PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

Size: px
Start display at page:

Download "PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics"

Transcription

1 PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1

2 Sequential circuit and metastability 2

3 Sequential circuit A Sequential circuit contains: Storage elements: Latches or Flip-Flops Inputs Outputs Combinational Logic: Implements a multiple-output switching function Inputs are signals from the outside. Outputs are signals to the outside. Other inputs, State or Present State, are signals from storage elements. The remaining outputs, Next State are inputs to storage elements State Storage Elements Combina -tional Logic Next State 3

4 Bistable element the basic memory block Has two stable conditions (states) Can be used to store binary symbols If Q = high, the feedback to inverter 2 will cause its output to be low, which also forces the output of inverter 1 to be high. So this is a stable state. If Q = low, the feedback to inverter 2 will cause its output to be high, which also forces the output of inverter 1 to be low. So this is the second stable state. 4

5 Bistable element The bistable circuit DOES NOT require any input to drive it. It will automatically put itself in one of the above stable state upon poweron and remains there forever. Can be viewed as follows: 5

6 Bistable element If the push is less (i.e. violation of setup and hold time), the ball shall travel to the top of the hill (i.e. output metastable), stay there for some time and return to either stable state (i.e. output becomes stable eventually). It may also happen that the ball may rise partially and come back (i.e. output may produce some glitches). 6

7 Latch vs. Flip-flop Latch D D Q Q En En E D Y Level sensitive Flip-flop D D Q Q Clk Clk C D Q Edge-sensitive 7

8 Synchronous and Asynchronous Sequential Circuits Asynchronous sequential circuits: Outputs and state change as soon as an input changes. Synchronous sequential circuits: Outputs and state change depending on a special input (clock). The term asynchronous is because the two flip-flops are not clocked by the same signal. The following circuit is also called asynchronous, 2-bit, binary up counter: 8

9 Synchronous design Combinational Logic (Larger circuits difficult to predict) Synchronous Logic driven by a CLOCK Registers, Flip Flops (Memory) Intermediate Inputs New Output every clock edge CLOCK Register EDGES 9

10 Timing Waveforms (asynchronous) A B C Y 0 ns 10 ns20 ns 30 ns 40 ns 50 ns 60 ns A B C Y 10

11 Timing Waveforms (synchronous) A B C D Clk Q 0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns A B C D D Q Q Clk C 11

12 Timing Waveforms (synchronous) A B A_r B_r C D Clk Q 0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns A B Clk D C D C Q Q A_r B_r C D D Q C Q_r 12

13 Timing Waveforms (Edge Detection) Clk Long_In Q1_r Q2_r Q2_f En_rise 0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns Long_In Clk D C Q Q1_r D Q Q2_r Q2_f C En_rise 13

14 Gated Clocks Q(7 downto 0) Eight bit binary counter with gated clock (not recommended) " " + D Q CountEn Clk C Q(7 downto 0) Eight bit binary counter with free-running clock (recommended) " " + CountEn 0 1 Clk D Q C 14

15 Synchronous design rules All flip-flops are clocked only by the same free-running master clock. No latches No asynchronous feedback No clock signals are derived from logic gating (unless gating produced by tool, i.e., correct by construction) Asynchronous flip-flop inputs (Preset or Clear) are used only for initialization. Delays from one flip-flop to another flip-flop are designed to be less than the clock period. Asynchronous inputs pass through flip-flops (one or more) before being used elsewhere. Enable (control) signals are nominally one clock period in length. Note: Synchronous design is not always the best method, but it is to be assumed unless other methods are absolutely necessary. 15

16 Metastability In an asynchronous system, the relationship between data and clock is not fixed; therefore, violations of setup and hold times can occur. When this happens, the output may go to an intermediate level between its two valid states and remain there for an indefinite amount of time before resolving itself or it may simply be delayed before making a normal transition. Two stable points, one metastable point: 16

17 Single-Stage Synchronizer - Metastability Minimum data set-up (tsu) and hold (thd) times must be met for the register to output synchronized data. The data input to the D flip-flop is asynchronous to the clock. The arrival time of the input data relative to the clock is not known and a danger zone (decision or metastability window) is created. After a clock-to-output delay (tco), the input data appears at the Q output. If the input data enters the danger zone, the Q output is likely to be in a metastable state until the internal silicon settles to either a logic high or low. The extra time required to resolve the logic state is called resolution time (tr). 17

18 Timing Waveforms (Metastability) Clk D_early Q_early D_late Q_late D_bad Q_bad 0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns D D Q Changes before setup time Changes after hold time Changes after setup time or before hold time Indeterminate Q Clk C 18

19 Resolving the metastability The Resolving Time Constant,, comes from the expression that describes the probability of a metastable event lasting longer than some time, t. If a FF is in the metastable state at time t its probability of resolve it over an additional time period t is the same regardless of the present age t The time to solve the metastability must follow an exponential probability distribution. Thus the probability that the system is still in the metastable state at time t is: 19

20 Calculating the MTBF Mean (Average) Time Between Failures or MTBF of a system, is the reciprocal of the failure rate in the special case when the failure rate is constant, i.e. distributed exponentially Failure rate = Metastability Rate * Probability of Metastability The probability of a metastable event lasting longer than some time is R(t): exp(-t/ ) Assume the data arrives uniformly over clock cycle T. The probability that data will arrive in W in a clock period T is: P = W/T = W fc, where: W = Metastability window and fc = Clock frequency If the data rate is fd, then the rate of metastability becomes W fc fd Failure rate = W fc fd exp(-tr/ ) MTBF = exp(tr/ ) /(W fc fd) T 20

21 Estimating device parameters A stable synchronous source is used for the measurement. The set-up and hold times of the input data relative to the clock can be adjusted while observing the Q output for the metastable event. The Metastability Window, W, can be determined by accurately measuring the Clock-To-Output Propagation Delay Time (tco) When the Set-up time or Hold time is violated, the Clock-To-Output Delay is increased. When the tco is measured longer than the tco_max (specified in the device data sheet), the device is considered to be in the metastable state 21

22 Avoiding metastability The most common way to avoid metastability is to add one or more synchronizing FFs at the signals that move from one clock domain to the other. This approach allows for an entire clock period (except for the setup time of the following flip-flop) for metastable events to resolve itself. This does however; increase the latency in observation of input. The Failure rate is now the MTFB of the first FF and the overall MTFB can be computed as: the allowed resolve time are summed up! 22

23 Pipelining 23

24 Pipelining Clock frequency is defined as the rate at which data flows into the system and appears at the output. Pipelining decreases the combinational delay by inserting registers in a long combinational path, thus increasing the clock frequency and hence a higher performance. For a perfect clock without any jitter, the clock signal reaches all banks of registers simultaneously. If FFs are ideal (no tco, tsu and th): the maximum frequency FMAX is the reciprocal of the maximum delay path through the combinational logic. 24

25 FF and clock non idealities FF have delays: In real time circuit s clock input to register B would come after a small delay than at register A due to wire propagation delay: TSKW. Negative clock skew is due to early clocking i.e. clocking of registers before the relevant data is successfully latched. The variation between arrival times of the consecutive clock edges at the same point on the chip is defined as clock jitter TJIT. 25

26 Real world circuit Path in bold refers to the path with maximum delay between any two flip-flops in the circuit: 26

27 Real world circuit The total delay between the two flip-flops along the path b,f,j,l,m,n,o is: Assuming equal delays across all the flip-flops in design (which might not be the actual case) we have the generalized formula for the maximum period as: The combinational delay in the above equation can be reduced by adding more FFs, thus increasing the max frequency on which a circuit can operate. 27

28 Pipelining again! Pipelining splits the critical path (path with maximum combinational delay) with memory elements between the clock cycles increases the calculations per second since the clock period per stage is reduced but increases the overhead by adding memory elements 28

29 Performance Increase Consider a big array of combinational logic between registers. The latency of the circuit is also the clock period: Consider the same circuit to be pipelined into n stages: Pipeline stage with worst delay limits the clock period: The latency is n times the clock period: Ideally, each pipeline stage has equal delay: 29

30 Performance Increase So the minimum possible clock period for any pipeline stage is: Thus the final latency with this ideal clock period is: We can now calculate the speed increase of a circuit after pipelining: If we specify the register and clock overhead as a fraction k of the total clock period of an unpipelined circuit, then we have: 30

31 Endianess 31

32 Little-Endian or Big-Endian: Which Is Better? In Little Endian form, assembly language instructions for accessing 1, 2, 4, or longer byte number proceed in exactly the same way for all formats. Also, because of the 1:1 relationship between address offset and byte number (offset 0 is byte 0), multiple precision math routines are correspondingly easy to write. In Big Endian form, since the higher-order byte come first, it is easy to test whether the number is positive or negative by looking at the byte at offset zero. The numbers are also stored in the order in which they are printed out, so binary to decimal routines are particularly efficient. 32

33 Issues Dealing with Endianess Mismatch Endianess doesn t matter on a single system. It matters only when two computers are trying to communicate. One possible solution to interface opposite-endianess peripherals is to chose addresses so that they remain constant (i.e. Address Invariance where bytes remain at same address) 33

34 Issues Dealing with Endianess Mismatch Endianess doesn t matter on a single system. It matters only when two computers are trying to communicate. One other solution to interface oppositeendianess peripherals is to chose bit ordering to remain constant (Data Invariance where addresses are changed). 34

35 Swapping Swapping byte is an alternate way to achieve endianess conversion. This mode is useful in systems where the endianess is decided by the application itself. An atomic data object that is N- bytes in size (a) is treated like an N- element byte array (b). Each element of this byte array is then mirrored (Fig.1c) to complete the byte swap of the original data object. 35

36 Debouncing Techniques 36

37 Behavior of a switch When the metallic contacts of a switch strike together, their momentum and elasticity act together to cause bounce. A Resistor-Capacitor (RC) network is probably the most common and easiest method of de-bouncing circuit: 37

38 Software de-bouncing Solution A: Read the Switch after sufficient time allowing the bounces to settle down. The only downside with is slow response time; this approach would fail if user desires to operate the switch at a rate much faster than 500 ms Solution B: Interrupt the CPU on switch activation and de-bounce in ISR. Solution C: Use a Counter to eliminate the noise and validate switch state. The counter counts up as long as the signal is Low, and is reset when the signal is High. If the counter reaches a certain fixed value, which should be one or two times bigger noise pulses, this means that the current pulse is a valid pulse. 38

39 Commercial debouncer For the designs that do not include de-bounce circuitry on external inputs, system may choose to use external de-bounce ICs. When the input does not equal the output, the XNOR gate issues a counter reset. When the switch input state is stable for the full qualification period, the counter clocks the flip-flop, updating the output. The under-voltage lockout circuitry ensures that the outputs are at the correct state on power-up. 39

40 Clock gating and reset strategies 40

41 Clock gating In the traditional synchronous design style, the system clock is connected to the clock pin on every flip-flop in the design. This results in three major components of power consumption: 1. Power consumed by combinatorial logic whose values are changing on each clock edge (due to flops driving those combo cells). 2. Power consumed by flip-flops (this has non-zero value even if the inputs to the flip-flops, and therefore, the internal state of the flip-flops, is not changing). 3. Power consumed by the clock tree buffers in the design. Gating the clock path substantially reduces the power consumed by a Flip Flop. Gate clocking imposes that all enable signals be held constant from the active (rising) edge of the clock until the inactive (falling) edge of the clock to avoid truncating the generated clock pulse prematurely or generating multiple clock pulses (or glitches in clock): discard! 41

42 Clock gating The latch-based clock gating style adds a level-sensitive latch to the design to hold the enable signal from the active edge of the clock until the inactive edge of the clock. The latch captures the state of the enable signal and holds it until the complete clock pulse has been generated. The enable signal need only be stable around the rising edge of the clock. Only one input of the gate that turns the clock on and off changes at a time, ensuring that the circuit is free from any glitches or spikes on the output. 42

43 Synchronous reset Synchronous resets are based on the premise that the reset signal will only affect or reset the state of the flip-flop on the active edge of a clock. Advantages of Using Synchronous Resets Synchronous resets generally insure that the circuit is 100% synchronous. Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the Flop input. Synchronous resets ensure that reset can only occur at an active clock edge. The clock works as a filter for small reset glitches. Disadvantages Synchronous resets may need a pulse stretcher to guarantee a reset pulse width wide enough to ensure reset is present during an active edge of the clock. A synchronous reset will require a clock in order to reset the circuit. This may be a problem in some case where a gated clock is used to save power. 43

44 Synchronous reset 44

45 Asynchronous Reset Asynchronous reset flip-flops incorporate a reset pin into the flip-flop design. The most obvious advantage favoring asynchronous resets is that the circuit can be reset with or without a clock present. The biggest problem with asynchronous resets is that they are asynchronous, both at the assertion and at the de-assertion. The assertion is a non issue, the deassertion is the issue. If the asynchronous reset is released at or near the active clock edge of a flip-flop, the output of the flip-flop could go metastable. Another problem that an asynchronous reset can have, depending on its source, is spurious resets due to noise or glitches on the board or system reset. 45

46 Reset synchronizer The reset synchronizer logic is designed to take advantage of the best of both asynchronous and synchronous reset styles. An external reset signal asynchronously resets a pair of flip-flops, which in turn drive the master reset signal asynchronously through the reset buffer tree to the rest of the flip-flops in the design. The entire design will be asynchronously reset. 46

47 Reset Glitch Filtering 47

48 Multiple clock domains 48

49 Multiple Clock domains Designs with multiple clocks can have: clocks with different frequencies and/or clocks with same frequency but different phases between them. Metastability issues may arise; system desing must be partitioned so that each module should work on one clock only. A synchronizer module has to be made for all signals that cross from one clock domain to another 49

50 Synchronous Clock domain crossing Clocks originating from the same clock-root and having a known phase and frequency relationship between them are known as synchronous clocks. A clock crossing between such clocks is known as a synchronous clock domain crossing. Depending on frequency and phase relationship, synchronizers may be needed or not! Synchronous Clock domain crossing can be divided into several categories: Clocks with the same frequency and zero phase difference: no domain cross! 50

51 Synchronous Clock domain crossing Synchronous Clock domain crossing can be divided into several categories : Clocks with the same frequency and constant phase difference: tighter constraint on the combinational logic delay due to smaller setup/hold margins. Integer multiple clocks: the minimum possible phase difference between the active edges of the two clocks would always be equal to the time period of the fast clock, i.e. one complete cycle of the faster clock would always be available for sampling 51

52 Synchronous Clock domain crossing Synchronous Clock domain crossing can be divided into several categories. Rational multiple clocks: the minimum phase difference between the two clocks can be small enough to cause metastability: synchronization needs to be done! 52

53 Transfer of control signals Two or more flip-flops are cascaded to form a synchronizing circuit As previously seen, if the first flop of a synchronizer produces a metastable output, the metastability may get resolved before it is sampled by the second flip flop. This method does not guarantee that the output of the second flipflop will go metastable but it does decrease the probability of metastability. Adding more flops to the synchronizer will further reduce the probability of metastability. 53

54 Transfer of data signals Synchronous FIFO Simple Synchronous FIFO architecture: reading and writing is done on the same clock. The read and write addresses are generated by two pointers. A valid write enable increments the write pointer and a valid read enable increments the read pointer. A Status Block generates the fifo_empty and fifo_full signals. The Dual Port Memory (DPRAM) can have either synchronous (an explicit read signal is provided before the FIFO output is valid) or asynchronous reads (valid data is available as soon as it is written). 54

55 FIFO_FULL and FIFO_empty FIFO is either full or empty when read-pointer equals to the write pointer: it is necessary to distinguish between these two conditions. FIFO becomes full when a write causes both the pointers to become equal in the next clock. This makes the following condition for assertion of fifo_full signal: fifo _ full=(read _ pointer ==(write _ pointer +1))AND "write An alternative approach exploits a counter that constantly indicates the number of full or empty locations left in the FIFO: additional hardware is neede! 55

56 Transfer of data signals Asynchronous FIFO Asynchronous FIFO is used to transfer data across two asynchronous clock domains. Unlike handshake signaling, asynchronous FIFO is used in case of performance critical designs. where clock latency is a factor rather than system resources. The same approach of synchronous FIFO can be exploited with special care taken for FIFO empty and FIFO Full signal generation to avoid metastability conditions. 56

57 Transfer of data signals Asynchronous FIFO 57

58 FIFO full timings 58

59 FIFO full timings Since a typical synchronizer circuit consists of at least two FFs, synchronizing read pointer on write clock will result in changed read pointer reflected after two write clocks. This results in blocking additional writes on the FIFO for additional cycles but is harmles 59

60 FIFO empty timings 60

61 FIFO empty timings For the FIFO Empty calculation, write pointer is synchronized to the read clock and compared against the read pointer. Due to this, read side sees delayed writes (two clock delayed signal), and would still indicate FIFO empty even though it actually has some data, but it is harmless. 61

62 Transfer of data signals Asynchronous FIFO Suppose full and empty signals are generated using a counter which is changing from FFF to 000. Metastability can be avoided by synchronizing the counter, but this may still get sampled values that are widely off the mark (e.g. sampling counter in the middle of the updating phase). A possible solution is to count in Gray-code, with a number changing by one bit as it proceeds from one number to the next. Synchronizing gray counter will rarely result in sampled counter value getting metastable and secondly the value sampled will have at most one bit error Synchronizing read or write pointer on write clock will result in changed read or write pointer reflected after two (N) write clocks This results in blocking additional writes or read on the FIFO for additional cycles but is harmless! 62

63 Gray Code Implementation of FIFO Pointers STEP I : Convert the Gray value to Binary value. STEP II : Increment the Binary value depending on some condition. STEP III: Convert the Binary value back to Gray. STEP IV: Store the final Gray value of the counter in a register 63

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit - FSM A Sequential circuit contains: Storage

More information

Timing Methodologies (cont d) Registers. Typical timing specifications. Synchronous System Model. Short Paths. System Clock Frequency

Timing Methodologies (cont d) Registers. Typical timing specifications. Synchronous System Model. Short Paths. System Clock Frequency Registers Timing Methodologies (cont d) Sample data using clock Hold data between clock cycles Computation (and delay) occurs between registers efinition of terms setup time: minimum time before the clocking

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

EE552. Advanced Logic Design and Switching Theory. Metastability. Ashirwad Bahukhandi. (Ashirwad Bahukhandi) bahukhan@usc.edu

EE552. Advanced Logic Design and Switching Theory. Metastability. Ashirwad Bahukhandi. (Ashirwad Bahukhandi) bahukhan@usc.edu EE552 Advanced Logic Design and Switching Theory Metastability by Ashirwad Bahukhandi (Ashirwad Bahukhandi) bahukhan@usc.edu This is an overview of what metastability is, ways of interpreting it, the issues

More information

Chapter 3 :: Sequential Logic Design

Chapter 3 :: Sequential Logic Design Chapter 3 :: Sequential Logic Design Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Copyright 2007 Elsevier 3- Bistable Circuit Fundamental building block of other state

More information

Design of Digital Systems II Sequential Logic Design Principles (1)

Design of Digital Systems II Sequential Logic Design Principles (1) Design of Digital Systems II Sequential Logic Design Principles (1) Moslem Amiri, Václav Přenosil Masaryk University Resource: Digital Design: Principles & Practices by John F. Wakerly Introduction Logic

More information

Sequential Circuits. Prof. MacDonald

Sequential Circuits. Prof. MacDonald Sequential Circuits Prof. MacDonald Sequential Element Review l Sequential elements provide memory for circuits heart of a state machine saving current state used to hold or pipe data data registers, shift

More information

Latch Timing Parameters. Flip-flop Timing Parameters. Typical Clock System. Clocking Overhead

Latch Timing Parameters. Flip-flop Timing Parameters. Typical Clock System. Clocking Overhead Clock - key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where

More information

Figure 2.1(a) Bistable element circuit.

Figure 2.1(a) Bistable element circuit. 3.1 Bistable Element Let us look at the inverter. If you provide the inverter input with a 1, the inverter will output a 0. If you do not provide the inverter with an input (that is neither a 0 nor a 1),

More information

An astable multivibrator acts as an oscillator (clock generator) while a monostable multivibrator can be used as a pulse generator.

An astable multivibrator acts as an oscillator (clock generator) while a monostable multivibrator can be used as a pulse generator. Concepts In sequential logic, the outputs depend not only on the inputs, but also on the preceding input values... it has memory. Memory can be implemented in 2 ways: Positive feedback or regeneration

More information

Lecture 11: Sequential Circuit Design

Lecture 11: Sequential Circuit Design Lecture 11: Sequential Circuit esign Outline Sequencing Sequencing Element esign Max and Min-elay Clock Skew Time Borrowing Two-Phase Clocking 2 Sequencing Combinational logic output depends on current

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Flip-Flops, Registers, Counters, and a Simple Processor

Flip-Flops, Registers, Counters, and a Simple Processor June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

More information

Synchronization in Digital Logic Circuits. Synchronization: Why care?

Synchronization in Digital Logic Circuits. Synchronization: Why care? Synchronization in Digital Logic Circuits Ryan Donohue Rdonohue@yahoo.com Synchronization: Why care? Digital Abstraction depends on all signals in a system having a valid logic state Therefore, Digital

More information

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

Sequential Circuits. Combinational Circuits Outputs depend on the current inputs

Sequential Circuits. Combinational Circuits Outputs depend on the current inputs Principles of VLSI esign Sequential Circuits Sequential Circuits Combinational Circuits Outputs depend on the current inputs Sequential Circuits Outputs depend on current and previous inputs Requires separating

More information

Lecture 7: Clocking of VLSI Systems

Lecture 7: Clocking of VLSI Systems Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis

More information

Memory Elements. Combinational logic cannot remember

Memory Elements. Combinational logic cannot remember Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 19 Sequential Circuits: Latches Overview Circuits require memory to store intermediate data Sequential circuits use a periodic signal to determine

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

A New Paradigm for Synchronous State Machine Design in Verilog

A New Paradigm for Synchronous State Machine Design in Verilog A New Paradigm for Synchronous State Machine Design in Verilog Randy Nuss Copyright 1999 Idea Consulting Introduction Synchronous State Machines are one of the most common building blocks in modern digital

More information

Karnaugh Maps. Example A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1. each 1 here gives a minterm e.g.

Karnaugh Maps. Example A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1. each 1 here gives a minterm e.g. Karnaugh Maps Yet another way of deriving the simplest Boolean expressions from behaviour. Easier than using algebra (which can be hard if you don't know where you're going). Example A B C X 0 0 0 0 0

More information

3 Flip-Flops. The latch is a logic block that has 2 stable states (0) or (1). The RS latch can be forced to hold a 1 when the Set line is asserted.

3 Flip-Flops. The latch is a logic block that has 2 stable states (0) or (1). The RS latch can be forced to hold a 1 when the Set line is asserted. 3 Flip-Flops Flip-flops and latches are digital memory circuits that can remain in the state in which they were set even after the input signals have been removed. This means that the circuits have a memory

More information

Lecture 10: Sequential Circuits

Lecture 10: Sequential Circuits Introduction to CMOS VLSI esign Lecture 10: Sequential Circuits avid Harris Harvey Mudd College Spring 2004 Outline q Sequencing q Sequencing Element esign q Max and Min-elay q Clock Skew q Time Borrowing

More information

Chapter 2 Clocks and Resets

Chapter 2 Clocks and Resets Chapter 2 Clocks and Resets 2.1 Introduction The cost of designing ASICs is increasing every year. In addition to the non-recurring engineering (NRE) and mask costs, development costs are increasing due

More information

Module 4 : Propagation Delays in MOS Lecture 20 : Analyzing Delay in few Sequential Circuits

Module 4 : Propagation Delays in MOS Lecture 20 : Analyzing Delay in few Sequential Circuits Module 4 : Propagation Delays in MOS Lecture 20 : Analyzing Delay in few Sequential Circuits Objectives In this lecture you will learn the delays in following circuits Motivation Negative D-Latch S-R Latch

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

Sequential Circuits: Latches & Flip-Flops

Sequential Circuits: Latches & Flip-Flops Sequential Circuits: Latches & Flip-Flops Sequential Circuits Combinational Logic: Output depends only on current input Able to perform useful operations (add/subtract/multiply/encode/decode/ select[mux]/etc

More information

Contents COUNTER. Unit III- Counters

Contents COUNTER. Unit III- Counters COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

More information

Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology

Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter

More information

7. Latches and Flip-Flops

7. Latches and Flip-Flops Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The

More information

White Paper Understanding Metastability in FPGAs

White Paper Understanding Metastability in FPGAs White Paper Understanding Metastability in FPGAs This white paper describes metastability in FPGAs, why it happens, and how it can cause design failures. It explains how metastability MTBF is calculated,

More information

A Pausible Bisynchronous FIFO for GALS Systems

A Pausible Bisynchronous FIFO for GALS Systems 2015 Symposium on Asynchronous Circuits and Systems A Pausible Bisynchronous FIFO for GALS Systems Ben Keller*, Ma@hew FojCk*, Brucek Khailany* *NVIDIA CorporaCon University of California, Berkeley May

More information

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

More information

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits

More information

Set-Reset (SR) Latch

Set-Reset (SR) Latch et-eset () Latch Asynchronous Level sensitive cross-coupled Nor gates active high inputs (only one can be active) + + Function 0 0 0 1 0 1 eset 1 0 1 0 et 1 1 0-? 0-? Indeterminate cross-coupled Nand gates

More information

Lecture 10. Latches and Flip-Flops

Lecture 10. Latches and Flip-Flops Logic Design Lecture. Latches and Flip-Flops Prof. Hyung Chul Park & Seung Eun Lee Sequential Logic Outputs of sequential logic depend on current inputs and prior input values Sequential logic might explicitly

More information

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence

More information

Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS

Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS Introduction : Logic circuit is divided into two types. 1. Combinational Logic Circuit 2. Sequential Logic Circuit Definition : 1. Combinational

More information

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1 ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05

More information

TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING

TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV February 28, 2005 Research Objective Objective: Electronic design automation

More information

7. Sequential Circuits - Combinational vs. Sequential Circuits - 7. Sequential Circuits - State (2) - 7. Sequential Circuits - State (1) -

7. Sequential Circuits - Combinational vs. Sequential Circuits - 7. Sequential Circuits - State (2) - 7. Sequential Circuits - State (1) - Sistemas Digitais I LESI - 2º ano Lesson 7 - Sequential Systems Principles Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática - Combinational vs. Sequential Circuits - Logic circuits are

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

Sequential Circuits: Latches & Flip-Flops

Sequential Circuits: Latches & Flip-Flops ESD I Lecture 3.b Sequential Circuits: Latches & Flip-Flops 1 Outline Memory elements Latch SR latch D latch Flip-Flop SR flip-flop D flip-flop JK flip-flop T flip-flop 2 Introduction A sequential circuit

More information

Sequential Logic Latches & Flip-flops

Sequential Logic Latches & Flip-flops Sequential Logic Latches & Flip-flops Introduction Memory Elements Pulse-Triggered Latch S-R Latch Gated S-R Latch Gated D Latch Edge-Triggered Flip-flops S-R Flip-flop D Flip-flop J-K Flip-flop T Flip-flop

More information

Chapter 5 Latch and flip-flop

Chapter 5 Latch and flip-flop 257 Chapter 5 Latch and flip-flop «from the ground up I-2013b --- Copyright Daniele Giacomini -- appunti2@gmail.com http://a3.informaticalibera.net 5.1 Propagation delay..................................

More information

Lecture 10: Multiple Clock Domains

Lecture 10: Multiple Clock Domains Bluespec SystemVerilog Training Lecture 10: Multiple Clock Domains Copyright Bluespec, Inc., 2005-2008 Lecture 10: Multiple Clock Domains The Clock type, and functions Modules with different clocks Clock

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Low latency synchronization through speculation

Low latency synchronization through speculation Low latency synchronization through speculation D.J.Kinniment, and A.V.Yakovlev School of Electrical and Electronic and Computer Engineering, University of Newcastle, NE1 7RU, UK {David.Kinniment,Alex.Yakovlev}@ncl.ac.uk

More information

PowerPC Microprocessor Clock Modes

PowerPC Microprocessor Clock Modes nc. Freescale Semiconductor AN1269 (Freescale Order Number) 1/96 Application Note PowerPC Microprocessor Clock Modes The PowerPC microprocessors offer customers numerous clocking options. An internal phase-lock

More information

Topic Notes: Sequential Circuits

Topic Notes: Sequential Circuits Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 2011 opic Notes: Sequential Circuits We have seen many examples of what we can do with combinational logic taking a set of

More information

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.

More information

Figure 3. Ball and hill analogy for metastable behavior. S' R' Q Q next Q next ' 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 (a)

Figure 3. Ball and hill analogy for metastable behavior. S' R' Q Q next Q next ' 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 (a) Chapter 5 Latches and Flip-Flops Page 1 of 17 5. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The

More information

Lecture 9: Flip-flops

Lecture 9: Flip-flops Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flip-flops and latches Lecture 9: Flip-flops Professor Peter Cheung Department of EEE, Imperial

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

Synchronous Sequential Logic. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University

Synchronous Sequential Logic. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University Synchronous Sequential Logic Logic and Digital System Design - S 33 Erkay Savaş Sabanci University Sequential Logic Digital circuits we have learned, so far, have been combinational no memory, outputs

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Prof. Randy Katz (Unified

More information

5. Sequential CMOS Logic Circuits

5. Sequential CMOS Logic Circuits 5. Sequential CMOS Logic Circuits In sequential logic circuits the output signals is determined by the current inputs as well as the previously applied input variables. Fig. 5.1a shows a sequential circuit

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Module-3 SEQUENTIAL LOGIC CIRCUITS

Module-3 SEQUENTIAL LOGIC CIRCUITS Module-3 SEQUENTIAL LOGIC CIRCUITS Till now we studied the logic circuits whose outputs at any instant of time depend only on the input signals present at that time are known as combinational circuits.

More information

DM74LS169A Synchronous 4-Bit Up/Down Binary Counter

DM74LS169A Synchronous 4-Bit Up/Down Binary Counter Synchronous 4-Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation

More information

Chapter 3. Sequential Logic Design. Copyright 2013 Elsevier Inc. All rights reserved.

Chapter 3. Sequential Logic Design. Copyright 2013 Elsevier Inc. All rights reserved. Chapter 3 Sequential Logic Design 1 Figure 3.1 Cross-coupled inverter pair 2 Figure 3.2 Bistable operation of cross-coupled inverters 3 Figure 3.3 SR latch schematic 4 Figure 3.4 Bistable states of SR

More information

AN1504/D. Metastability and the ECLinPS Family APPLICATION NOTE

AN1504/D. Metastability and the ECLinPS Family APPLICATION NOTE Metastability and the ECLinPS Family Prepared by: Applications Engineering APPLICATION NOTE This application note examines the concept of metastability and provides a theoretical discussion of how it occurs,

More information

Lecture 10 Sequential Circuit Design Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 10 Sequential Circuit Design Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS igital IC esign & Analysis Lecture 10 Sequential Circuit esign Zhuo Feng 10.1 Z. Feng MTU EE4800 CMOS igital IC esign & Analysis 2010 Sequencing Outline Sequencing Element esign Max and Min-elay

More information

FPGA Clocking. Clock related issues: distribution generation (frequency synthesis) multiplexing run time programming domain crossing

FPGA Clocking. Clock related issues: distribution generation (frequency synthesis) multiplexing run time programming domain crossing FPGA Clocking Clock related issues: distribution generation (frequency synthesis) Deskew multiplexing run time programming domain crossing Clock related constraints 100 Clock Distribution Device split

More information

Outline. Lecture 8. VHDL, Part III 28.10.2010. Sequential logic and FSMs. Sequential circuits: principles. Finite state machines.

Outline. Lecture 8. VHDL, Part III 28.10.2010. Sequential logic and FSMs. Sequential circuits: principles. Finite state machines. Lecture 8 VHDL, Part III Sequential logic and FSMs Outline Sequential circuits: principles System reset Finite state machines Output buffering 2 1 Section 1 SEQUENTIAL CIRCUITS: PRINCIPLES 3 Overview on

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts)

Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts) Dr. Greg Tumbush, gtumbush@uccs.edu Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts) Objective The objective of lab assignments 5 through 9 are to systematically design and implement

More information

Registers, Counters, and Clock

Registers, Counters, and Clock Registers, Counters, and Clock Z. Jerry Shi Computer Science and Engineering University of Connecticut Thank John Wakerly for providing his slides and figures. Multibit registers 74x175 (4 bits) 8-bit

More information

Tutorial 1: Chapter 1

Tutorial 1: Chapter 1 Tutorial 1: hapter 1 1. Figure 1.1 shows the positive edge triggered D flip flop, determine the output of Q 0, assume output is initially LOW. Figure 1.1 2. For the positive edge-triggered J-K flip-flop

More information

Metastability Characterization Report for Microsemi Flash FPGAs

Metastability Characterization Report for Microsemi Flash FPGAs T s = T co + T met EQ 2 Metastability Characterization Report for Microsemi Flash FPGAs Introduction Whenever asynchronous data is registered by a clocked flip-flop, there is a probability of setup or

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

More information

Lecture 8: Flip-flops

Lecture 8: Flip-flops Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flip-flops and latches Lecture 8: Flip-flops Professor Peter Cheung Department of EEE, Imperial

More information

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012 Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits. 2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,

More information

Memory unit. 2 k words. n bits per word

Memory unit. 2 k words. n bits per word 9- k address lines Read n data input lines Memory unit 2 k words n bits per word n data output lines 24 Pearson Education, Inc M Morris Mano & Charles R Kime 9-2 Memory address Binary Decimal Memory contents

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Serial Communications

Serial Communications Serial Communications 1 Serial Communication Introduction Serial communication buses Asynchronous and synchronous communication UART block diagram UART clock requirements Programming the UARTs Operation

More information

8254 PROGRAMMABLE INTERVAL TIMER

8254 PROGRAMMABLE INTERVAL TIMER PROGRAMMABLE INTERVAL TIMER Y Y Y Compatible with All Intel and Most Other Microprocessors Handles Inputs from DC to 10 MHz 8 MHz 8254 10 MHz 8254-2 Status Read-Back Command Y Y Y Y Y Six Programmable

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

6-BIT UNIVERSAL UP/DOWN COUNTER

6-BIT UNIVERSAL UP/DOWN COUNTER 6-BIT UNIVERSAL UP/DOWN COUNTER FEATURES DESCRIPTION 550MHz count frequency Extended 100E VEE range of 4.2V to 5.5V Look-ahead-carry input and output Fully synchronous up and down counting Asynchronous

More information

14:332:231 DIGITAL LOGIC DESIGN. Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 2013

14:332:231 DIGITAL LOGIC DESIGN. Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 2013 4:332:23 DIGITAL LOGIC DEIGN Ivan Marsic, utgers University Electrical & Computer Engineering Fall 23 Lecture #5: equential Circuits: Latches equential Circuits Combinational circuits: current input output

More information

EEC 116 Lecture #6: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #6: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #6: Sequential Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 3 extended, same due date as Lab 4 HW4 issued today Amirtharajah/Parkhurst,

More information

74LS193 Synchronous 4-Bit Binary Counter with Dual Clock

74LS193 Synchronous 4-Bit Binary Counter with Dual Clock 74LS193 Synchronous 4-Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops

More information

Page 2 CK K. Figure 3: JK Flip-flops with asynchronous PRESET and CLEAR inpu CK K. Figure 2: JK Flip-flops with different types of triggering

Page 2 CK K. Figure 3: JK Flip-flops with asynchronous PRESET and CLEAR inpu CK K. Figure 2: JK Flip-flops with different types of triggering EGR 78 Digital Logic Lab File: N78L9A Lab # 9 Multivibrators A. Objective The objective of this laboratory is to introduce the student to the use of bistable multivibrators (flip-flops), monostable multivibrators

More information

Topics. Flip-flop-based sequential machines. Signals in flip-flop system. Flip-flop rules. Latch-based machines. Two-sided latch constraint

Topics. Flip-flop-based sequential machines. Signals in flip-flop system. Flip-flop rules. Latch-based machines. Two-sided latch constraint Topics Flip-flop-based sequential machines! Clocking disciplines. Flip-flop rules! Primary inputs change after clock (φ) edge.! Primary inputs must stabilize before next clock edge.! Rules allow changes

More information

Asynchronous Counters. Asynchronous Counters

Asynchronous Counters. Asynchronous Counters Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

More information

CHAPTER TEN. 10.1 New Truth Table Symbols. 10.1.1 Edges/Transitions. Memory Cells

CHAPTER TEN. 10.1 New Truth Table Symbols. 10.1.1 Edges/Transitions. Memory Cells CHAPTER TEN Memory Cells The previous chapters presented the concepts and tools behind processing binary data. This is only half of the battle though. For example, a logic circuit uses inputs to calculate

More information

Asynchronous counters, except for the first block, work independently from a system clock.

Asynchronous counters, except for the first block, work independently from a system clock. Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can

More information

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012 Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information