THE INVERTER DYNAMICS

Size: px
Start display at page:

Download "THE INVERTER DYNAMICS"

Transcription

1 Dynamic Behavior THE IVERTER DYAMIC Propagation Delay, T p Defines how quickly output is affected by input Measured between 5% transition from input to output t plh defines delay for output going from low to high t phl defines delay for output going from high to low Overall delay, t p, defined as the of t plh and t phl [Adapted from Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] Dynamic Behavior Delay Definitions Rise and fall time, T r and T f Defines slope of the signal Defined between the % and 9% of the signal swing Propagation delay and rise and fall times affected by the fan-out due to larger capacitance loads 5% t phl t plh t 9% 5% % t t f t r The Ring Oscillator Ring Oscillator A standard method is needed to measure the gate delay It is based on the ring oscillator t p >> t f + t r for proper operation v v v v v4 v5 v v v5 T = t p

2 Power Dissipation Power Dissipation Power consumption determines heat dissipation and energy consumption Power influences design decisions: packaging and cooling width of supply lines power-supply capacity # of transistors integrated on a single chip Power requirements make high density bipolar ICs impossible (feasibility, cost, reliability) upply-line sizing Battery drain, cooling Power Dissipation Power Dissipation P peak = static power + dynamic power Dynamic power: (dis)charging capacitors temporary paths from VDD to V proportional to switching frequency tatic power: static conductive paths between rails leakage increases with temperature Propagation delay is related to power consumption t p determined by speed of charge transfer fast charge transfer => fast gate fast gate => more power consumption Power-delay product (PDP) quality measure for switching device PDP= energy consumed /gate / switching event measured using ring oscillator Power Dissipation CMO Inverter: teady tate Response upply-line sizing Battery drain, cooling Energy consumed /gate /switching event CMO technology: o path exists between VDD and V in steady state o static power consumption! (ideally) Main reason why CMO replaced MO in early 8 s MO technology: Has MO pull-up device that is always O Creates voltage divider when pull-down is O Power consumption puts upper bound on (# devices / chip)

3 CMO Inverter Load Characteristics Voltage Transfer Characteristic G D D V out G PMO Load Lines CMO Inverter Load Lines I Dn Vin = +VGp I Dn = - I Dp = +V Dp G D PMO X.5-4 = V MO =.5V I Dp VGp=- V Gp=-5 V Dp = = = +V Gp I Dn = - I Dp G I Dn D I Dn Vin = = V Dp = +V Dp I Dn (A) =.5V.5 =.V =.V =.5V = V =.5V = V Vin =.5V.5 =.5V =.V =.V =.5V =.5V = V (V).5um, /L n =.5, /L p = 4.5, =.5V, V Tn =.4V, V Tp = -.4V (V) CMO Inverter VTC MO off PMO res MO sat PMO res MO sat PMO sat MO res PMO sat MO res PMO off (V) pmo nmo Cutoff - = V G > V T = V G < V T Regions of operations For nmo and pmo In CMO inverter Linear - =V G < V T - =V GD < V T =V G > V T - =V GD > V T G G D D aturation - =V G > V T - =V GD >V T =V G > V T - =V GD < V T

4 CMO Inverter Load Characteristics For valid dc operating points: current through MO = current through PMO => dc operating points are the intersection of load lines All operating points located at high or low output levels => VTC has narrow transition zone high gain of transistors during switching transistors in saturation high transconductance (g m ) high output resistance (voltage controlled current source) Voltage Transfer Characteristic witching Threshold V M where = (both PMO and MO in saturation since V D = V G ) V M r /( + r) where r = k p V DATp /k n V DATn witching threshold set by the ratio r, which compares the relative driving strengths of the PMO and MO transistors ant V M = / (to have comparable high and low noise margins), so want r (/L) p k n V DATn (V M -V Tn -V DATn /) = (/L) n k p V DATp ( -V M +V Tp +V DATp /) witch Threshold Example In.5 µm CMO process, using parameters from table, =.5V, and minimum size MO ((/L) n of.5) V T (V) γ(v.5 ) V DAT (V) k (A/V ) MO x -6 PMO x -6 λ(v - ).6 -. (/L) p 5 x -6.6 (.5.4.6/) = x x (/L) n - x -6 =.5 -. (.5.4./) (/L) p =.5 x.5 = 5.5 for a V M of.5v V M (V) imulated Inverter V M ~.4 (/L) p /(/L) n ote: x- axis is semilog V M is relatively insensitive to variations in device ratio setting the ratio to,.5 and gives V M s of.v,.8v, and.v Increasing the width of the PMO moves V M towards V OL = GD oise Margins Determining V IH and V IL V OH = VIL V M A piece-wise linear approximation of VTC VIH By definition, V IH and V IL are where d /d = - (= gain) M H = - V IH M L = V IL - GD Approximating: V IH = V M - V M /g V IL = V M + ( - V M )/g o high gain in the transition region is very desirable 4

5 CMO Inverter VTC from imulation Gain Determinates (V) (V).5um, (/L) p /(/L) n =.4 (/L) n =.5 (min size) =.5V V M.5V, g = -7.5 V IL =.V, V IH =.V M L = M H =. (actual values are V IL =.V, V IH =.45V M L =.V & M H =.5V) Output resistance low-output =.4kΩ high-output =.kω gain Gain is a strong function of the slopes of the currents in the saturation region, for = V M (+r) g (V M -V Tn -V DATn /)(λ n - λ p ) Determined by technology parameters, especially λ. Only designer influence through supply voltageand V M (transistor sizing). Impact of Process Variation caling the upply Voltage (V) Bad PMO Good MO (V) Good PMO Bad MO ominal process variations (mostly) cause a shift in the switching threshold (V),5,5,5,5 Gain=-,5,,5,,5,5,5 (V) (V) Device threshold voltages are kept (virtually) constant (V),,5, Device threshold voltages are kept (virtually) constant witch Model of Dynamic Behavior Propagation Delay R p R n = = Gate response time is determined by the time to charge through R p (discharge through R n ) 5

6 hat is the Inverter Driving? CMO Inverter Propagation Delay Approach M C db C g4 M4 t phl = V swing / C gd I av M C db C w Interconnect C g M I av ~ k n Fanout implified Model = CMO Inverter Propagation Delay Approach CMO Inverter: Transient Response t phl = f(r on.) How can the designer build a fast gate? t phl = f(r on * ) =.69 R on Keep output capacitance,, small low fan-out R on.5.6 V out ln(.5) = V t /( R on ) OH e keep interconnections short (floor-plan your layout!) Decrease on-resistance of transistor increase /L ratio make good contacts (slight effect) = R on t MO Transistor mall ignal Model Determining V IH and V IL G v gs + - g m v gs r o D Define V IH and V IL are based on derivative of VTC equal to - 6

7 (V).5.5? Transient Response t t phl plh t (sec) x - t p =.69 (R eqn +R eqp )/ (V) Inverter Transient Response tphl t f x - t (sec) t plh t r =.5V.5µm /L n =.5 /L p = 4.5 R eqn = kω (.5) R eqp = kω ( 4.5) t phl = 6 psec t plh = 9 psec so t p =.5 psec From simulation: t phl = 9.9 psec and t plh =.7 psec t p (normalized) Delay as a function of V (V) DD t p (sec) x izing Impacts on Delay for a fixed load The majority of the improvement is already obtained for = 5. izing factors larger than barely yield any extra gain (and cost significantly more area). self-loading effect (intrinsic capacitance dominates) PMO/MO Ratio Effects Input ignal Rise/Fall Time t p (sec) x 5 - t plh 4,5 4,5 t phl t p 4 5 β = (/L p )/(/L n ) β of.4 (= kω/ kω) gives symmetrical response β of.6 to.9 gives optimal performance In reality, the input signal changes gradually (and both PMO and MO conduct for a brief time). This affects the current available for charging/discharging and impacts propagation delay. t p increases linearly with increasing input rise time, t r, once t r > t p t r is due to the limited driving capability of the preceding gate t p (sec) x t s (sec) 8 for a minimum -size inverter with a fan-out of a single gate x - 7

8 CMO Inverter: Four Views Inverter izing V dd Gnd Logic Transistor Layout Physical CMO Inverter izing Inverter Delay metal metal pdiff metal-diff via Out In metal-poly via polysilicon PMO (4/.4 = 6/) MO (/.4 = 8/) Minimum length devices, L=.5µm Assume that for P = = same pull-up and pull-down currents approx. equal resistances R = R P approx. equal rise t plh and fall t phl delays Analyze as an RC network P R P = Runit Runit = R = R unit unit GD ndiff metal-metal via Delay (D): t phl = (ln ) R t plh = (ln ) R P Load for the next stage: C gin = Cunit unit Inverter with Load Inverter with Load Delay C P = C unit Delay R C int R Load ( ) C = C unit Load t p = k R k is a constant, equal to.69 Assumptions: no load -> zero delay unit = Delay = kr (C int + ) = kr C int + kr = kr C int (+ /C int ) = Delay (Internal) + Delay (Load) 8

9 Delay ~ R t p = kr Delay Formula C int ( C + C ) int ( ) ( ) + C L L / C int = t p C int = γc gin withγ f = /C gin - effective fanout R = R unit / ; C int =C unit t p =.69R unit C unit + f / γ Inverter Chain Real goal is to minimize the delay through an inverter chain In C g, the delay of the j-th inverter stage is t p,j = t p ( + C g,j+ /(γc g,j )) = t p ( + f j / γ) and t p = t p + t p t p so t p = t p,j = t p ( + C g,j+ /(γc g,j )) If is given» How should the inverters be sized?» How many stages are needed to minimize the delay? Out Apply to Inverter Chain In Out t p = t p + t p + + t p C gin, j + t pj ~ RunitCunit + γcgin, j C gin, j+ t p = t p j t, = p Cgin + + = C j i C,, = = γ gin, j L Optimum Delay and umber of tages hen each stage is sized by f and has same eff. fanout f: f = F = C Effective fanout of each stage: Minimum path delay p f = F t = t + p L / Cgin, ( F /γ ) Example Optimal umber of Inverters In C f f Out = 8 C hat is the optimal value for given F (=f )?» if the number of stages is too large, the intrinsic delay dominates» if the number of stages is too small, the effective fanout dominates /C has to be evenly distributed across = stages: f = 8 = The optimum is found by differentiating the minimum delay divided by the number of stages and setting the result to, For γ = (ignoring self -loading) = ln (F) and the effective-fan out becomes f = e =.788 9

10 t Optimum umber of tages Optimum Effective Fan-Out 5 7 For a given load, and given input capacitance C in Find optimal sizing f t = t p C = F C = f C p t p f L t ln F ( ) + = f / p γ F / γ + γ ln f ln f t = p For γ =, f = e, = lnf in lnf with = ln f ln F ln f γ γ ln f in f = f = exp+ ( γ f ) F op γ Choosing f larger than optimum has little effect on delay and reduces the number of stages (and area).» Common practice to use f = 4 (for γ = )» But too manystages has a substantial negative impact on delay normalized delay f Example of Inverter (Buffer) taging Impact of Buffer taging for Large C g, = = 64 C g, 8 C g, = = 64 C g, 4 6 C g, = = 64 C g, C g, = = 64 C g, f t p F (g = ),, Impressive speed-ups with optimized cascaded inverter chain for very large capacitive loads. Unbuffered, Two tage Chain Opt. Inverter Chain Design Challenge Keep signal rise times smaller than or equal to the gate propagation delays.» good for performance» good for power consumption Power Dissipation Keeping rise and fall times of the signals small and of approximately equal values is one of the major challenges in high-performance designs - slope engineering.

11 Dynamic Power Dissipation Modification for Circuits with Reduced wing Vdd V dd V dd Vin Vout V dd -V t Energy/transition = CL * Vdd Power = Energy/transition * f = CL * Vdd * f E = V dd ( V dd V t ) ot a function of transistor sizes! eed to reduce CL, Vdd, and f to reduce power. Can exploit reduced swing to lower power (e.g., reduced bit-line swing in memory) ode Transition Activity and Power hort Circuit Currents Consider switching a CMO gate for clock cycles Vdd E = V dd n ( ) Vin Vout E : the energy consumed for clock cycles n( ): the number of -> transition in clock cycles CL E P avg = lim f n ( ) clk lim = C V dd f clk L α n = lim ( ) IVDD (ma ).5..5 P avg = α C L V dd f clk.... Vin (V) How to keep hort-circuit Currents Low? Minimizing hort-circuit Power Vdd =. 5 4 P norm Vdd =.5 Vdd = t sin /t sout hort circuit current goes to zero if t fall >> t rise, but can t do this for cascade logic, so...

12 Leakage Reverse-Biased Diode Leakage Vdd GATE Vout Drain Junction Leakage ub-threshold Current ub-threshold current one of most compelling issues in low-energy circuit design! p + p+ + - V dd I DL = J A Reverse Leakage Current J = - pa/m m at 5 deg C for.5m m CMO J doubles for every 9 deg C! ubthreshold Leakage Component tatic Power Consumption Vdd I stat =5V Pstat = P(In=).V dd. Istat asted energy hould be avoided in almost all cases, but could help reducing energy in others (e.g. sense amps) Principles for Power Reduction Prime choice: Reduce voltage!» Recent years have seen an acceleration in supply voltage reduction» Design at very low voltages still open question (.6.9 V by!) Reduce switching activity Reduce physical capacitance» Device izing: for F= f opt (energy)=.5, f opt (performance)=4.47 Impact of Technology caling

13 Goals of Technology caling Technology caling Make things cheaper:» ant to sell more functions (transistors) per chip for the same money» Build same products cheaper, sell the same part for less money» Price of a transistor has to be reduced But also want to be faster, smaller, lower power Goals of scaling the dimensions by %:» Reduce gate delay by % (increase operating frequency by 4%)» Double transistor density» Reduce energy per transition by 65% (5% power 4% increase in frequency Die size used to increase by 4% per generation Technology generation spans - years Technology Generations Technology Evolution ( data) International Technology Roadmap for emiconductors Year of Introduction Technology node [nm] upply [V] iring levels Max frequency [GHz],Local-Global Max m P power [] Bat. power [] ode years: 7/65nm, /45nm, /nm, 6/nm Technology Evolution (999) ITR Technology Roadmap Acceleration Continues

14 Technology caling () Technology caling () Minimum Feature ize (micron) Year Minimum Feature ize umber of components per chip Technology caling () Technology caling Models t p decreases by %/year 5% every 5 years! Full caling (Constant Electrical Field) ideal model dimensions and voltage scale together by the same factor Fixed Voltage caling most common model until recently only dimensions scale, voltages remain constant Propagation Delay General caling most realistic for todays situation voltages and dimensions scale with different factors caling Relationships for Long Channel Devices Transistor caling (velocity-saturated devices) 4

15 Dilbert Dilbert Dilbert Dilbert Dilbert 5

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

CMOS Logic Integrated Circuits

CMOS Logic Integrated Circuits CMOS Logic Integrated Circuits Introduction CMOS Inverter Parameters of CMOS circuits Circuits for protection Output stage for CMOS circuits Buffering circuits Introduction Symetrical and complementary

More information

These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption

These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption Basic Properties of a Digital Design These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption Which of these criteria is important

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

Pass Gate Logic An alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches).

Pass Gate Logic An alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches). Pass Gate Logic n alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches). Switch Network Regeneration is performed via a buffer. We have already

More information

Class 11: Transmission Gates, Latches

Class 11: Transmission Gates, Latches Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

Sequential 4-bit Adder Design Report

Sequential 4-bit Adder Design Report UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela

More information

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251 Gates J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, T 77251 1. The Evolution of Electronic Digital Devices...1 2. Logical Operations and the Behavior of Gates...2

More information

MM74HC14 Hex Inverting Schmitt Trigger

MM74HC14 Hex Inverting Schmitt Trigger MM74HC14 Hex Inverting Schmitt Trigger General Description The MM74HC14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-28: Logic Gates & Family Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Digital Logic Gates

More information

MADR-009443-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2

MADR-009443-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2 Features Functional Schematic High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost 4x4 mm, 20-lead PQFN Package 100% Matte

More information

MOS Transistors as Switches

MOS Transistors as Switches MOS Transistors as Switches G (gate) nmos transistor: Closed (conducting) when Gate = 1 (V DD ) D (drain) S (source) Oen (non-conducting) when Gate = 0 (ground, 0V) G MOS transistor: Closed (conducting)

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

CMOS Power Consumption and C pd Calculation

CMOS Power Consumption and C pd Calculation CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or

More information

MADR-009190-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. 4. Functional Schematic. Features.

MADR-009190-0001TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. 4. Functional Schematic. Features. Features High Voltage CMOS Technology Four Channel Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Lead-Free SOIC-16 Plastic Package Halogen-Free Green Mold Compound

More information

MM74HC4538 Dual Retriggerable Monostable Multivibrator

MM74HC4538 Dual Retriggerable Monostable Multivibrator MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature

More information

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT27 M74HCT27 TRIPLE 3-INPUT NOR GATE. tpd = 9 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .COMPATIBLE WITH TTL OUTPUTS M54HCT27 M74HCT27 TRIPLE 3-INPUT NOR GATE. tpd = 9 ns (TYP. M54HCT27 M74HCT27 TRIPLE 3-INPUT NOR GATE. HIGH SPEED tpd = 9 ns (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =1µA (MAX.) AT T A =25 C.COMPATIBLE WITH TTL OUTPUTS VIH = 2V (MIN.) VIL = 0.8V (MAX) OUTPUT

More information

MADR-009269-0001TR. Single Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. V1. Functional Schematic. Features.

MADR-009269-0001TR. Single Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. V1. Functional Schematic. Features. Features High Voltage CMOS Technology Complementary Outputs Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Plastic SOIC-8 Package 100% Matte Tin Plating over

More information

1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET

1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET DATASHEET 1 TO 4 CLOCK BUFFER ICS551 Description The ICS551 is a low cost, high-speed single input to four output clock buffer. Part of IDT s ClockBlocks TM family, this is our lowest cost, small clock

More information

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis

More information

Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology

Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department

More information

. MEDIUM SPEED OPERATION - 8MHz (typ.) @ . MULTI-PACKAGE PARALLEL CLOCKING FOR HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE

. MEDIUM SPEED OPERATION - 8MHz (typ.) @ . MULTI-PACKAGE PARALLEL CLOCKING FOR HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE. MEDIUM SPEED OPERATION - 8MHz (typ.) @ CL = 50pF AND DD-SS = 10. MULTI-PACKAGE PARALLEL CLOCKING FOR SYNCHRONOUS HIGH SPEED OUTPUT RES-

More information

Interfacing 3V and 5V applications

Interfacing 3V and 5V applications Authors: Tinus van de Wouw (Nijmegen) / Todd Andersen (Albuquerque) 1.0 THE NEED FOR TERFACG BETWEEN 3V AND 5V SYSTEMS Many reasons exist to introduce 3V 1 systems, notably the lower power consumption

More information

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

More information

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009

More information

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset October 1987 Revised March 2002 CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset General Description The CD4027BC dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits

More information

.LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M74HC154 4 TO 16 LINE DECODER/DEMULTIPLEXER. HIGH SPEED tpd = 15 ns (TYP.) at VCC =5V

.LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M74HC154 4 TO 16 LINE DECODER/DEMULTIPLEXER. HIGH SPEED tpd = 15 ns (TYP.) at VCC =5V . HIGH SPEED tpd = 15 ns (TYP.) at VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) at T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUT DRIVE CAPABILITY 15 LSTTL LOADS SYMMETRICAL OUTPUT IMPEDANCE

More information

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION QUIESCENT CURRENT SPECIF. UP TO 20V OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY. EQUIVALENT AC OUTPUT DRIVE

More information

Bi-directional level shifter for I²C-bus and other systems.

Bi-directional level shifter for I²C-bus and other systems. APPLICATION NOTE Bi-directional level shifter for I²C-bus and other Abstract With a single MOS-FET a bi-directional level shifter circuit can be realised to connect devices with different supply voltages

More information

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed

More information

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002 Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate General Description The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey Homework #2 EECS 141 Due Friday, February 6, 5pm, box in 240 Cory 1. Suppose you

More information

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND DATASHEET IDT5P50901/2/3/4 Description The IDT5P50901/2/3/4 is a family of 1.8V low power, spread spectrum clock generators capable of reducing EMI radiation from an input clock. Spread spectrum technique

More information

International Journal of Electronics and Computer Science Engineering 1482

International Journal of Electronics and Computer Science Engineering 1482 International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant

More information

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,

More information

ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock

More information

LM2576R. 3.0A, 52kHz, Step-Down Switching Regulator FEATURES. Applications DESCRIPTION TO-220 PKG TO-220V PKG TO-263 PKG ORDERING INFORMATION

LM2576R. 3.0A, 52kHz, Step-Down Switching Regulator FEATURES. Applications DESCRIPTION TO-220 PKG TO-220V PKG TO-263 PKG ORDERING INFORMATION LM2576 FEATURES 3.3, 5.0, 12, 15, and Adjustable Output ersions Adjustable ersion Output oltage Range, 1.23 to 37 +/- 4% AG10Maximum Over Line and Load Conditions Guaranteed 3.0A Output Current Wide Input

More information

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset General Description These dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-

More information

CD4027BMS. CMOS Dual J-K Master-Slave Flip-Flop. Pinout. Features. Functional Diagram. Applications. Description. December 1992

CD4027BMS. CMOS Dual J-K Master-Slave Flip-Flop. Pinout. Features. Functional Diagram. Applications. Description. December 1992 CD7BMS December 199 CMOS Dual J-K Master-Slave Flip-Flop Features Pinout High Voltage Type (V Rating) Set - Reset Capability CD7BMS TOP VIEW Static Flip-Flop Operation - Retains State Indefinitely with

More information

Step Response of RC Circuits

Step Response of RC Circuits Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

More information

Alpha CPU and Clock Design Evolution

Alpha CPU and Clock Design Evolution Alpha CPU and Clock Design Evolution This lecture uses two papers that discuss the evolution of the Alpha CPU and clocking strategy over three CPU generations Gronowski, Paul E., et.al., High Performance

More information

HCC4541B HCF4541B PROGRAMMABLE TIMER

HCC4541B HCF4541B PROGRAMMABLE TIMER HCC4541B HCF4541B PROGRAMMABLE TIMER 16 STAGE BINARI COUNTER LOW SYMMETRICAL OUTPUT RESISTANCE, TYPICALLY 100 OHM AT DD = 15 OSCILLATOR FREQUENCY RANGE : DC TO 100kHz AUTO OR MASTER RESET DISABLES OSCIL-

More information

Module 7 : I/O PADs Lecture 33 : I/O PADs

Module 7 : I/O PADs Lecture 33 : I/O PADs Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up

More information

MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop General Description The MM74HCT373 octal D-type latches and MM74HCT374 Octal D-type flip flops advanced silicongate CMOS technology, which provides

More information

Application Note AN-940

Application Note AN-940 Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching

More information

INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook. 1997 Jun 30

INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook. 1997 Jun 30 INTEGRATED CIRCUITS IC24 Data Handbook 1997 Jun 30 FEATURES Wide supply voltage range of 1.2 V to 3.6 V In accordance with JEDEC standard no. 8-1A Inputs accept voltages up to 5.5 V CMOS low power consumption

More information

HCC/HCF4032B HCC/HCF4038B

HCC/HCF4032B HCC/HCF4038B HCC/HCF4032B HCC/HCF4038B TRIPLE SERIAL ADDERS INERT INPUTS ON ALL ADDERS FOR SUM COMPLEMENTING APPLICATIONS FULLY STATIC OPERATION...DC TO 10MHz (typ.) @ DD = 10 BUFFERED INPUTS AND OUTPUTS SINGLE-PHASE

More information

Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells

Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells Sushil B. Bhaisare 1, Sonalee P. Suryawanshi 2, Sagar P. Soitkar 3 1 Lecturer in Electronics Department, Nagpur University, G.H.R.I.E.T.W. Nagpur,

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

More information

Photolink- Fiber Optic Receiver PLR135/T1

Photolink- Fiber Optic Receiver PLR135/T1 Features High PD sensitivity optimized for red light Data : NRZ signal Low power consumption for extended battery life Built-in threshold control for improved noise Margin The product itself will remain

More information

HCF4070B QUAD EXCLUSIVE OR GATE

HCF4070B QUAD EXCLUSIVE OR GATE QUAD EXCLUSIE OR GATE MEDIUM-SPEED OPERATION t PHL = t PLH = 70ns (Typ.) at CL = 50 pf and DD = 10 QUIESCENT CURRENT SPECIFIED UP TO 20 5, 10 AND 15 PARAMETRIC RATINGS INPUT LEAKAGE CURRENT I I = 100nA

More information

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid

More information

ECE124 Digital Circuits and Systems Page 1

ECE124 Digital Circuits and Systems Page 1 ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly

More information

N-Channel 60-V (D-S) MOSFET

N-Channel 60-V (D-S) MOSFET 7/7, VQJ/P, BS7 -Channel 6-V (D-S) MOSFET Part umber V (BR)DSS Min (V) r DS(on) Max ( ) V GS(th) (V) I D (A) 7 5 @ V GS = V.8 to. 7 7.5 @ V GS = V to.5.5 VQJ 6 5.5 @ V GS = V.8 to.5.5 VQP 5.5 @ V GS =

More information

MM74HC174 Hex D-Type Flip-Flops with Clear

MM74HC174 Hex D-Type Flip-Flops with Clear Hex D-Type Flip-Flops with Clear General Description The MM74HC174 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise immunity,

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

1.1 Silicon on Insulator a brief Introduction

1.1 Silicon on Insulator a brief Introduction Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

DESIGN CHALLENGES OF TECHNOLOGY SCALING

DESIGN CHALLENGES OF TECHNOLOGY SCALING DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE

More information

MM74HC273 Octal D-Type Flip-Flops with Clear

MM74HC273 Octal D-Type Flip-Flops with Clear MM74HC273 Octal D-Type Flip-Flops with Clear General Description The MM74HC273 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise

More information

HCF4081B QUAD 2 INPUT AND GATE

HCF4081B QUAD 2 INPUT AND GATE QUAD 2 INPUT AND GATE MEDIUM SPEED OPERATION : t PD = 60ns (Typ.) at 10 QUIESCENT CURRENT SPECIFIED UP TO 20 5, 10 AND 15 PARAMETRIC RATINGS INPUT LEAKAGE CURRENT I I = 100nA (MAX) AT DD = 18 T A = 25

More information

CMOS 1.8 V to 5.5 V, 2.5 Ω SPDT Switch/2:1 Mux in Tiny SC70 Package ADG779

CMOS 1.8 V to 5.5 V, 2.5 Ω SPDT Switch/2:1 Mux in Tiny SC70 Package ADG779 CMO 1.8 V to 5.5 V, 2.5 Ω PT witch/2:1 Mux in Tiny C70 Package AG779 FEATURE 1.8 V to 5.5 V single supply 2.5 Ω on resistance 0.75 Ω on-resistance flatness 3 db bandwidth >200 MHz Rail-to-rail operation

More information

1.5A Very L.D.O Voltage Regulator LM29150/29151/29152

1.5A Very L.D.O Voltage Regulator LM29150/29151/29152 FEATURES High Current Capability 1.5A Low Dropout Voltage 350mV Low Ground Current Accurate 1% Guaranteed Initial Tolerance Extremely Fast Transient Response Reverse-Battery and "Load Dump" Protection

More information

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1 ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05

More information

CHAPTER 16 MEMORY CIRCUITS

CHAPTER 16 MEMORY CIRCUITS CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 guntzel@inf.ufsc.br I D -V DS Characteristics

More information

LM2704 Micropower Step-up DC/DC Converter with 550mA Peak Current Limit

LM2704 Micropower Step-up DC/DC Converter with 550mA Peak Current Limit Micropower Step-up DC/DC Converter with 550mA Peak Current Limit General Description The LM2704 is a micropower step-up DC/DC in a small 5-lead SOT-23 package. A current limited, fixed off-time control

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Elad Alon Homework #4 Solutions EECS141 PROBLEM 1: Shoot-Through Current In this problem,

More information

TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN

TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department

More information

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop Hex D-Type Flip-Flop Quad D-Type Flip-Flop General Description The CD40174BC consists of six positive-edge triggered D- type flip-flops; the true outputs from each flip-flop are externally available. The

More information

Semiconductor Memories

Semiconductor Memories Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single

More information

TYPICAL APPLICATION CIRCUIT. ORDER INFORMATION SOP-EP 8 pin A703EFT (Lead Free) A703EGT (Green)

TYPICAL APPLICATION CIRCUIT. ORDER INFORMATION SOP-EP 8 pin A703EFT (Lead Free) A703EGT (Green) www.addmtek.com 2 CHANNELS 150mA HIGH VOLTAGE ADJUSTABLE CURRENT REGULATOR DESCRIPTION A703 is a high voltage, adjustable constant current driver for LED applications. Two regulated current ports are designed

More information

HCC/HCF4027B DUAL-J-K MASTER-SLAVE FLIP-FLOP

HCC/HCF4027B DUAL-J-K MASTER-SLAVE FLIP-FLOP DUAL-J-K MASTER-SLAVE FLIP-FLOP. SET-RESET CAPABILITY STATIC FLIP-FLOP OPERATION - RETAINS STATE INDEFINITELY WITH CLOCK LEVEL EITHER HIGH OR LOW MEDIUM SPEED OPERATION - 16MHz (typ. clock toggle rate

More information

STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET

STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET TYPE V DSS (@Tjmax) R DS(on) I D STW20NM50 550V < 0.25Ω 20 A TYPICAL R DS (on) = 0.20Ω HIGH dv/dt AND AVALANCHE CAPABILITIES 100% AVALANCHE TESTED

More information

74AC191 Up/Down Counter with Preset and Ripple Clock

74AC191 Up/Down Counter with Preset and Ripple Clock 74AC191 Up/Down Counter with Preset and Ripple Clock General Description The AC191 is a reversible modulo 16 binary counter. It features synchronous counting and asynchronous presetting. The preset feature

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET DATASHEET ICS514 Description The ICS514 LOCO TM is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for

More information

HT9170 DTMF Receiver. Features. General Description. Selection Table

HT9170 DTMF Receiver. Features. General Description. Selection Table DTMF Receiver Features Operating voltage: 2.5V~5.5V Minimal external components No external filter is required Low standby current (on power down mode) General Description The HT9170 series are Dual Tone

More information

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features DATASHEET ICS280 Description The ICS280 field programmable spread spectrum clock synthesizer generates up to four high-quality, high-frequency clock outputs including multiple reference clocks from a low-frequency

More information

PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323

PS323. Precision, Single-Supply SPST Analog Switch. Features. Description. Block Diagram, Pin Configuration, and Truth Table. Applications PS323 PS323 Features ÎÎLow On-Resistance (33-ohm typ.) Minimizes Distortion and Error Voltages ÎÎLow Glitching Reduces Step Errors in Sample-and-Holds. Charge Injection, 2pC typ. ÎÎSingle-Supply Operation (+2.5V to

More information

COMMON-SOURCE JFET AMPLIFIER

COMMON-SOURCE JFET AMPLIFIER EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC

More information

Audio Jack Detector with Send / End Detect

Audio Jack Detector with Send / End Detect Audio Jack Detector with Send / End Detect DESCRIPTION The is an audio jack detector and pop noise control switch IC. It integrates the circuits necessary to detect the presence of a stereo headset with

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/M74HC190 M54/M74HC191 4 BIT SYNCHRONOUS UP/DOWN COUNTERS. fmax = 48 MHz (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54/M74HC190 M54/M74HC191 4 BIT SYNCHRONOUS UP/DOWN COUNTERS. fmax = 48 MHz (TYP. M54/M74HC190 M54/M74HC191 4 BIT SYNCHRONOUS UP/DOWN COUNTERS. HIGH SPEED fmax = 48 MHz (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.)

More information

HCF4001B QUAD 2-INPUT NOR GATE

HCF4001B QUAD 2-INPUT NOR GATE QUAD 2-INPUT NOR GATE PROPAGATION DELAY TIME: t PD = 50ns (TYP.) at V DD = 10V C L = 50pF BUFFERED INPUTS AND OUTPUTS STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT CURRENT SPECIFIED UP TO 20V

More information

CMOS Thyristor Based Low Frequency Ring Oscillator

CMOS Thyristor Based Low Frequency Ring Oscillator CMOS Thyristor Based Low Frequency Ring Oscillator Submitted by: PIYUSH KESHRI BIPLAB DEKA 4 th year Undergraduate Student 4 th year Undergraduate Student Electrical Engineering Dept. Electrical Engineering

More information

CpE358/CS381. Switching Theory and Logical Design. Class 4

CpE358/CS381. Switching Theory and Logical Design. Class 4 Switching Theory and Logical Design Class 4 1-122 Today Fundamental concepts of digital systems (Mano Chapter 1) Binary codes, number systems, and arithmetic (Ch 1) Boolean algebra (Ch 2) Simplification

More information

28V, 2A Buck Constant Current Switching Regulator for White LED

28V, 2A Buck Constant Current Switching Regulator for White LED 28V, 2A Buck Constant Current Switching Regulator for White LED FP7102 General Description The FP7102 is a PWM control buck converter designed to provide a simple, high efficiency solution for driving

More information

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS DESCRIPTION The, /6 single-channel and /6 dual-channel optocouplers consist of a 5 nm AlGaAS LED, optically coupled to a very high speed integrated photodetector logic gate with a strobable output. This

More information

Introduction to CMOS VLSI Design

Introduction to CMOS VLSI Design Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration

More information

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India

S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Power reduction on clock-tree using Energy recovery and clock gating technique S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Abstract Power consumption of

More information

TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING

TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV February 28, 2005 Research Objective Objective: Electronic design automation

More information

HCF4028B BCD TO DECIMAL DECODER

HCF4028B BCD TO DECIMAL DECODER BCD TO DECIMAL DECODER BCD TO DECIMAL DECODING OR BINARY TO OCTAL DECODING HIGH DECODED OUTPUT DRIVE CAPABILITY "POSITIVE LOGIC" INPUTS AND OUTPUTS: DECODED OUTPUTS GO HIGH ON SELECTION MEDIUM SPEED OPERATION

More information

Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking

Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking 14-stage ripple carry binary counter/divider and oscillator Applications Automotive Industrial Computer Consumer Description Datasheet - production data Features Medium speed operation Common reset Fully

More information