ECE Digital Logic Design. Laboratory Manual


 Shannon Mason
 1 years ago
 Views:
Transcription
1 ECE 1315 Digital Logic Design Laboratory Manual Guide to Assembling your Circuits Dr. Fernando RíosGutiérrez Dr. Rocio AlbaFlores Dr. Chris Carroll Department of Electrical and Computer Engineering University of Minnesota Duluth 6/2002 1
2 V.  Guide to Assembling your Circuits. In this section we describe the use of the breadboard and give basic hints about the wiring process needed to power up and interconnect your circuits. Assembling circuits on your breadboard is a fast and easy process once you get used to it. To assemble your circuit first select the chips that you need, insert them in the breadboard, wire up the power and ground connections as described in the next section and next wire the logic elements according to the circuit connections that you obtained from the design process. Before you insert a chip into the breadboard, make sure it is properly oriented (see Fig. 9 & 10), and that when you press it down the pins of the chip actually enter the holes and do not bend underneath the chip package. When wiring, be careful to hit the right hole needed in the connection, because this is one of the most common mistakes found to cause an error in your projects Breadboard Description. In order to assemble the lab experiments, every student should use his/her own breadboard (similar to the one shown in Figure 6). The breadboard has 8 sets of rows (1) and (2), consisting of 25 holes that are horizontally interconnected, and groups of columns (3) and (4), consisting of 5 holes that are vertically interconnected. The rows and columns are used to hold chips and wires, and interconnect them as shown in Figures 7 and Fig Breadboard Also, in Figures 7 and 8 we show two typical ways to distribute power (1), and ground (2) signals that are recommended in order to avoid noise in your circuit, and assure good performance from the chips. The banana plugs (3), if available, can be used to connect your breadboard to an external power supply (usually the Heathkit board). 2
3 3 1 2 Fig Power and Ground Connection (method A) Fig Power and Ground Connection (method B) TTL Packages Description. The chips or packages that will be used to build the experiments belong to the TTL logic family, and they are referred as the 74LSXX family, where the XX is a number that indicates the specific kind of gate or function. The main characteristics for some typical logic gates packages are shown in Figures 9 and 10 next. 3
4 Fig Inverter (NOT) gate pin distribution Fig AND gate pin distribution Most commonly used TTL devices have their power and ground connections on pins 14 and 7 respectively, however verify this information before using some special function or uncommon packages. Also, all packages have a notch or mark that indicates the proper orientation of the device. From this mark each pin is numbered in a counter clockwise direction. The specific function that each chip performs is typically described using function tables, logic tables or logic diagrams as the ones shown in Figure 11. 4
5 Fig Typical Manual Descriptions for a TTL Gate. 5
6 Diagrams and Labeling. Using the pin distribution for the TTL packages given by the manufacturer, and once that you design the circuit that performs the desired logic function, the next step is to wire up the circuit that implements this function. Because every chip has a different number of gates, a good implementation step is to make a diagram for the circuit and label all inputs, outputs and gates in the way shown in Figure 12. By doing this the wiring and testing process will be done very easily in the lab. Pin Number Package Label Gate Name Fig Package, gate and pin labeling There are many methods than can be used to label a circuit. In this manual we show only one that is easy to understand and implement. In this method, every input and output pin shown in the diagram shows the respective pin number that corresponds to the gate in its package. The gates are labeled using a letter and a number. The letter labels a specific gate inside the package, and the number labels the package corresponding to its order. This is shown in Figure 13. For Figure 13, the gate labeled A1 means gate A in chip 1, B1 means gate B in chip one, and A2 means gate A in chip 2 and so on and so forth. Using this information it is very easy to wire the circuit on the breadboard since you only need to place the chips on the breadboard following the order that the chip was given on the diagram. Next, you only need to connect a wire between the pins that are given for every chip. For example, a wire has to be connected between pin 6 of the third chip (B3) and pin 9 of the fourth chip (C4). Another wire has to be connected between pin 8 of the first chip (C1) and pin 5 of chip number 5 (C5), and so on and so forth. Labeling the circuit in this way also makes it easier to find errors on the wiring during the testing process. Another important characteristic that can be noticed from this diagram is that the flow of interconnections and signals follows a left to right direction. This means that typically 6
7 in an electric connection diagram, the inputs will be shown on the left and outputs will be shown on the right. The reason for this is that in this way it is easy to follow the flow of signals in the circuit, and the function implementation at every step that each gate performs. On other hand, it makes the circuit interconnections to appear clearer. Fig Circuit Labels and Connections VI.  IC packages and Lab Inventory. In the Table 1, we show the TTL inventory for the chips available in the lab that can be used in the implementation of your circuits. For some lab experiments you will be informed about which chips you can exclusively use for that project in particular, otherwise you can use any package that is given in the list. Also, a quick reference guide for some of the most common devices is shown in Figure 14. 7
8 NAME FUNCTION NAME FUNCTION 74LS139 DUAL 2>4 DECODER 74LS00 2 INPUT NAND 74LS >3 DECODER 74LS02 2 INPUT NOR 74LS >1 MULTIPLEXER 74LS04 INVERTER 74LS >1 MULTIPLEXER 74LS08 2 INPUT AND 74LS >4 DECODER 74LS10 3 INPUT NAND 74LS > 1 MULTIPLEXER 74LS11 3 INPUT AND 74LS161 4 BIT COUNTER 74LS20 4 INPUT NAND 74LS163 4 BIT COUNTER 74LS25 4 INPUT NOR 74LS164 8 BIT SHIFT REG 74LS27 3 INPUT NOR 74LS169 4 BIT COUNTER 74LS30 8 INPUT NAND 74LS170 4 x 4 REGISTER 74LS32 2 INPUT OR 74LS174 HEX D FF 74LS42 4>10 DECODER 74LS175 QUAD D FF 74LS74 DUAL D FF 74LS191 4 BIT COUNTER 74LS75 QUAD LATCH 74LS193 4 BIT COUNTER 74LS83 4 BIT ADDER 74LS194 4 BIT SHIFT REG 74LS85 4 BIT COMPARATOR 74LS195 4 BIT SHIFT REG 74LS86 2 INPUT XOR 74LS244 OCTAL BUFFER 74LS93 4 BIT COUNTER 74LS259 8 BIT ADDER 74LS95 4 BIT SHIFT REG 74LS283 4 BIT ADDER 74LS109 DUAL JK' FF 74LS373 OCTAL LATCH 74LS >8 DECODER Table 1.  TTL Chip Inventory 8
9 TTL Quick Reference Fig TTL gates quick reference guide 9
10 VII. Circuit Testing and Input Generation and Output Display. Once the circuits for your lab experiment have been designed and built on your breadboard, the final step is to test them and verify that they produce the set of outputs expected for the set of inputs provided. The set of inputs to test your circuit can be generated in two different ways: manually and automatically. a).  Manual Generation and Display of Input and Output Variables To generate a logic variable manually, you can use the set of binary static switches or pushbuttons available from the Heathkit board, and to display these signals you can connect the set of input signals and the set of output signals to the logic indicator displays available also from the Heathkit board. In order to use one of the switches to generate a logic variable, just connect a wire to the breadboard output of the respective switch, and connect the other side of the wire to the respective input. To observe the state of this input you can connect another wire from this variable to one of the displays. b).  Automatic Generation and Display of Input and Output Variables To generate the sets of inputs and display the outputs on the oscilloscope screen automatically, you can use the Chipmonk circuitry and its connector (shown in Figure 15). This system produces four switching variables named W, X, Y and Z, and generates all possible combinations of values that these variables could have. This is, the values change from 0000 to 1111 and repeat continuously, with W been the most significant value, and Z the least significant value. W X Y Z Sequence Clock Column 8 Ground V cc Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Fig Chipmonk Connector The oscilloscope will show 16 rows of ones or zeros, and 8 columns. The screen displays one row for each combination of values, and each column represents a different variable, as shown in Figure 16. In order to display the value of a variable on the oscilloscope screen, just connect the variable of interest to the any of pins of the Chipmonk connector labeled Column 1 through Column 7 (pin numbers 15 through 9, respectively). Column 8 is special and should not be 10
11 used for testing combinational circuits. The use of this pin will be explained later in the sequential circuits section. When the Chipmonk is working correctly you should see displayed on the oscilloscope screen a truth table showing the input and output variables for your circuit. The variables will be displayed from left to right on the screen, in the same order that you wired them to the Chipmonk, as shown in Figure 16. Normally, when testing your experiments, you will want to display both the inputs to your circuit (W, X, Y, Z) and the outputs produced by your circuit, so that you can determine whether the proper output values are produced for each combination of input values. You can use any column to display either the value of an input or the value of an output. Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Fig. 16. Columns and Rows Displayed on the Oscilloscope Screen 11
12 In order for the Chipmonk circuitry and Oscilloscope to work properly, the Heathkit frequency and frequency multiplier knobs (3 & 4 on Fig. 1) should be set fully clockwise. The oscilloscope controls should all be set on the XY mode (1, 2, 3 and 4 in Fig. 17). Set channels 1 and 2 both at 0.5 volts per division (5, 6); AC coupled (7, 8), and pull out the channel 2position control (9). Use the channel 2 position and the horizontal position adjustments to center the display on the screen. Once these controls are set, they should not need to be changed Fig. 17. Oscilloscope Controls Next, in the section VIII we show a table with the main Boolean Algebra laws, theorems and properties that can be applied to reduce a logic function. 12
13 VIII.  Basic Laws and Theorems for Boolean Algebra. IDENTITY LAWS X + 0= X X 1= X X + 1= 1 X 0= 0 IDEMPOTENT LAWS X + X = X X X = X INVOLUTION LAW (X')' = X COMPLEMENT LAWS X + X' = 1 X X' = 0 COMMUTATIVE LAWS X + Y = Y + X X Y = Y X ASSOCIATIVE LAWS (X + Y) + Z = X + (Y + Z) (X Y) Z = X (Y Z) DISTRIBUTIVE LAWS X(Y + Z) = X Y + X Z X + Y Z = (X + Y) (X + Z) SIMPLIFICATIVE THEOREMS X Y + X Y' = X (X + Y) (X + Y') = X (X + Y')Y = X Y X Y' + Y = X + Y ABSORPTION THEOREMS X + X Y = X X (X + Y) = X DEMORGAN'S LAWS (X + Y) ' = X' Y' (X Y) ' = X' + Y' X + X Y = X + Y X (X + Y) = X' Y 13
ELEC 2210  EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC  EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL00 Bit
More information1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
More informationThe components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7segment display. 2 st. IC
More informationDigital Logic Design Laboratory
Digital Logic Design Laboratory EE2731 Gabriel Augusto Marques Tarquinio de Souza Department of Electrical and Computer Engineering Louisiana State University and Agricultural and Mechanical College Baton
More informationIntroduction to Logic Design Lab: AND, OR, NOT NAND and NOR GATES
Experiment 1 Introduction to Logic Design Lab: AND, OR, NOT NAND and NOR GATES Objective References The purpose of this laboratory is to introduce the use and features of the logic lab unit (ETS7000 DIGITAL
More informationChapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates
Chapter Goals Chapter 4 Gates and Circuits Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the
More informationFORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The FullAdder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The FullAdder 1 Introduction In this lab, the student will construct
More informationDigital Systems Laboratory
Digital Systems Laboratory Rev 1.2 Agust 2014 LIST OF EXPERIMENTS 1. INTRODUCTION TO LAB, USING MATERIALS 2. DIGITAL LOGIC GATES 3. INTRODUCTION TO PROTEUS 4. BINARY AND DECIMAL NUMBERS 5. CODE CONVERSION
More informationLatches and FlipFlops characterestics & Clock generator circuits
Experiment # 7 Latches and FlipFlops characterestics & Clock generator circuits OBJECTIVES 1. To be familiarized with D and JK flipflop ICs and their characteristic tables. 2. Understanding the principles
More informationGates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
More informationHaving read this workbook you should be able to: recognise the arrangement of NAND gates used to form an SR flipflop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an SR flipflop. describe how such a flipflop can be SET and RESET. describe the disadvantage
More informationProgrammable Logic Devices (PLDs)
Programmable Logic Devices (PLDs) Lesson Objectives: In this lesson you will be introduced to some types of Programmable Logic Devices (PLDs): PROM, PAL, PLA, CPLDs, FPGAs, etc. How to implement digital
More informationCounters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4bit ripplethrough decade counter with a decimal readout display. Such a counter
More informationCHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
More informationDigital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
More informationDigital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
More informationLab Manual. Digital System Design (Pr): COT215 Digital Electronics (P): IT211
Lab Manual Digital System Design (Pr): COT215 Digital Electronics (P): IT211 Lab Instructions Several practicals / programs? Whether an experiment contains one or several practicals /programs One practical
More information1. Realization of gates using Universal gates
1. Realization of gates using Universal gates Aim: To realize all logic gates using NAND and NOR gates. Apparatus: S. No Description of Item Quantity 1. IC 7400 01 2. IC 7402 01 3. Digital Trainer Kit
More informationDIGITAL SYSTEM DESIGN LAB
EXPERIMENT NO: 7 STUDY OF FLIP FLOPS USING GATES AND IC S AIM: To verify various flipflops like D, T, and JK. APPARATUS REQUIRED: Power supply, Digital Trainer kit, Connecting wires, Patch Chords, IC
More informationExperiment 5. Arithmetic Logic Unit (ALU)
Experiment 5 Arithmetic Logic Unit (ALU) Objectives: To implement and test the circuits which constitute the arithmetic logic circuit (ALU). Background Information: The basic blocks of a computer are central
More informationChapter  5 FLIPFLOPS AND SIMPLE FLIPFLOP APPLICATIONS
Chapter  5 FLIPFLOPS AND SIMPLE FLIPFLOP APPLICATIONS Introduction : Logic circuit is divided into two types. 1. Combinational Logic Circuit 2. Sequential Logic Circuit Definition : 1. Combinational
More informationDigital Fundamentals
Digital Fundamentals Tenth Edition Floyd Chapter 1 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Analog Quantities Most natural quantities that we see
More informationLAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III
LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III 1 INDEX Sr. No Title of the Experiment 1 Study of BASIC Gates 3 2 Universal Gates 6 3 Study of Full & Half Adder & Subtractor
More informationCOMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
More informationFigure 81 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
More informationDigital Fundamentals. Lab 8 Asynchronous Counter Applications
Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:
More informationDEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS453
More information1.1 The 7493 consists of 4 flipflops with JK inputs unconnected. In a TTL chip, unconnected inputs
CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.
More informationLogic Gates & Operational Characteristics
Logic Gates & Operational Characteristics NOR Gate as a Universal Gate The NOR gate is also used as a Universal Gate as the NOR Gate can be used in a combination to perform the function of a AND, OR and
More informationLab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation
Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before
More informationDigital Logic Design. Basics Combinational Circuits Sequential Circuits. PuJen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits PuJen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
More information2 hrs lecture 2 hrs lab 2 hrs section
Arab Academy for Science and Technology & Maritime Transport University/Academy: Arab Academy for Science and Technology & Maritime Transport Faculty/Institute: College of Computing and Information Technology
More informationCHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
More informationProblem Session 5. Overview. Part 1: An SR Latch. Part 2: A D Latch
Problem Session 5 Overview The most basic element of binary storage is the latch, consisting of 2 crosscoupled NAND (or NOR) gates. The D latch, with a write enable input, is a rudimentary storage element.
More informationDecimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
More informationPLL frequency synthesizer
ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are:  Verify the behavior of a and of a complete PLL  Find capture
More informationPractical Workbook Digital Logic Design / Logic Design & Switching Theory
Practical Workbook Digital Logic Design / Logic Design & Switching Theory Name : Year : Batch : Roll No : Department: Second edition  2015 Dept. of Computer & Information Systems Engineering NED University
More informationLaboratory 4 Logic, Latching and Switch Debounce
Laboratory 4 Logic, Latching and Switch Debounce = Required to submit your Multisim circuit files before you start the lab. Prelab Questions 1. Attach the detailed wiring diagram you used to construct
More informationBasic Logic Circuits
Basic Logic Circuits Required knowledge Measurement of static characteristics of nonlinear circuits. Measurement of current consumption. Measurement of dynamic properties of electrical circuits. Definitions
More informationElectronic Troubleshooting. Chapter 10 Digital Circuits
Electronic Troubleshooting Chapter 10 Digital Circuits Digital Circuits Key Aspects Logic Gates Inverters NAND Gates Specialized Test Equipment MOS Circuits FlipFlops and Counters Logic Gates Characteristics
More informationMultiplexer Based Digital Integrated Circuit Tester
Multiplexer Based Digital Integrated Circuit Tester Hema Thota 1, Sridhar Sammeta 2, Prudhvi Raj Thota 3 B.Tech, Electronics and Communication Engineering, D.M.S S.V.H College of Engineering, Machilipatnam,
More informationLABORATORY MODULE. EKT 121/4 Digital Electronics I
LABORATORY MODULE EKT 121/4 Digital Electronics I Mohd. Najmuddin Mohd. Hassan Zahereel Ishwar Abdul Khalib Mohammad Nazri Md. Noor Rafikha Aliana A.Raof School of Computer & Communications Engineering
More informationDigital Logic Elements, Clock, and Memory Elements
Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set
More informationObjectives: Part 1: Build a simple power supply. CS99S Laboratory 1
CS99S Laboratory 1 Objectives: 1. Become familiar with the breadboard 2. Build a logic power supply 3. Use switches to make 1s and 0s 4. Use LEDs to observe 1s and 0s 5. Make a simple oscillator 6. Use
More informationExperiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
More informationENGI 241 Experiment 5 Basic Logic Gates
ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.
More information3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
More informationUpon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
More information3Digit Counter and Display
ECE 2B Winter 2007 Lab #7 7 3Digit Counter and Display This final lab brings together much of what we have done in our lab experiments this quarter to construct a simple tachometer circuit for measuring
More informationDigital Systems CCPS1573
1. Name of Course 2. Course Code 3. Name(s) of academic staff 4. Rationale for the inclusion of the course/module in the programme Digital Systems CCPS1573 Faculty This module provides foundation knowledge
More informationThis book is licensed under the Creative Commons Attribution 4.0 License
2 DIGITAL CIRCUIT PROJECTS Charles W. Kann III 277 E. Lincoln Ave. Gettysburg, Pa All rights reserved. This book is licensed under the Creative Commons Attribution 4.0 License This book is available for
More information201213 Department of Electronics & Communication
(A constituent college of Sri Siddhartha University) 201213 Department of Electronics & Communication LOGIC DESIGN LAB MANUAL III SEM BE Name : Sem :. Sec: Logic Design Lab Manual Contents Exp No Title
More informationRUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The InputControl/OutputDisplay
More informationOperating Manual Ver.1.1
4 Bit Binary Ripple Counter (UpDown Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94101, Electronic Complex Pardesipura, Indore 452010, India Tel : 91731 2570301/02, 4211100 Fax: 91731
More informationSequential Logic Design
Lab #4 Sequential Logic Design Objective: To study the behavior and applications of flip flops and basic sequential circuits including shift registers and counters. Preparation: Read the following experiment.
More informationANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH218 3108 Dr. A.P. Vajpeyi Email: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
More informationGETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8
GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 060572905 (860) 4898003 www.altaengineering.com
More informationUnderstanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
More informationProperties of FlipFlops
Dr. Anthony D. Johnson sl_dild.fm Lab Assignment # Properties of FlipFlops. Objective  gaining a close insight into the functioning and properties of basic static memory circuits,  verifying the superior
More informationUNIT 6 Logic Gates, FlipFlops, and Counters
UNIT 6 Logic Gates, FlipFlops, and Counters Chemistry 838 Department of Chemistry Michigan State University East Lansing, MI 48824 Name Student Number Date Submitted Table of Contents Table of Contents...1
More informationASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
More information4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION
4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More information8bit 4to1 Line Multiplexer
Project Part I 8bit 4to1 Line Multiplexer Specification: This section of the project outlines the design of a 4to1 multiplexor which takes two 8bit buses as inputs and produces a single 8bit bus
More informationA Digital Timer Implementation using 7 Segment Displays
A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227  Analogue Electronics
More informationOperating Manual Ver.1.1
FlipFlops Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94101, Electronic Complex Pardesipura, Indore 452010, India Tel : 91731 2570301/02, 4211100 Fax: 91731 2555643 e mail : info@scientech.bz
More informationChapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
More informationDigital Logic: Boolean Algebra and Gates
Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 CMPE2 Summer 28 Basic Logic Gates CMPE2 Summer 28 Slides by ADB 2 Truth Table The most basic representation of a logic function Lists the output
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More informationEXPERIMENT 8. FlipFlops and Sequential Circuits
EXPERIMENT 8. FlipFlops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flipflops and counters.
More information2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as
Chapter 2 Digital Logic asics 2 Implementation using NND gates: We can write the XOR logical expression + using double negation as + = + = From this logical expression, we can derive the following NND
More informationModule 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech  3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
More informationAltoids Tin Headphone Amplifier Lab
Altoids Tin Headphone Amplifier Lab Michigan State University AEE/IEEE Step 1: Required Parts Table 1 shows a complete listing of the parts required to complete this project. Figure 1 shows a picture of
More informationLab 1: Study of Gates & Flipflops
1.1 Aim Lab 1: Study of Gates & Flipflops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flipflops. 1.2 Hardware Requirement a. Equipments 
More informationUSB Step and Direction Pulse Generator. User Manual
USB Step and Direction Pulse Generator User Manual 2012 Kellyware 1/15/2012 Table of Contents Table of Contents... 2 Parts List... 3 Key Features... 3 Introduction... 4 Installation... 5 Setup... 5 Wiring
More informationDigital Systems Laboratory
Eskişehir Osmangazi University Digital Systems Laboratory Rev 3.01 February 2011 LIST OF EXPERIMENTS 1. BINARY AND DECIMAL NUMBERS 2. DIGITAL LOGIC GATES 3. INTRODUCTION TO LOGICWORKS 4. BOOLEAN ALGEBRA
More informationBINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
More informationCopyright Peter R. Rony 2009. All rights reserved.
Experiment No. 1. THE DIGI DESIGNER Experiment 11. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2INPUT POSITIVE NAND GATE Experiment 21. Truth Table
More informationBELS Digital IC Report
CMOS Digital IC Report 74HC00, Quad 2Input NAND Gate DIP14 3  A 500 0.24 74HCT00, Quad 2Input NAND Gate DIP14 3  A 501 0.36 74HC02, Quad 2 Input NOR DIP14 3  A 417 0.24 74HC04, Hex Inverter, buffered
More informationLecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
More informationDigital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
More informationBuild A Video Switcher. Reprinted with permission from Electronics Now Magazine September 1997 issue
Build A Video Switcher Reprinted with permission from Electronics Now Magazine September 1997 issue Copyright Gernsback Publications, Inc.,1997 BUILD A VIDEO SWITCHER FRANK MONTEGARI Watch several cameras
More informationECE3281 Electronics Laboratory
ECE328 Electronics Laboratory Experiment #4 TITLE: EXCLUSIVEOR FUNCTIONS and INRY RITHMETIC OJECTIVE: Synthesize exclusiveor and the basic logic functions necessary for execution of binary arithmetic.
More informationSequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
More informationDigital Fundamentals
Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence
More informationLOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2Input NOR Buffered B Series Gate / PDIP14
LOGICOS SERIE 4000 Precios sujetos a variación Ref. Part # Descripción Precio Foto Ref. A61 CD4001 Quad 2Input NOR Buffered B Series Gate / PDIP14 $ 290 A62 CD4001BCM Quad 2Input NOR Buffered B
More informationCHAPTER TEN. 10.1 New Truth Table Symbols. 10.1.1 Edges/Transitions. Memory Cells
CHAPTER TEN Memory Cells The previous chapters presented the concepts and tools behind processing binary data. This is only half of the battle though. For example, a logic circuit uses inputs to calculate
More informationBasic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
More informationET398 LAB 6. FlipFlops in VHDL
ET398 LAB 6 FlipFlops in VHDL FlipFlops March 3, 2013 Tiffany Turner OBJECTIVE The objectives of this lab are for you to begin the sequential and memory programming using flip flops in VHDL program.
More informationBISTABLE LATCHES AND FLIPFLOPS
ELET 3156 DL  Laboratory #3 BISTABLE LATCHES AND FLIPFLOPS No preliminary lab design work is required for this experiment. Introduction: This experiment will demonstrate the properties and illustrate
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationDigital to Analog Conversion Using Pulse Width Modulation
Digital to Analog Conversion Using Pulse Width Modulation Samer ElHajMahmoud Electronics Engineering Technology Program Texas A&M University Instructor s Portion Summary The purpose of this lab is to
More informationOperating Manual Ver.1.1
Code Conversion Binary to Gray Gray to Binary Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94101, Electronic Complex Pardesipura, Indore 452010, India Tel : 91731 2570301/02, 4211100 Fax: 91731
More informationLab 5 Operational Amplifiers
Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties
More informationModule3 SEQUENTIAL LOGIC CIRCUITS
Module3 SEQUENTIAL LOGIC CIRCUITS Till now we studied the logic circuits whose outputs at any instant of time depend only on the input signals present at that time are known as combinational circuits.
More informationThe RIDZ 8x2 Audio Switcher
The RIDZ 8x2 Audio Switcher Engineering Manual Support Number 8007652930 International 7128522813 Table of Contents General Information for the RIDZ (8 x 2) Switcher..... 3 Input 9 on the RIDZ Switcher....6
More informationRAM & ROM Based Digital Design. ECE 152A Winter 2012
RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in
More informationShift registers. 1.0 Introduction
Shift registers 1.0 Introduction Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of flipflops connected in a chain so that the output from
More informationDigital Circuit Projects: An Overview of Digital Circuits Through Implementing Integrated Circuits  Second Edition
Gettysburg College Open Educational Resources 5122014 Digital Circuit Projects: An Overview of Digital Circuits Through Implementing Integrated Circuits  Second Edition Charles W. Kann Gettysburg College
More informationChapter 2 Digital Components. Section 2.1 Integrated Circuits
Chapter 2 Digital Components Section 2.1 Integrated Circuits An integrated circuit (IC) is a small silicon semiconductor crystal, called a chip, containing the electronic components for the digital gates
More informationKarnaugh Maps. Example A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1. each 1 here gives a minterm e.g.
Karnaugh Maps Yet another way of deriving the simplest Boolean expressions from behaviour. Easier than using algebra (which can be hard if you don't know where you're going). Example A B C X 0 0 0 0 0
More information