Current Source Biasing

Size: px
Start display at page:

Download "Current Source Biasing"

Transcription

1 Current Source Biasing ntegrated circuits have transistors which are manufactured simultaneously with the same device parameters (parameters from chip to chip will vary) As a result, different bias techniques are employed than in discrete designs One common technique is current source biasing, which allows the designer to take advantage of matched devices We will begin by looking at some simple current source circuits A current source is not a naturally occurring device. t can be simulated by a network of transistors and circuit elements.

2 The voltage across E is approximately constant. E is held at a constant value E VEE V = E BE

3

4

5

6

7 Problem: For the previous circuits find the bias values C and V CE for each transistor Solution Assume D 1 and D 2 forward biases ( 1 > B2 ) V = V + 2V = 10V + 2( 0. 7V) = 8. 6V B EE F Using KVL around loop A 2V = V + F BE2 E2 2 Since V E2 BE2 V F VF 0. 7V = = 180Ω ma Since C E = = C1 C2 39. ma

8 Check that D 1 and D 2 are forward biased for a worst case minimum βf = 20 B2 C2 = β F 019. ma 1 = V CC V 1 B = 10V ( 8. 6V) 50 kω = 037. ma V = V = 10V ( 39. ma)(1kω) = 61. V C1 CC C1 C V = V V = 8. 6V 0. 7V = 9. 3V E2 B BE2 V = V = 0V V = 0. 7V E1 C2 BE1 V = V V = 61. V ( 0. 7V) = 68. V CE1 C1 E1 V = V V = 0. 7V ( 9. 3V) = 8. 6V CE2 C2 E2

9 Current Mirrors Current mirrors also take advantage of matched transistors but require a minimal number of resistors. They are also well suited for circuits with more than one stage.

10

11 Basic BJT Current Mirror

12 A = VCC ( VCE + VEE ) A V V V = 1 CC BE1 EE A = + + A EF B1 B2 F β F is large << << B1 EF B2 EF EF A Problem For the following circuit C3 = 3 ma and V CE = 5.4 V. Find the quiescent (DC bias) power dissipated in each transistor.

13

14 = C3 o EF A A = 0V ( VF + VEE ) A A VF VEE = =. V ( V) = 3mA EF 31. kω V = 0. 7V; To achieve V = 54. V, V = 4. 7V E CE C V CC V = 10V 4. 7V = 53. V C C 53. V = = 3mA 18. kω

15 The DC power in each transistor is given by: P = V + V V Q C CE B BE C CE P Q1 = ( 3mA) ( 0. 7V) = 0. 2 mw P Q2 = ( 3mA)[ 0. 7V ( 10V)] 28 mw P Q3 = ( 3mA)(5.4V) = 16 mw

16 MOSFET Current Mirror Advantage: EF = A Gate current is negligible

17 Widlar Current Source The basic current mirror requires that the bias current and reference current be equal The wildar current source sets the mirrored current to a value smaller than EF by using an extra resistor The widlar current source allows you to establish small bias currents (µa) without using large resistor values

18

19 EF V V V CC EE BE1 A V = V + BE1 BE2 E2 2 V BE ηv T E = EO e 1 EO e V BE ηv T V BE = ηv T ln E EO Assuming matched BJTs ηv T ln E = ηvt ln + E1 1 EO EO E2 2 = ηv E2 2 T ln E1 E2

20 E1 EF E2 o o VT = η ln 2 EF o Equation difficult to solve in closed form. Use successive iteration or trial and error When you know the desired o then EF can be found directly EF = o o exp 2 ηv T Problem: Using a widlar current source find the values of A and B that will produce o = 100 µa. Given V CC = 10 V, VEE = -10 V, V F = 0.7 V and η = 1.

21 Solution: Select a value of 2 such that o2 ηv T To keep exponent from becoming too large ηv T = 25mV Choose = 100 mv = 1kΩ o 2 2 EF = 100 µ A)(1kΩ ( 100 µ A)exp ( ) = 546. ma. V EF = V V V CC EE F A A = 10V ( 10V) 0. 7V 5.46 ma = 354. kω

22 Wilson Current Source efined Widlar source that can produce O > EF

23 The balance between V BE1 and V BE2 is set by the ratio of 1 to 2 Assuming C E V + = V + BE1 EF 1 BE2 o 2 ηv T ln EF EO1 o + EF 1 = ηvt ln + EO2 o 2 Assuming matched devices o ηvt EF = ln + 2 o EF 1 2

24 Small Signal Modeling of Three Terminal Devices ncremental signals Piecewise linear models ncremental circuit models BJT FET efinements to incremental model Output resistance nput resistance Alternative BJT representation Two - port representations

25 Small Signal Modeling of Three Terminal Devices elated to PWL concept in which the V- characteristics are modeled by a straight line tangent to the curve at a particular operating point With three terminal devices the relationship between the output port and input port must be taken into account. This generally leads to a PWL model with a linearly dependent source. Circuits containing small signal models can be analyzed using linear circuit theory under proper conditions The terms small-signal and incremental will be used interchangeably

26 ncremental Signals Any transient, periodic or AC fluctuation in a voltage or current An incremental signal is small in magnitude compared to the bias voltages or currents in the circuit ncremental signal carries the signal information processed by the circuit

27

28

29

30 PWL Models of Three Terminal Devices Formation of small signal model begins with PWL model PWL model can be applied to three terminal device if the dependency of the output port is considered

31

32

33 r BE vbe = = i b V, BE B ηv B T Model valid only in constant current region f the circuit in which the BJT is connected produces a signal as well as a bias component to i B then: ic( t) = β ο ib ( t) where i c and i b are inc remental signals and β ο is the incremental current gain

34 Since β F is fairly constant it is possible to assume β ο = β F in many cases The symbols h FE and h fe are sometimes used instead of β F and β ο when using h-parameter analysis

35 ncremental Circuit Model n analyzing the small signal performance of a circuit it is customary to ignore the DC components of the model once the bias conditions have been established. This can be accomplished by the following procedure: 1. Find the DC bias point and determine an appropriate PWL model 2. Set all bias values to zero by setting all DC sources to zero (including those in the PWL model) 3. Solve the desired variables using linear circuit theory 4. Superimpose the signal variables onto the corresponding DC bias voltages and currents to obtain the total voltage and current values

36

37

38 B = V BB V B F = 1V 0. 7V 10 kω = 30 µ A = β = ( 100)( 30 µ A) = 3mA C F B V = V = V = 10V ( 3mA)(1kΩ) = 7V OUT CE CC C C Transistor operates in constant current therefore we can use PWL model developed earlier r be ηvt 1( ) = = 30µ A B 833Ω

39

40 i b = B vs + r be v = β i o ο b C v o = βο + r B C be 100( 1kΩ) v = v 9. 2 v 10 kω kω s s s β ο + r B C be is the incremental or small - signal voltage gain V = V + v ( t) = 7V 9. 2 v ( t) OUT CE o s Total = Bias + ncremental Voltage Voltage Signal

41

42 Problem: For the following circuit find the incremental components of v c and v e.

43

44

45 Note: v s connection does not represent typical amplifier design. KVL around the input loop for incremental signal v 1 + = i ( ) + i r + ( β + 1) i s b 1 2 b π ο b E 1 2 i b = v 1 s ( ) ( ) + r + ( β + 1) 1 2 π ο E v = ( β + 1) i = e ο b E 1 ο E v ( ) ( ) + r + ( β + 1) ( β + 1) 1 2 π ο E s v = ( β i ) = c ο b C β 1 ο C v s ( ) ( ) + r + ( β + 1) 1 2 π ο E

46 n the limit << ( β + 1) β r 1 2 π ο + 1 β << ( β + 1) ο ο ο E E v e 1 + v 1 2 s v c C E 1 + v 1 2 s

47 ncremental Model of MOSFET

48 g m id [ 2 = = k( V V ] GS T ) = 2k ( V V v v V GS T ), D GS V, GS GS D GS Assume constant current operation V GS D VT = k 1/ 2 g m = 2 k D Similar expression can be derived for JFET

49

50 An incremental description for a FET can also be defined for triode (resistive) region t can be shown that the incremental model is as follows

51 r ds = ( V ) 2k V 1 GS T g m = 2k V DS

52 Problem: (A) Find the small signal componont of V OUT for the following circuitd v s = 0.1 Sin ωt, k = 0.2 ma/v 2, V T = -2 V. (B) Find the Thevenin circuit between V OUT and ground..

53 The bias values can be found to be 0. 47mA V = = 0. 47V D GS D E Applying KVL to output loop V = V ( + ) = 10V ( 0. 47mA)(3k) = 8. 6V DS DD D D E Since V DS > (V GS V T ) = 1.53 V the device operates in the constant current region The incremental transconductance g m is given by g = 2k ( V V ) m GS T [ ] = 2( 0. 2 ma / V ) V ( 2 V) 0. 61mA / V 2

54 The signal component of v OUT can be found by substituting the PWL model and setting all DC sources to zero

55 Applying KVL to the output loop v = v i = v ( g v ) gs s d E s m gs E v gs = 1 + vs g m E Note feedback limits the fraction of v that appears as v gs s v = i = g v v OUT d D m gs D OUT gm = 1+ g m D E v s a V vout gm = = v 1+ g s m D E ma / V)(2 k = ( Ω) = (0.61mA / V)(1kΩ) v = a v = ( 0. 76)( 01. sin ωt) = sinωt OUT V s

56 Since v OUT is computed with no load it represents the incremental open circuit Thevenin voltage The incremental r th can be found by setting v s to zero and applying v TEST

57 v = g v can only be satisfied if v = gs m gs E gs 0 i test = v test D r th vtest = = i test D

Voltage Divider Bias

Voltage Divider Bias Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002 Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

More information

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

More information

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

More information

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and

More information

3.4 - BJT DIFFERENTIAL AMPLIFIERS

3.4 - BJT DIFFERENTIAL AMPLIFIERS BJT Differential Amplifiers (6/4/00) Page 1 3.4 BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57] Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

More information

Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf

Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load

More information

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics 192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing

More information

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

More information

School of Engineering Department of Electrical and Computer Engineering

School of Engineering Department of Electrical and Computer Engineering 1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

Collection of Solved Feedback Amplifier Problems

Collection of Solved Feedback Amplifier Problems c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Collection of Solved Feedback Amplifier Problems This document contains

More information

COMMON-SOURCE JFET AMPLIFIER

COMMON-SOURCE JFET AMPLIFIER EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC

More information

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

More information

BJT Circuit Configurations

BJT Circuit Configurations BJT Circuit Configurations V be ~ ~ ~ v s R L v s R L V Vcc R s cc R s v s R s R L V cc Common base Common emitter Common collector Common emitter current gain BJT Current-Voltage Characteristics V CE,

More information

Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER

Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER C H A P T E R 6 Basic FET Ampli ers 6.0 PREVIEW In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits containing these

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

Lecture 3: DC Analysis of Diode Circuits.

Lecture 3: DC Analysis of Diode Circuits. Whites, EE 320 Lecture 3 Page 1 of 10 Lecture 3: DC Analysis of Diode Circuits. We ll now move on to the DC analysis of diode circuits. Applications will be covered in following lectures. Let s consider

More information

EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier

EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier EE 330 Lecture 21 Small Signal Analsis Small Signal Analsis of BJT Amplifier Review from Last Lecture Comparison of Gains for MOSFET and BJT Circuits IN (t) A B BJT CC 1 R EE OUT I R C 1 t If I D R =I

More information

Biasing in MOSFET Amplifiers

Biasing in MOSFET Amplifiers Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing

More information

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C

Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C ESE39 ntroduction to Microelectronics Differential Amplifier Offset Causes of dc voltage and current offset Modeling dc offset mismatch S mismatch β mismatch transistor mismatch dc offsets in differential

More information

TWO PORT NETWORKS h-parameter BJT MODEL

TWO PORT NETWORKS h-parameter BJT MODEL TWO PORT NETWORKS h-parameter BJT MODEL The circuit of the basic two port network is shown on the right. Depending on the application, it may be used in a number of different ways to develop different

More information

Dependent Sources: Introduction and analysis of circuits containing dependent sources.

Dependent Sources: Introduction and analysis of circuits containing dependent sources. Dependent Sources: Introduction and analysis of circuits containing dependent sources. So far we have explored timeindependent (resistive) elements that are also linear. We have seen that two terminal

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

More information

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential

More information

An Introduction to the EKV Model and a Comparison of EKV to BSIM

An Introduction to the EKV Model and a Comparison of EKV to BSIM An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals

More information

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

g fs R D A V D g os g os

g fs R D A V D g os g os AN12 JFET Biasing Techniques Introduction Engineers who are not familiar with proper biasing methods often design FET amplifiers that are unnecessarily sensitive to device characteristics. One way to obtain

More information

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

More information

Common Emitter BJT Amplifier Design Current Mirror Design

Common Emitter BJT Amplifier Design Current Mirror Design Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite

More information

Figure 1. Diode circuit model

Figure 1. Diode circuit model Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

More information

Bob York. Transistor Basics - MOSFETs

Bob York. Transistor Basics - MOSFETs Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

More information

What Does Rail-to-Rail Operation Really Mean?

What Does Rail-to-Rail Operation Really Mean? What Does Rail-to-Rail Operation Really Mean? 2004 Microchip Technology Incorporated. All Rights Reserved. What does Rail-to-Rail Operation really mean? 1 Agenda What does Rail-to-Rail output operation

More information

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors). 1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

More information

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II 1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

28V, 2A Buck Constant Current Switching Regulator for White LED

28V, 2A Buck Constant Current Switching Regulator for White LED 28V, 2A Buck Constant Current Switching Regulator for White LED FP7102 General Description The FP7102 is a PWM control buck converter designed to provide a simple, high efficiency solution for driving

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2 Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function

More information

Figure 1: Common-base amplifier.

Figure 1: Common-base amplifier. The Common-Base Amplifier Basic Circuit Fig. 1 shows the circuit diagram of a single stage common-base amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output

More information

VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: Biasing and Small Signal Model VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

More information

Transistor Models. ampel

Transistor Models. ampel Transistor Models Review of Transistor Fundamentals Simple Current Amplifier Model Transistor Switch Example Common Emitter Amplifier Example Transistor as a Transductance Device - Ebers-Moll Model Other

More information

Understanding Low Drop Out (LDO) Regulators

Understanding Low Drop Out (LDO) Regulators Understanding Low Drop Out (LDO) Regulators Michael Day, Texas Instruments ABSTRACT This paper provides a basic understanding of the dropout performance of a low dropout linear regulator (LDO). It shows

More information

Current mirrors are commonly used for current sources in integrated circuit design. This section covers other current sources that are often seen.

Current mirrors are commonly used for current sources in integrated circuit design. This section covers other current sources that are often seen. c Coyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Comuter Engineering. Current Sources Current mirrors are commonly used for current sources

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

Field Effect Transistors

Field Effect Transistors 506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of

More information

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

The BJT Differential Amplifier. Basic Circuit. DC Solution

The BJT Differential Amplifier. Basic Circuit. DC Solution c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit

More information

Regulated D.C. Power Supply

Regulated D.C. Power Supply 442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

CHAPTER 2 POWER AMPLIFIER

CHAPTER 2 POWER AMPLIFIER CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

More information

Application Note 82 Using the Dallas Trickle Charge Timekeeper

Application Note 82 Using the Dallas Trickle Charge Timekeeper www.maxim-ic.com Application Note 82 Using the Dallas Trickle Charge Timekeeper DESCRIPTION The Dallas Semiconductor/Maxim real-time clock (RTC) family contains a number of parts within an integrated trickle-charging

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low CIRCUITS LABORATORY EXPERIMENT 6 TRANSISTOR CHARACTERISTICS 6.1 ABSTRACT In this experiment, the output I-V characteristic curves, the small-signal low frequency equivalent circuit parameters, and the

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

More information

BIPOLAR JUNCTION TRANSISTORS

BIPOLAR JUNCTION TRANSISTORS CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back

More information

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1 CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits LTSpice LTSpice is a free circuit simulator based on Berkeley

More information

Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers

Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers TECHNICAL DATA Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers IK3051 Description IK3051 is a highly integrated solution for SMPS applications requiring constant voltage

More information

EECS 240 Topic 7: Current Sources

EECS 240 Topic 7: Current Sources EECS 240 Analog Integrated Circuits Topic 7: Current Sources Bernhard E. Boser,Ali M. Niknejad and S.Gambini Department of Electrical Engineering and Computer Sciences Bias Current Sources Applications

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

LM386 Low Voltage Audio Power Amplifier

LM386 Low Voltage Audio Power Amplifier Low Voltage Audio Power Amplifier General Description The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count

More information

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2) Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V Ordering number: 2137B Thick Film Hybrid IC STK4181V AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.08%) Features Pin-compatible with the STK4102II series. The STK4101V series use the

More information

TL074 TL074A - TL074B

TL074 TL074A - TL074B A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION

More information

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW VOLTAGE NOISE: 4.5nV/ Hz HIGH GAIN BANDWIDTH PRODUCT: 15MHz HIGH SLEW RATE: 7V/µs LOW DISTORTION:.2% EXCELLENT FREQUENCY STABILITY ESD PROTECTION 2kV DESCRIPTION

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UPS61 UNISONIC TECHNOLOGIES CO., LTD HIGH PERFORMANCE CURRENT MODE POWER SWITCH DESCRIPTION The UTC UPS61 is designed to provide several special enhancements to satisfy the needs, for example, Power-Saving

More information

PHOTOTRANSISTOR OPTOCOUPLERS

PHOTOTRANSISTOR OPTOCOUPLERS MCT2 MCT2E MCT20 MCT27 WHITE PACKAGE (-M SUFFIX) BLACK PACKAGE (NO -M SUFFIX) DESCRIPTION The MCT2XXX series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

Understanding the Terms and Definitions of LDO Voltage Regulators

Understanding the Terms and Definitions of LDO Voltage Regulators Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions

More information

How To Calculate The Power Gain Of An Opamp

How To Calculate The Power Gain Of An Opamp A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

More information

Application Report SLVA072

Application Report SLVA072 Application Report August 1999 Mixed Signal Products SLVA72 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product

More information

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C 2N6284 (NPN); 2N6286, Preferred Device Darlington Complementary Silicon Power Transistors These packages are designed for general purpose amplifier and low frequency switching applications. Features High

More information