# Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Save this PDF as:

Size: px
Start display at page:

Download "Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices."

## Transcription

1 Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block of a digital circuit. Most logic gates have two inputs and one output. Every terminal is in one of the two binary conditions low () or high (), represented by different voltage levels. In most logic gates, the low state is zero volts ( V), while the high state is five volts (+5 V). There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR. The AND gate is so named because, if is called "false" and is called "true," the gate acts in the same way as the logical "and" operator. The following illustration and logic table show the circuit symbol and logic construction for an AND gate. The output is "true" when both inputs are "true." Otherwise, the output is "false."

2 Y B A Y B A AND OR The OR gate behaves after the fashion of the logical inclusive "or." The output is "true" if either or both of the inputs are "true." If both inputs are "false," then the output is "false."

3 A logical inverter, sometimes called a NOT gate to differentiate it from other types of electronic inverter devices, has only one input. It reverses the logic state. NOT A Y To make the XOR gate we need 3 gates. The XOR (exclusive-or) gate acts in the same way as the logical "either/or." The output is "true" if either, but not both, of the inputs are "true." The output is "false" if both inputs are "false" or if both inputs are "true." Another way of looking at this circuit is to observe that the output is if the inputs are different, but if the inputs are the same. XOR

4 The term Gate is used to describe the members of a set of basic electronic components which, when combined with each other, are able to perform complex logical and arithmetic operations. 'Gates' are the physical realization of the simple Boolean expressions. Adder half adder Now let s talk about Adder. Adders are combinations of logic gates that combine binary values to obtain a sum. They are classified according to their ability to accept and combine the digits (quarter adders, half adders, and full adders ). This is half adders. It s designed to combine two binary digits and produce a carry. We can construct every functional circuit blocks with elementary logic gates.

5 NOT Gate The simplest form of an MOS logic circuit is an inverter, as shown in left figure. It consists of a load resistance R called the pull-up resistor and pull-down transistor connected in series between supply voltage Vdd and ground. Transfer Characteristic Real gate We note that the operating point moves through the curve as Vin is increased from to Vdd, which yields the voltage transfer curve for an inverter, shown in figure.

6 NAND gate The basic NOR and NAND logic function can be implemented by replacing the transistor of the invertor by parallel and series connection of transistor as shown in left figure. The truth table show that the input A and B are applied via poly-silicon lines ; the output can be taken in diffusion from the source side of pull-up or via polysilicon from the gate side. A B Y For the NAND gate if input A and B are both high, the pull-down path will be closed and the output will be pulled low.

7 Nanoscale Devices MOSFET The metal-oxide semiconductor (MOS) field-effect transistor (FET) exhibits an extremely high input resistance. In MOSFET the channel current is controlled by a voltage applied at a gate electrode which is isolated from the channel by an insulator. MOSFET ( N-MOS )

8 MOSFET ( N-MOS ) There are two basic types of MOS transistors : the n- channel and the p-channel. N-MOS p - P-MOS The structure of an n-channel MOS transistor is shown in figure. It consists of two islands of n-type diffusions embedded in a p-type substrate, which are connected via metal or poly-silicon to external conductors called source and drain. On the surface a thin layer of silicon dioxide is formed and on top of this a conducting material made of poly-silicon called a gate is deposited. If the substrate material is n-type and the diffused islands are p-type, it will be p-channel MOS transistor

9 The terminal characteristics of the device are given by drain-to-source current I ds against drain-to-source voltage V ds for different values of gate-to-source voltage V gs. All voltages are referenced with respect to the source voltage, which is assumed to be at ground potential. I ds Linear region Saturatoin region V gs = 5 V V gs = 4 V V gs = 3 V V ds -5 V gs = -3 V V gs = -4 V V gs = -5 V I ds 5 (a) n-channel transistor V ds (b) p-channel transistor

10 CMOS In CMOS, both p- and n-channel transistors are used. The silicon substrate is an n-type, in which a p-type well is created by diffusion. Ths n-channel transistors are created in the p-well region. The p-channel transistors are made in the n-substrate. The basic structure of the p-well CMOS inverter is shown below. Input Vdd Out Vss P-well p-type n-type

11 When the input voltage V in =, the gate of the p-channel transistor is at V dd below the source potential, that is, V gs = -V dd, which will turn on this transistor, offering a lowresistance path to load capacitance C, which will be charged up to V dd. No current flows through the n-channel transistor, which is turned off since V gs = for this transistor. If the input voltage is now increased to its threshold voltage and then to V dd, the n-channel transistor will conduct while the p-channel transistor is turned off, discharging the load capacitance C to ground potential. The current flows until the output node reaches V dd (when charging) or ground (when discharging), the transistors to provide either the carge or the discharge current. Vdd Vin C Vout Since both the transistors are enhancement-mode transistors, here we used the symbols V gs, V th, and V ds as before with a letter p or n attached to the end of the subscript to indicate whether the quantity refers to the p-channel or n- channel device. Vss

12 Referring all the voltages to V ss = (the substrate voltage of the n-device), we can write V gsn = V in V dsn = V out V gsp = V in -V dd V dsp = V out V dd The drain-to-source currents for the n-channel and p-channel transistors are plotted below. I dsn I dsp P-channel n-channel V dd

13 Vdd V out I II Vin = Vout I. < Vin <Vthn The n-transistor is off and p-transistor is set to operate in linear region, but there is no actual current flow. III IV V Vthn Vinv ½ Vdd Vdd I d V in II. III. Vthn < Vin < Vinv The upper limit of Vin is given by the logic threshold voltage Vinv of the inverter for this region. Vinv is the ourput voltage at which Vin = Vout. Vin ~ Vinv Both the transistors are in saturation regions of their characteristic curves, the drain current attains a maximum value, and the output voltage falls rapidly. V dd - V thp V in IV. Vinv < Vin < Vdd-Vthp As the input voltage is increased, the n- transistors leaves the saturation region to enter the linear region, whereas the p- transistor continues to stay in the saturation state. V. Vdd-Vthp < Vin < Vdd At this point the p-transistor is turned off.

14 A Few Practical Issues. Noise margin The noise margin for a logic gate is defined as the maximum amount of noise applied to the input in each logic state while the output remains in the correct state. The high and low static noise margins are defined as V oh -V ih = NM H V il -V ol = NM L

15 NSC (negative slope criteria) is one of methods to measure the static noise margin of a logic gate. NSC selects the unity gain point in the gate input-output voltage characteristics as the switching point where the gate moves from a logic state to a meta-stable state. This may be calculated mathematically which can be useful.

16 For good noise margin needs high pulse

17 2. Fanout Fanout = # of driven with acceptable NM 3. Complex Gates

18 4. Switching Speed Suppose Vo = high = Vdd ( PMOS ON ) Vi = high at t = i D = C L dv dt out = C L V t out CL V t = i D out t PHL CLV = 2i D DD

19 i D What determine? Q n C i ( VG Vin) i D i D = (change percert a sec ) (width) (velocity ) = Zv s C i ( VG Vin ) v s : saturation velocity C C L L C ZL i C ZL i Realistic Eq t PHL V DD 2 CiZL v C V Z s i DD = L 2v s

20 5. Power Consumption P + = N gates ( α Ef c I leakagevdd ) E f c = energy / witeling cycle = = clock frequency 2 C L V DD α = prob of witeling / clock cycle I leakage = DC leackage current /S = inverse threshold slope

### The MOSFET Transistor

The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

### Bob York. Transistor Basics - MOSFETs

Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

### Field-Effect (FET) transistors

Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

### EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1

EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect

### LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

### CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The

### CMOS Logic Integrated Circuits

CMOS Logic Integrated Circuits Introduction CMOS Inverter Parameters of CMOS circuits Circuits for protection Output stage for CMOS circuits Buffering circuits Introduction Symetrical and complementary

### Junction FETs. FETs. Enhancement Not Possible. n p n p n p

A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley

### Bi-directional level shifter for I²C-bus and other systems.

APPLICATION NOTE Bi-directional level shifter for I²C-bus and other Abstract With a single MOS-FET a bi-directional level shifter circuit can be realised to connect devices with different supply voltages

### Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections

### Application Note AN-940

Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching

### CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

### 5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

This material is from a previous edition of Microelectronic Circuits. These sections provide valuable information, but please note that the references do not correspond to the 6th or 7th edition of the

### Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal

### Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251

Gates J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, T 77251 1. The Evolution of Electronic Digital Devices...1 2. Logical Operations and the Behavior of Gates...2

### W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

### Field Effect Transistors

506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of

### CMOS Power Consumption and C pd Calculation

CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or

### AN10441. Level shifting techniques in I 2 C-bus design. Document information

Rev. 01 18 June 2007 Application note Document information Info Keywords Abstract Content I2C-bus, level shifting Logic level shifting may be required when interfacing legacy devices with newer devices

### Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation

epletion-mode Power MOSFETs and Applications Abdus Sattar, XYS Corporation Applications like constant current sources, solid-state relays, telecom switches and high voltage C lines in power systems require

### AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential

### Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics October 6, 25 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

### Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics March 6, 23 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

### Sequential 4-bit Adder Design Report

UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela

### CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known

### THE INVERTER DYNAMICS

Dynamic Behavior THE IVERTER DYAMIC Propagation Delay, T p Defines how quickly output is affected by input Measured between 5% transition from input to output t plh defines delay for output going from

### International Journal of Electronics and Computer Science Engineering 1482

International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant

### Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and

### Introduction to CMOS VLSI Design

Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration

### IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Product Summary

Data Sheet No. PD6147 rev.u Features Floating channel designed for bootstrap operation Fully operational to +5V or +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 1

### Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

### MADR-009269-0001TR. Single Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. V1. Functional Schematic. Features.

Features High Voltage CMOS Technology Complementary Outputs Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Plastic SOIC-8 Package 100% Matte Tin Plating over

### Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.

INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a

### Three-Phase Dual-Rail Pre-Charge Logic

Infineon Page 1 CHES 2006 - Yokohama Three-Phase Dual-Rail Pre-Charge Logic L. Giancane, R. Luzzi, A. Trifiletti {marco.bucci, raimondo.luzzi}@infineon.com {giancane, trifiletti}@die.mail.uniroma1.it Summary

### MADR-009443-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2

Features Functional Schematic High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost 4x4 mm, 20-lead PQFN Package 100% Matte

### MADR-009190-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. 4. Functional Schematic. Features.

Features High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Lead-Free SOIC-16 Plastic Package Halogen-Free Green Mold Compound

### Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron

### Power MOSFET Basics Abdus Sattar, IXYS Corporation

Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier

### Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors

Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors Engineering Practical Jeffrey Frederick Gold Fitzwilliam College University of Cambridge Lent 1997 FABRCATON AND CHARACTERZATON

### HCF4070B QUAD EXCLUSIVE OR GATE

QUAD EXCLUSIE OR GATE MEDIUM-SPEED OPERATION t PHL = t PLH = 70ns (Typ.) at CL = 50 pf and DD = 10 QUIESCENT CURRENT SPECIFIED UP TO 20 5, 10 AND 15 PARAMETRIC RATINGS INPUT LEAKAGE CURRENT I I = 100nA

### McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009

### Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function

### MC14001B Series. B Suffix Series CMOS Gates MC14001B, MC14011B, MC14023B, MC14025B, MC14071B, MC14073B, MC14081B, MC14082B

MC4B Series BSuffix Series CMOS Gates MC4B, MC4B, MC4B, MC4B, MC4B, MC4B, MC4B, MC4B The B Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure

### Oscillations and Regenerative Amplification using Negative Resistance Devices

Oscillations and Regenerative Amplification using Negative Resistance Devices Ramon Vargas Patron rvargas@inictel.gob.pe INICTEL The usual procedure for the production of sustained oscillations in tuned

### HCF4001B QUAD 2-INPUT NOR GATE

QUAD 2-INPUT NOR GATE PROPAGATION DELAY TIME: t PD = 50ns (TYP.) at V DD = 10V C L = 50pF BUFFERED INPUTS AND OUTPUTS STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT CURRENT SPECIFIED UP TO 20V

### CURRENT LIMITING SINGLE CHANNEL DRIVER V OFFSET. Packages

Features Floating channel designed for bootstrap operation Fully operational to +5V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 12 to 18V Undervoltage lockout Current

### Features. Symbol JEDEC TO-220AB

Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

### Integrated Circuits & Systems

Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 guntzel@inf.ufsc.br I D -V DS Characteristics

### Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

### Class 11: Transmission Gates, Latches

Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates

### Content Map For Career & Technology

Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

### N-Channel 20-V (D-S) 175 C MOSFET

N-Channel -V (D-S) 75 C MOSFET SUD7N-4P PRODUCT SUMMARY V DS (V) r DS(on) ( ) (A) a.37 @ V GS = V 37.6 @ V GS = 4.5 V 9 TO-5 D FEATURES TrenchFET Power MOSFET 75 C Junction Temperature PWM Optimized for

### Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary

Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at

### So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

### High and Low Side Driver

High and Low Side Driver Features Product Summary Floating channel designed for bootstrap operation Fully operational to 200V Tolerant to negative transient voltage, dv/dt immune Gate drive supply range

### Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER

C H A P T E R 6 Basic FET Ampli ers 6.0 PREVIEW In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits containing these

### MM74HC14 Hex Inverting Schmitt Trigger

MM74HC14 Hex Inverting Schmitt Trigger General Description The MM74HC14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as

### CpE358/CS381. Switching Theory and Logical Design. Class 4

Switching Theory and Logical Design Class 4 1-122 Today Fundamental concepts of digital systems (Mano Chapter 1) Binary codes, number systems, and arithmetic (Ch 1) Boolean algebra (Ch 2) Simplification

### MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid

### Features. T A=25 o C unless otherwise noted. Symbol Parameter Ratings Units. (Note 1b) 0.46

N-Channel.8 Vgs Specified PowerTrench MOSFET October 2 General Description This 2V N-Channel MOSFET uses Fairchild s high voltage PowerTrench process. It has been optimized for power management applications.

### PMOS Testing at Rochester Institute of Technology Dr. Lynn Fuller

ROCHESER INSIUE OF ECHNOLOGY MICROELECRONIC ENGINEERING PMOS esting at Dr. Lynn Fuller webpage: http://www.rit.edu/~lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 el (585) 475-2035 Fax (585) 475-5041

### TPN4R712MD TPN4R712MD. 1. Applications. 2. Features. 3. Packaging and Internal Circuit. 2014-12 2015-04-21 Rev.4.0. Silicon P-Channel MOS (U-MOS )

MOSFETs Silicon P-Channel MOS (U-MOS) TPN4R712MD TPN4R712MD 1. Applications Lithium-Ion Secondary Batteries Power Management Switches 2. Features (1) Low drain-source on-resistance: R DS(ON) = 3.8 mω (typ.)

### Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits

Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits As presented at PCIM 2001 Authors: *Mark Pavier, *Hazel Schofield, *Tim Sammon, **Aram Arzumanyan, **Ritu Sodhi, **Dan Kinzer

### Statistical Models for Hot Electron Degradation in Nano-Scaled MOSFET Devices

2006, 대한 산업공학회 추계학술대회 Session C3 : Statistical models Statistical Models for Hot Electron Degradation in Nano-Scaled MOSFET Devices Seong-joon Kim, Suk Joo Bae Dept. of Industrial Engineering, Hanyang

### DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits

### 200V, N-CHANNEL. Absolute Maximum Ratings. Features: www.irf.com 1 PD - 90370

PD - 90370 REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) IRF240 200V, N-CHANNEL Product Summary Part Number BVDSS RDS(on) ID IRF240 200V 0.18Ω 18A The HEXFET technology

### An FET Audio Peak Limiter

1 An FET Audio Peak Limiter W. Marshall Leach, Jr., Professor Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, Georgia 30332-0250 USA email: mleach@ee.gatech.edu Copyright

### MOS Transistor 6.1 INTRODUCTION TO THE MOSFET

Hu_ch06v3.fm Page 195 Friday, February 13, 2009 4:51 PM 6 MOS Transistor CHAPTER OBJECTIVES This chapter provides a comprehensive introduction to the modern MOSFETs in their on state. (The off state theory

### TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPC8110

TPC811 TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPC811 Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications Unit: mm Small footprint due

### Super high-speed, and high density gate array Dual power supply operation Raw gates from 18K to 216K gates (Sea of gates) DESCRIPTION

PF77- SLA3 Series High Speed Gate Array Wide Voltage Operation Products Super high-speed, and high density gate array Dual power supply operation Raw gates from K to K gates (Sea of gates) DESCRIPTION

### HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)

HEX BUFFER/CONVERTER (NON INVERTING) PROPAGATION DELAY TIME: t PD = 50ns (Typ.) at V DD = 10V C L = 50pF HIGH TO LOW LEVEL LOGIC CONVERSION MULTIPLEXER: 1 TO 6 OR 6 TO 1 HIGH "SINK" AND "SOURCE" CURRENT

### RoHS Compliant Containing no Lead, no Bromide and no Halogen. IRF9310PbF SO8 Tube/Bulk 95 IRF9310TRPbF SO8 Tape and Reel 4000

PD 97437A IRF93PbF HEXFET Power MOSFET V DS 30 V R DS(on) max (@V GS = V) I D (@T A = 25 C) 4. mω 20 A * SO8 Applications Charge and Discharge Switch for Notebook PC Battery Application Features and Benefits

### Design and Construction of Variable DC Source for Laboratory Using Solar Energy

International Journal of Electronics and Computer Science Engineering 228 Available Online at www.ijecse.org ISSN- 2277-1956 Design and Construction of Variable DC Source for Laboratory Using Solar Energy

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### AN1837. Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas.

Order this document by /D Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas Introduction Today s microcontroller applications are more sophisticated

### N-Channel 60-V (D-S) MOSFET

7/7, VQJ/P, BS7 -Channel 6-V (D-S) MOSFET Part umber V (BR)DSS Min (V) r DS(on) Max ( ) V GS(th) (V) I D (A) 7 5 @ V GS = V.8 to. 7 7.5 @ V GS = V to.5.5 VQJ 6 5.5 @ V GS = V.8 to.5.5 VQP 5.5 @ V GS =

### Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology

Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department

### Intel s Revolutionary 22 nm Transistor Technology

Intel s Revolutionary 22 nm Transistor Technology Mark Bohr Intel Senior Fellow Kaizad Mistry 22 nm Program Manager May, 2011 1 Key Messages Intel is introducing revolutionary Tri-Gate transistors on its

### UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey Homework #2 EECS 141 Due Friday, February 6, 5pm, box in 240 Cory 1. Suppose you

### Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

### Understanding Diode Reverse Recovery and its Effect on Switching Losses

Understanding Diode Reverse Recovery and its Effect on Switching Losses Peter Haaf, Senior Field Applications Engineer, and Jon Harper, Market Development Manager, Fairchild Semiconductor Europe Abstract

### DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs by B. Maurice, L. Wuidart 1. INTRODUCTION Unlike the bipolar transistor, which is current driven, Power MOSFETs, with their insulated gates, are voltage driven.

### Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

### 1.1 Silicon on Insulator a brief Introduction

Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial

### Yrd. Doç. Dr. Aytaç Gören

H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

### BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information

Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator

### g fs R D A V D g os g os

AN12 JFET Biasing Techniques Introduction Engineers who are not familiar with proper biasing methods often design FET amplifiers that are unnecessarily sensitive to device characteristics. One way to obtain

### Evaluating AC Current Sensor Options for Power Delivery Systems

Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy

### Digital circuits make up all computers and computer systems. The operation of digital circuits is based on

Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is

### ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

### MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop General Description The MM74HCT373 octal D-type latches and MM74HCT374 Octal D-type flip flops advanced silicongate CMOS technology, which provides

### HCC4541B HCF4541B PROGRAMMABLE TIMER

HCC4541B HCF4541B PROGRAMMABLE TIMER 16 STAGE BINARI COUNTER LOW SYMMETRICAL OUTPUT RESISTANCE, TYPICALLY 100 OHM AT DD = 15 OSCILLATOR FREQUENCY RANGE : DC TO 100kHz AUTO OR MASTER RESET DISABLES OSCIL-

### System on Chip Design. Michael Nydegger

Short Questions, 26. February 2015 What is meant by the term n-well process? What does this mean for the n-type MOSFETs in your design? What is the meaning of the threshold voltage (practically)? What

### N-Channel 60-V (D-S), 175 C MOSFET

N-Channel 6-V (D-S), 75 C MOSFET SUP/SUB7N6-4 V (BR)DSS (V) r DS(on) ( ) (A) 6.4 7 a TO-22AB D TO-263 DRAIN connected to TAB G G D S Top View SUP7N6-4 G D S Top View SUB7N6-4 S N-Channel MOSFET Parameter

### MTD3055VT4. http://onsemi.com. MAXIMUM RATINGS (T C = 25 C unless otherwise noted) MARKING DIAGRAMS ORDERING INFORMATION. R DS(on) TYP 60 V 100 m

MTD55V Preferred Device Power MOSFET Amps, 6 Volts NChannel This Power MOSFET is designed to withstand high energy in the avalanche and commutation modes. Designed for low voltage, high speed switching

### ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed

### N-Channel 40-V (D-S) 175 C MOSFET

N-Channel 4-V (D-S) 75 C MOSFET SUP/SUB85N4-4 PRODUCT SUMMARY V (BR)DSS (V) r DS(on) ( ) (A) 4.4 @ V GS = V 85 a TO-22AB D TO-263 G DRAIN connected to TAB G D S Top View Ordering Information SUP85N4-4

### Biasing in MOSFET Amplifiers

Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing