Topics. Flipflopbased sequential machines. Signals in flipflop system. Flipflop rules. Latchbased machines. Twosided latch constraint


 Kelley Joseph
 3 years ago
 Views:
Transcription
1 Topics Flipflopbased sequential machines! Clocking disciplines. Flipflop rules! Primary inputs change after clock (φ) edge.! Primary inputs must stabilize before next clock edge.! Rules allow changes to propagate through for next cycle.! Flipflop outputs hold currentstate values for nextstate computation. Signals in flipflop system positive clock edge Latchbased machines! Latches do not cut when clock is active.! Latchbased machines must use multiple ranks of latches.! Multiple ranks require multiple phases of clock. Twosided latch constraint! Latch must be open less than the shortest delay.! Period between latching operations must be longer than the longest delay.! Note: difference between shortest and longest delay may be large (sum 0 vs. sum 31 ).
2 Latch shootthrough Latch may allow data to shoot through: Strict twophase clocking discipline! Strict twophase discipline is conservative but works.! Can be relaxed later with proper knowledge of constraints.! Strict twophase machine makes latchbased machine behave more like flipflop design, but requires multiple phases. Strict twophase architecture Twophase clock Phases must not overlap: nonoverlap region Why it works! Each phase has a onesided constraint: phase must be long enough for all delays.! If there are no loops, phases can always be stretched to make that section of the machine work.! Total clock period depends on sum of phase periods. Clocking types! Logic on different phases operate at different times can t mix signals from different phases.! Primary inputs must obey the same rules as internal signals.! Clocking types are bookkeeping that help us ensure that machine structure is valid.
3 Stable signals! A signal is always stable during one phase phase in which the latch which produced it is not active.! Easiest to think of machine behavior in terms of stable signals, though signals propagate while not stable. Signal types! Clocks are separate type: φ 1,.! Two types of stable data signal:! stable φ 1 ( )! stable ( )! A stable signal has a complementary valid signal:! stable ( ) = valid φ 1 (v φ 1 ) Stable data signal How clocking types combine inactive clock stable becomes valid at end of φ 1 stable until latch feeding this goes active Clocking types in the twophase machine Clocking type propagation I 1 ( ) φ 1 O 1 ( ) O 2 ( ) I 2 ( )! Combinational does not change type of signal.! Primary inputs must be compatible.! Latches change signals from one clock type to another.! In strict system, never mix clocks with data signals in.
4 Twocoloring Example: shift register I 1 ( )! Want to displace bit by n registers in n cycles.! Each register requires two phases: φ 1 O 1 ( ) I 2 ( ) O 2 ( ) Shift register layout Forms a linear array: Shift register operation V in out φ 1 = 1, = 0 V SS c1(latch) c2(latch) c3(latch) c4(latch) φ 1 φ 1 φ 1 φ 1 φ 1 = 0, = 1 Nonstrict disciplines! Some relaxation of the rules can be useful:! reduce area;! increase performance.! Rules must be relaxed in a way that ensures the machine will still work. ualified clocks! Use to generate a clock signal which is not always active.! ualification must not introduce glitches into the clock glitches violate the fundamental definition of a clock by introducing extra edges.! Use stable signals to qualify clocks.
5 Uses of qualified clocks Recirculating latch! May want to conditionally load a register.! May qualify a clock to turn off machine for lowpower operation.! Latch must be not lose its value during inactive period. qφ 1! ifficult to ensure that value will come high in time use quasistatic latch. ualified clocks and skew ualification skew example! Logic in the clocking path introduces delay.! elay can cause clock to arrive at latches at different times, violating clocking assumptions.! When designing qualification :! minimize and check skew;! sharpen clock edge.
Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Twophase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
More informationSequential Circuit Design
Sequential Circuit Design LanDa Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines
More informationLatch Timing Parameters. Flipflop Timing Parameters. Typical Clock System. Clocking Overhead
Clock  key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where
More informationLecture 7: Clocking of VLSI Systems
Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 TwoPhase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10  Clocking Note: The analysis
More informationIntroduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems
Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH
More informationEE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
More informationLecture 11: Sequential Circuit Design
Lecture 11: Sequential Circuit esign Outline Sequencing Sequencing Element esign Max and Minelay Clock Skew Time Borrowing TwoPhase Clocking 2 Sequencing Combinational logic output depends on current
More informationLecture 10: Sequential Circuits
Introduction to CMOS VLSI esign Lecture 10: Sequential Circuits avid Harris Harvey Mudd College Spring 2004 Outline q Sequencing q Sequencing Element esign q Max and Minelay q Clock Skew q Time Borrowing
More informationTiming Methodologies (cont d) Registers. Typical timing specifications. Synchronous System Model. Short Paths. System Clock Frequency
Registers Timing Methodologies (cont d) Sample data using clock Hold data between clock cycles Computation (and delay) occurs between registers efinition of terms setup time: minimum time before the clocking
More informationSequential Circuits. Combinational Circuits Outputs depend on the current inputs
Principles of VLSI esign Sequential Circuits Sequential Circuits Combinational Circuits Outputs depend on the current inputs Sequential Circuits Outputs depend on current and previous inputs Requires separating
More informationPROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics
PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit  FSM A Sequential circuit contains: Storage
More informationSequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
More informationIE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
More informationTwoPhase Clocking Scheme for LowPower and High Speed VLSI
International Journal of Advances in Engineering Science and Technology 225 www.sestindia.org/volumeijaest/ and www.ijaestonline.com ISSN: 23191120 TwoPhase Clocking Scheme for LowPower and High Speed
More informationEngr354: Digital Logic Circuits
Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flipflops;
More informationWEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
More informationEE552. Advanced Logic Design and Switching Theory. Metastability. Ashirwad Bahukhandi. (Ashirwad Bahukhandi) bahukhan@usc.edu
EE552 Advanced Logic Design and Switching Theory Metastability by Ashirwad Bahukhandi (Ashirwad Bahukhandi) bahukhan@usc.edu This is an overview of what metastability is, ways of interpreting it, the issues
More informationDesign: a mod8 Counter
Design: a mod8 Counter A mod8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7. So, the stored value follows
More information路 論 Chapter 15 SystemLevel Physical Design
Introduction to VLSI Circuits and Systems 路 論 Chapter 15 SystemLevel Physical Design Dept. of Electronic Engineering National ChinYi University of Technology Fall 2007 Outline Clocked Flipflops CMOS
More informationLesson 12 Sequential Circuits: FlipFlops
Lesson 12 Sequential Circuits: FlipFlops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
More informationPROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics
PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit A Sequential circuit contains: Storage elements:
More informationVHDL GUIDELINES FOR SYNTHESIS
VHDL GUIDELINES FOR SYNTHESIS Claudio Talarico For internal use only 1/19 BASICS VHDL VHDL (Very high speed integrated circuit Hardware Description Language) is a hardware description language that allows
More informationCSE140: Components and Design Techniques for Digital Systems
CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap 5, App. A& B) Number representations Boolean algebra OP and PO Logic
More informationSequential Logic: Clocks, Registers, etc.
ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design
More informationLatches, the D FlipFlop & Counter Design. ECE 152A Winter 2012
Latches, the D FlipFlop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 FlipFlops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR
More informationWeste07r4.fm Page 183 Monday, January 5, 2004 1:39 AM. 7.1 Introduction
Weste07r4.fm Page 183 Monday, January 5, 2004 1:39 AM 7 7.1 Introduction The previous chapter addressed combinational circuits in which the output is a function of the current inputs. This chapter discusses
More informationCHAPTER 11 LATCHES AND FLIPFLOPS
CHAPTER 11 LATCHES AND FLIPFLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 SetReset Latch 11.3 Gated D Latch 11.4 EdgeTriggered D FlipFlop 11.5 SR FlipFlop
More informationLecture3 MEMORY: Development of Memory:
Lecture3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
More informationClocking. Figure by MIT OCW. 6.884  Spring 2005 2/18/05 L06 Clocks 1
ing Figure by MIT OCW. 6.884  Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884  Spring 2005 2/18/05
More informationSequential Logic Design Principles.Latches and FlipFlops
Sequential Logic Design Principles.Latches and FlipFlops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and FlipFlops SR Latch
More informationFlipFlops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 FlipFlops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
More informationHunting Asynchronous CDC Violations in the Wild
Hunting Asynchronous Violations in the Wild Chris Kwok Principal Engineer May 4, 2015 is the #2 Verification Problem Why is a Big Problem: 10 or More Clock Domains are Common Even FPGA Users Are Suffering
More informationFinite State Machine. RTL Hardware Design by P. Chu. Chapter 10 1
Finite State Machine Chapter 10 1 Outline 1. Overview 2. FSM representation 3. Timing and performance of an FSM 4. Moore machine versus Mealy machine 5. VHDL description of FSMs 6. State assignment 7.
More informationAdmin. ECE 550: Fundamentals of Computer Systems and Engineering. Last time. VHDL: Behavioral vs Structural. Memory Elements
Admin C 55: Fundamentals of Computer ystems and ngineering torage and Clocking eading Finish up Chapter ecitation How is it going? VHL questions/issues? Homework Homework ubmissions vis akai C 55 (Hilton):
More informationSetReset (SR) Latch
eteset () Latch Asynchronous Level sensitive crosscoupled Nor gates active high inputs (only one can be active) + + Function 0 0 0 1 0 1 eset 1 0 1 0 et 1 1 0? 0? Indeterminate crosscoupled Nand gates
More informationRETRIEVING DATA FROM THE DDC112
RETRIEVING DATA FROM THE by Jim Todsen This application bulletin explains how to retrieve data from the. It elaborates on the discussion given in the data sheet and provides additional information to allow
More informationETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
More informationSo far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
More informationEE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 16 Timing and Clock Issues
EE 459/500 HDL Based Digital Design with Programmable Logic Lecture 16 Timing and Clock Issues 1 Overview Sequential system timing requirements Impact of clock skew on timing Impact of clock jitter on
More informationA New Paradigm for Synchronous State Machine Design in Verilog
A New Paradigm for Synchronous State Machine Design in Verilog Randy Nuss Copyright 1999 Idea Consulting Introduction Synchronous State Machines are one of the most common building blocks in modern digital
More informationMemory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
More informationDesign Example: Counters. Design Example: Counters. 3Bit Binary Counter. 3Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
More informationSequential 4bit Adder Design Report
UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela
More informationUnderstanding Verilog Blocking and Nonblocking Assignments
Understanding Verilog Blocking and Nonblocking Assignments International Cadence User Group Conference September 11, 1996 presented by Stuart HDL Consulting About the Presenter Stuart has over 8 years
More informationDigital Fundamentals
Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence
More informationSEQUENTIAL CIRCUITS. Block diagram. Flip Flop. SR Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
More informationLecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
More informationLecture 10: Latch and FlipFlop Design. Outline
Lecture 1: Latch and FlipFlop esign Slides orginally from: Vladimir Stojanovic Computer Systems Laboratory Stanford University horowitz@stanford.edu 1 Outline Recent interest in latches and flipflops
More informationifthen else : 21 mux mux: process (A, B, Select) begin if (select= 1 ) then Z <= A; else Z <= B; end if; end process;
ifthen else : 21 mux mux: process (A, B, Select) begin if (select= 1 ) then Z
More informationDIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.
DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting
More informationDM9368 7Segment Decoder/Driver/Latch with Constant Current Source Outputs
DM9368 7Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7segment decoder driver incorporating input latches and constant current output circuits
More informationCLOCK DOMAIN CROSSING CLOSING THE LOOP ON CLOCK DOMAIN FUNCTIONAL IMPLEMENTATION PROBLEMS
TECHNICAL PAPER CLOCK DOMAIN CROSSING CLOSING THE LOOP ON CLOCK DOMAIN FUNCTIONAL IMPLEMENTATION PROBLEMS TABLE OF CONTENTS 1 Overview...........................................................................1
More informationA Survey on Sequential Elements for Low Power Clocking System
Journal of Computer Applications ISSN: 0974 1925, Volume5, Issue EICA20123, February 10, 2012 A Survey on Sequential Elements for Low Power Clocking System Bhuvana S ECE Department, Avinashilingam University
More informationLecture 10 Sequential Circuit Design Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS igital IC esign & Analysis Lecture 10 Sequential Circuit esign Zhuo Feng 10.1 Z. Feng MTU EE4800 CMOS igital IC esign & Analysis 2010 Sequencing Outline Sequencing Element esign Max and Minelay
More informationLow Power AMD Athlon 64 and AMD Opteron Processors
Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD
More informationWhite Paper Understanding Metastability in FPGAs
White Paper Understanding Metastability in FPGAs This white paper describes metastability in FPGAs, why it happens, and how it can cause design failures. It explains how metastability MTBF is calculated,
More informationChapter 9 Latches, FlipFlops, and Timers
ETEC 23 Programmable Logic Devices Chapter 9 Latches, FlipFlops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary
More informationChapter 2 Clocks and Resets
Chapter 2 Clocks and Resets 2.1 Introduction The cost of designing ASICs is increasing every year. In addition to the nonrecurring engineering (NRE) and mask costs, development costs are increasing due
More informationTRUE SINGLE PHASE CLOCKING BASED FLIPFLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIPFLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
More information2.1 CAN Bit Structure The Nominal Bit Rate of the network is uniform throughout the network and is given by:
Order this document by /D CAN Bit Timing Requirements by Stuart Robb East Kilbride, Scotland. 1 Introduction 2 CAN Bit Timing Overview The Controller Area Network (CAN) is a serial, asynchronous, multimaster
More informationDIGITAL SYSTEM CLOCKING. HighPerformance and LowPower Aspects
DIGITAL SYSTEM CLOCKING HighPerformance and LowPower Aspects This Page Intentionally Left Blank Digital System Clocking This Page Intentionally Left Blank DIGITAL SYSTEM CLOCKING HighPerformance and
More informationENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.
ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures
More informationCombinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate Kmaps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
More informationECE380 Digital Logic
ECE38 igital Logic FlipFlops, Registers and Counters: FlipFlops r.. J. Jackson Lecture 25 Flipflops The gated latch circuits presented are level sensitive and can change states more than once during
More informationAdvanced Logic Design Techniques in Asynchronous Sequential Circuit Synthesis
Advanced Logic Design Techniques in Asynchronous Sequential Circuit Synthesis Charles R. Bond http://www.crbond.com c 1990 2013, All rights reserved. Contents I Synthesis Methods 4 1 Development of Methods
More informationMICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1
MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable
More informationPhaseLocked Loop Based Clock Generators
PhaseLocked Loop Based Clock Generators INTRODUCTION As system clock frequencies reach 100 MHz and beyond maintaining control over clock becomes very important In addition to generating the various clocks
More informationWiki Lab Book. This week is practice for wiki usage during the project.
Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice
More informationCNC FOR EDM MACHINE TOOL HARDWARE STRUCTURE. Ioan Lemeni
CNC FOR EDM MACHINE TOOL HARDWARE STRUCTURE Ioan Lemeni Computer and Communication Engineering Department Faculty of Automation, Computers and Electronics University of Craiova 13, A.I. Cuza, Craiova,
More informationECE 3401 Lecture 7. Concurrent Statements & Sequential Statements (Process)
ECE 3401 Lecture 7 Concurrent Statements & Sequential Statements (Process) Concurrent Statements VHDL provides four different types of concurrent statements namely: Signal Assignment Statement Simple Assignment
More informationMultiple clock domains
DESIGNING A ROBUST USB SERIAL INTERFACE ENGINE(SIE) What is the SIE? A typical function USB hardware interface is shown in Fig. 1. USB Transceiver USB Serial Interface Engine Status Control Data Buffers/
More informationTo design digital counter circuits using JKFlipFlop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JKFlipFlop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
More informationCS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flipflops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
More informationDigital Logic Design Sequential circuits
Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian Email: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief Email: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An nbit register
More informationDigital Logic Design. Basics Combinational Circuits Sequential Circuits. PuJen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits PuJen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
More informationExperiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
More informationECE124 Digital Circuits and Systems Page 1
ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly
More information(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
More informationTIMBER: Time borrowing and error relaying for online timing error resilience
TIBE: Time borrowing and error relaying for online timing error resilience ihir Choudhury Vikas Chandra Kartik ohanram obert Aitken epartment of Electrical and Computer Engineering, ice University, Houston
More informationRegister File, Finite State Machines & Hardware Control Language
Register File, Finite State Machines & Hardware Control Language Avin R. Lebeck Some slides based on those developed by Gershon Kedem, and by Randy Bryant and ave O Hallaron Compsci 04 Administrivia Homework
More informationProgrammable Logic Design Grzegorz Budzyń Lecture. 10: FPGA clocking schemes
Programmable Logic Design Grzegorz Budzyń Lecture 10: FPGA clocking schemes Plan Introduction Definitions Clockskew Metastability FPGA clocking resources DCM PLL Introduction One of the most important
More informationInstruction scheduling
Instruction ordering Instruction scheduling Advanced Compiler Construction Michel Schinz 2015 05 21 When a compiler emits the instructions corresponding to a program, it imposes a total order on them.
More informationDDR subsystem: Enhancing System Reliability and Yield
DDR subsystem: Enhancing System Reliability and Yield Agenda Evolution of DDR SDRAM standards What is the variation problem? How DRAM standards tackle system variability What problems have been adequately
More informationRTL Low Power Techniques for SystemOnChip Designs
RTL Low Power Techniques for SystemOnChip Designs Mike Gladden Motorola, Inc. Austin, TX rwdb80@email.sps.mot.com Indraneel Das Synopsys, Inc. Austin, TX ineel@synopsys.com ABSTRACT Low power design
More informationThe enable pin needs to be high for data to be fed to the outputs Q and Q bar.
of 7 Type flipflop (Toggle switch) The type flipflops are used in prescalar/divider circuits and frequency phase detectors. Figure shows how the flipflop (latch) can be made using input logic circuits
More informationModule 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech  3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
More informationSystolic Computing. Fundamentals
Systolic Computing Fundamentals Motivations for Systolic Processing PARALLEL ALGORITHMS WHICH MODEL OF COMPUTATION IS THE BETTER TO USE? HOW MUCH TIME WE EXPECT TO SAVE USING A PARALLEL ALGORITHM? HOW
More informationDemystifying DataDriven and Pausible Clocking Schemes
Demystifying DataDriven and Pausible Clocking Schemes Robert Mullins Computer Architecture Group Computer Laboratory, University of Cambridge ASYNC 2007, 13 th IEEE International Symposium on Asynchronous
More informationMinimizing the Eect of Clock Skew. Via Circuit Retiming 1. Technical Report 93504. May, 1992
Minimizing the Eect of Clock kew Via Circuit Retiming 1 Brian Lockyear and Carl Ebeling Department of Computer cience and Engineering University of Washington eattle, Washington 98195 Technical Report
More informationDS2187 Receive Line Interface
Receive Line Interface www.dalsemi.com FEATURES Line interface for T1 (1.544 MHz) and CEPT (2.048 MHz) primary rate networks Extracts clock and data from twisted pair or coax Meets requirements of PUB
More informationCounters are sequential circuits which "count" through a specific state sequence.
Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:
More informationAsynchronous counters, except for the first block, work independently from a system clock.
Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flipflops, they can be asynchronous or synchronous and they can
More informationCHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
More informationSystems Analysis and Design
Systems Analysis and Design Slides adapted from Jeffrey A. Hoffer, University of Dayton Joey F. George, Florida State University Joseph S. Valacich, Washington State University Modern Systems Analysis
More informationFeedback Autonomic Provisioning for guaranteeing performance (and reliability.  application to Big Data Systems
Feedback Autonomic Provisioning for guaranteeing performance (and reliability)  application to Big Data Systems Bogdan Robu bogdan.robu@gipsalab.fr HIPEAC  HPES Workshop Amsterdam 1921.01.2015 Context
More informationDesign Verification & Testing Design for Testability and Scan
Overview esign for testability (FT) makes it possible to: Assure the detection of all faults in a circuit Reduce the cost and time associated with test development Reduce the execution time of performing
More informationDistributed Elastic Switch Architecture for efficient NetworksonFPGAs
Distributed Elastic Switch Architecture for efficient NetworksonFPGAs Antoni Roca, Jose Flich Parallel Architectures Group Universitat Politechnica de Valencia (UPV) Valencia, Spain Giorgos Dimitrakopoulos
More informationCDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch EdgeTriggered D FlipFlop (FF) SR FlipFlop (FF) JK FlipFlop (FF) T FlipFlop
More informationAlpha CPU and Clock Design Evolution
Alpha CPU and Clock Design Evolution This lecture uses two papers that discuss the evolution of the Alpha CPU and clocking strategy over three CPU generations Gronowski, Paul E., et.al., High Performance
More informationIEEE. Proof. INCREASING circuit speed is certain to remain the major. DualEdge Triggered Storage Elements and Clocking Strategy for LowPower Systems
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 5, MAY 2005 1 DualEdge Triggered Storage Elements and Clocking Strategy for LowPower Systems Nikola Nedovic, Member,, and Vojin
More information