector BJT Amplifier
Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances
More informationExperiment No. 8 Transistor Biasing and Bias Stability
Experiment No. 8 Transistor Biasing and Bias Stability Aim of experiment: To study the Transistor biasing types and bias stability. Theory Notice from the previous load line experiment (Experiment No.6)
More informationVer 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)
Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.
More informationCommonEmitter Amplifier
CommonEmitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a CommonEmitter Amplifier, and this in this stage of the lab course is premature, in my opinion,
More informationIGFET Transistors. Biasing, Gain, Input and Output. James K Beard, Ph.D. Assistant Professor Rowan University
IGFET Transistors Biasing, Gain, Input and Output James K Beard, Ph.D. Assistant Professor Rowan University beard@rowan.edu Table of Contents IGFET Transistors...i Biasing, Gain, Input and Output... i
More informationPhysics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
More informationFIGURE 2. FIGURE 3. FIGURE 4. 2
Applications of the LM3524 PulseWidthModulator The LM3524 Regulating PulseWidthModulator is commonly used as the control element in switching regulator power supplies. This is in keeping with its intended
More informationExperiment 4 CommonSource Transistor Amplifiers
Name and ID: 1 OBJECTIVE Group Number: Date: Experiment 4 CommonSource Transistor Amplifiers To measure DC and AC voltages in commonsource amplifier. To obtain measured values of voltage amplification
More informationExercise 4  Broadband transistor amplifier
ANALOG ELECTRONIC CIRCUITS Laboratory work Exercise 4  Broadband transistor amplifier Task 1: Design a broadband amplifier using a bipolar NPN transistor in a common emitter orientation. For input signal
More informationSuperposition Examples
Superposition Examples The following examples illustrate the proper use of superposition of dependent sources. All superposition equations are written by inspection using voltage division, current division,
More informationTutorial Problems: Bipolar Junction Transistor (DC Biasing)
Tutorial Problems: Bipolar Junction Transistor (DC Biasing) 1. Consider the circuit shown in Figure 1. Determine I BQ, I CQ and V CEQ for: (a) β = 75, and (b) β = 150. Assume V BE(on) = 0.7 V. Figure 1
More informationElectronics The application of bipolar transistors
Electronics The application of bipolar transistors Prof. Márta Rencz, Gergely Nagy BME DED October 1, 2012 Ideal voltage amplifier On the previous lesson the theoretical methods of amplification using
More informationBASICS OF BJT BIAS DESIGN AND SOME STABILITY
BASICS OF BJT BIAS DESIGN AND SOME STABILITY CONSIDERATIONS November 18, 2015 J.L. 1 A BJT AMPLIFIER WITH VOLTAGE DIVIDER BIAS 1 In this context a few practical examples are given to demonstrate strategies
More informationChapter 2 Objectives
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationFigure 1: Op amp model.
An Op Amp Tutorial (Based on material in the book Introduction to Electroacoustics and Audio Amplifier Design, Second Edition  Revised Printing, by W. Marshall Leach, Jr., published by Kendall/Hunt, c
More informationLab 4: BJT Amplifiers Part I
Lab 4: BJT Amplifiers Part I Objectives The objective of this lab is to learn how to operate BJT as an amplifying device. Specifically, we will learn the following in this lab: The physical meaning of
More informationChapter 28A  Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 28A  Direct Current Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should
More informationOperational Amplifiers  Configurations and Characteristics
Operational Amplifiers  Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available
More informationThe NPN Transistor Bias and Switching
The NPN Transistor Bias and Switching Transistor Linear Amplifier Equipment Oscilloscope Function Generator (FG) Bread board 9V Battery and leads Resistors:, 10 kω, Capacitors: ( 2) NPN Transistor Potentiometer
More informationHomework Assignment 06
Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. Typically, the CE saturation voltage for a BJT, namely V CE(sat), is in the range of (circle one) Answer: (a) (a) 0.2 1.0 V
More informationChapter 6. SeriesParallel Circuits. Objectives
Chapter 6 SeriesParallel Circuits Objectives Identify seriesparallel relationships Analyze seriesparallel circuits Analyze loaded voltage dividers Determine the loading effect of a voltmeter on a circuit
More informationChapter No. 3 Differential Amplifiers
Chapter No. 3 Differential Amplifiers Operational Amplifiers: The operational amplifier is a directcoupled high gain amplifier usable from 0 to over 1MH Z to which feedback is added to control its overall
More informationWhat is an Amplifier?
Bipolar Junction Transistor Amplifiers Semiconductor Elements 1 What is an Amplifier? An amplifier is a circuit that can increase the peaktopeak voltage, current, or power of a signal. It allows a small
More informationOperational Amplifiers
662 25 Principles of Electronics Operational Amplifiers 25.1 Operational Amplifier 25.3 Basic Circuit of Differential Amplifier 25.5 Commonmode and Differentialmode signals 25.7 Voltage Gains of DA 25.9
More informationSolving for Voltage and Current
Chapter 3 Solving for Voltage and Current Nodal Analysis If you know Ohm s Law, you can solve for all the voltages and currents in simple resistor circuits, like the one shown below. In this chapter, we
More informationCommon Emitter BJT Amplifier Design Current Mirror Design
Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite
More informationChapter 5. BJT Biasing Circuits. 5.1 The DC Operation Point [5] DC Bias:
Chapter 5 BJT Biasing Circuits 5.1 The DC Operation Point [5] DC Bias: Bias establishes the dc operating point for proper linear operation of an amplifier. If an amplifier is not biased with correct dc
More informationBipolar Junction Transistors (BJT): Part 4 Small Signal BJT Model. Reading: Jaeger , Notes. ECE Dr. Alan Doolittle
Lecture 20 Bipolar Junction Transistors (BJT): Part 4 Small Signal BJT Model Reading: Jaeger 13.513.6, Notes Further Model Simplifications (useful for circuit analysis) EbersMoll Forward Active Mode
More informationEXPERIMENT 1.2 CHARACTERIZATION OF OPAMP
1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical
More informationSchool of Engineering Department of Electrical and Computer Engineering
1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives
More informationUnit 2: Transistor Biasing
Unit 2: Transistor iasing NTODUTON JTs amplifier requires a knowledge of both the D analysis (LAGsignal) and A analysis (small signal). For a D analysis a transistor is controlled by a number of factors
More informationTransistor Circuits IV. Common emitter configurations
Transistor Circuits IV Common emitter configurations Three types Basebiased Twosupply biased Voltage divider biased Basebiased Minus supply voltage RB RC Formulas β dc = h FE I C I B I C β dc I B =
More informationBJT AC Analysis 1 of 38. The r e Transistor model. Remind Qpoiint re = 26mv/IE
BJT AC Analysis 1 of 38 The r e Transistor model Remind Qpoiint re = 26mv/IE BJT AC Analysis 2 of 38 Three amplifier configurations, Common Emitter Common Collector (Emitter Follower) Common Base BJT
More informationChapter 08. Methods of Analysis
Chapter 08 Methods of Analysis Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning CC Tsai Outline Source Conversion Mesh Analysis Nodal Analysis DeltaWye ( Y) Conversion Bridge Networks
More informationSmall Signal Amplifier with Bipolar Junction Transistor
mall ignal Amplifier with Bipolar Junction Transistor This tutorial will teach you in very easy steps how to design classa amplifiers tarting with the results of bias point design we get the following
More information41 STRUCTURE OF A FIELDEFFECT TRANSISTOR (FET S)
41 STRUCTURE OF A FIELDEFFECT TRANSISTOR (FET S) Recall that the bipolar junction transistor (BJT) is a currentcontrolled device; that is; the base current controls the amount of collector current.
More informationBlock Diagram Reduction
Appendix W Block Diagram Reduction W.3 4Mason s Rule and the SignalFlow Graph A compact alternative notation to the block diagram is given by the signal ow graph introduced Signal ow by S. J. Mason
More informationSeries and Parallel Resistors
Series and Parallel Resistors 1 Objectives To calculate the equivalent resistance of series and parallel resistors. 2 Examples for resistors in parallel and series R 4 R 5 Series R 6 R 7 // R 8 R 4 //
More informationPhysics. Teacher s notes 56 Diodes: A.C. diode rectification. Electricity and Heat
Sensors: Loggers: An EASYSENSE capable of fast logging Physics Logging : 500 ms Teacher s notes 56 Diodes: A.C. diode rectification Read In investigation 55, students will have found out that diodes only
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. Operational Amplifier Error Sources: dc Current and Output Range Limitations
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Operational Amplifier Error Sources: dc Current and Output Range Limitations dc error
More informationLab 3. Transistor and Logic Gates
Lab 3. Transistor and Logic Gates Laboratory Instruction Today you will learn how to use a transistor to amplify a small AC signal as well as using it as a switch to construct digital logic circuits. Introduction
More informationChapter 5. Transistor Bias Circuits
Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 5 Transistor Bias Circuits 1 Introduction As you learned in Chapter 4, a transistor
More informationThe basic cascode amplifier consists of an input commonemitter (CE) configuration driving an output commonbase (CB), as shown above.
Cascode Amplifiers by Dennis L. Feucht Twotransistor combinations, such as the Darlington configuration, provide advantages over singletransistor amplifier stages. Another twotransistor combination
More informationChapter 8:Field Effect Transistors (FET s)
Chapter 8:Field Effect Transistors (FET s) The FET The idea for a fieldeffect transistor (FET) was first proposed by Julius Lilienthal, a physicist and inventor. In 1930 he was granted a U.S. patent for
More informationUnit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
More informationTRANSISTOR BIASING & STABILIZATION
Lecture 20 BJT TRANSISTOR BIASING & STABILIZATION 2 Transistor Biasing The basic function of transistor is amplification. The process of raising the strength of weak signal without any change in its general
More information3.4  BJT DIFFERENTIAL AMPLIFIERS
BJT Differential Amplifiers (6/4/00) Page 1 3.4 BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the
More informationBias Circuit Design for Microwave Amplifiers
Bias Circuit Design for Microwave Amplifiers ECE145A/218A UCSB/ECE We need to provide a stable bias condition for our device in any amplifier application. Bipolar transistors: Must force the DC (average)
More informationLecture 24: Oscillators. Clapp Oscillator. VFO Startup
Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat
More informationChapter 07. SeriesParallel Circuits
Chapter 07 SeriesParallel Circuits Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning The SeriesParallel Network Complex circuits May be separated both series and/or parallel elements
More information[a] The 5 kω and 7 kω resistors are in series. The simplified circuit is shown below:
P 3.3 [a] The 5 kω and 7 kω resistors are in series. The simplified circuit is shown below: [b] The 800Ω and 1200Ω resistors are in series, as are the 300Ω and 200Ω resistors. The simplified circuit is
More informationInstrumentation Engineering. Analog Electronics. Comprehensive Theory with Solved Examples and Practice Questions
Instrumentation Engineering Analog Electronics Comprehensive Theory with Solved Examples and Practice Questions MADE EASY Publications Corporate Office: 44A/4, Kalu Sarai (Near Hauz Khas Metro Station),
More informationElectronics Engineering. Analog Electronics. Comprehensive Theory with Solved Examples and Practice Questions
Electronics Engineering Analog Electronics Comprehensive Theory with Solved Examples and Practice Questions MADE EASY Publications Corporate Office: 44A/4, Kalu Sarai (Near Hauz Khas Metro Station), New
More informationIn the previous chapter, it was discussed that a
240 10 Principles of Electronics Single Stage Transistor Amplifiers 10.1 Single Stage Transistor Amplifier 10.2 How Transistor Amplifies? 10.3 Graphical Demonstration of Transistor Amplifier 10.4 Practical
More informationContent Map For Career & Technology
Content Strand: Applied Academics CTET11 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
More informationChapter 5. Metal Oxide Semiconductor Field Effect Transistor Theory and Applications
Chapter 5 Metal Oxide Semiconductor Field Effect Transistor Theory and Applications 5.0 ntroduction The metal oxide semiconductor field effect transistor MOSFET a voltage control current device. t differs
More informationSeries and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
More informationLaboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 2024) and Week 10 (Oct. 2731) Due Week 11 (Nov. 37) 1 PreLab This PreLab should be completed before attending your regular
More informationTransistor Circuits. 1 Transistor Bias. Learning Outcomes
Transistor Circuits Learning Outcomes This chapter deals with a variety of circuits involving semiconductor devices. These will include bias and stabilisation for transistors, and smallsignal a.c. amplifier
More informationOperational amplifiers
Operational amplifiers Types of operational amplifiers (bioelectric amplifiers have different gain values) Lowgain amplifiers (x1 to x10) Used for buffering and impedance transformation between signal
More informationLED level meter driver, 12point, power scale, dot or bar display
LED level meter driver, 12point, power scale, dot or bar display The is a monolithic IC for LED power meter applications. The display level range is 9mVrms to 380mVrms (Typ.) divided into 12 points with
More informationPeggy Alavi Application Engineer September 3, 2003
OpAmp Basics Peggy Alavi Application Engineer September 3, 2003 OpAmp Basics Part 1 OpAmp Basics Why opamps Opamp block diagram Input modes of OpAmps Loop Configurations Negative Feedback Gain Bandwidth
More informationECE342 Lab 5: BJT Amplifier Sample Lab Report
ECE342 Lab 5: BJT Amplifier Sample Lab Report Don Hummels, Someone Else September 9, 2011 This sample report from the 2007 ECE342 Lab 5 assignment is meant to serve as a guide for lab reports for ECE342
More informationGeneralized Transistor Amplifier
Generalized Transistor Amplifier * Perspectie: look at the arious configurations of bipolar and MOS transistors, for which a smallsignal oltage or current is transformed (e.g., usually amplified  increased
More informationLecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.
Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.
More informationInput and Output Impedances of Resistive Circuits
Input and Output Impedances of Resistive Circuits Last time we saw that according to Thevinin s Theorem and Norton s Theorem, any kind of signal source (which we have arbitrarily modeled as a network of
More informationOperational Amplifiers
Operational Amplifiers Aims: To know: Basic Op Amp properties eal & Ideal Basic ideas of feedback. inv input noninv input output gnd To be able to do basic circuit analysis of op amps: using KCL, KL with
More information