EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005



Similar documents
Integrated Circuits & Systems

Advanced VLSI Design CMOS Processing Technology

Intel s Revolutionary 22 nm Transistor Technology

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Digital Integrated Circuit (IC) Layout and Design

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

BJT Ebers-Moll Model and SPICE MOSFET model

An Introduction to the EKV Model and a Comparison of EKV to BSIM

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

Predicted Performance Advantages of Carbon Nanotube Transistors with Doped Nanotubes as Source/Drain

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN

New materials on horizon for advanced logic technology in mobile era

Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage

Fourth generation MOSFET model and its VHDL-AMS implementation

MOS Capacitor CHAPTER OBJECTIVES

Bob York. Transistor Basics - MOSFETs

MOS (metal-oxidesemiconductor) 李 2003/12/19

Modeling the Characteristics of a High-k HfO 2 -Ta 2 O 5 Capacitor in Verilog-A

The MOS Transistor in Weak Inversion

The MOSFET Transistor

ECE 410: VLSI Design Course Introduction

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Sheet Resistance = R (L/W) = R N L

MOS Transistor 6.1 INTRODUCTION TO THE MOSFET

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

Introduction to VLSI design (EECS 467)

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

Evaluation of the Surface State Using Charge Pumping Methods

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

What is this course is about? Design of Digital Circuitsit. Digital Integrated Circuits. What is this course is about?

EDC Lesson 12: Transistor and FET Characteristics EDCLesson12- ", Raj Kamal, 1

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Simulation of Gate Leakage Currents in UTB MOSFETs and Nanowires Andreas Schenk ETH Zurich

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption

DESIGN CHALLENGES OF TECHNOLOGY SCALING

Semiconductor Memories

Contents. State of the Art and Current Trends for Multiple Gate MOS Devices. Current, Charge and Capacitance Model for Multiple Gate MOSFETs

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

COMMON-SOURCE JFET AMPLIFIER

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Semiconductor doping. Si solar Cell

Introduction to Semiconductor Manufacturing Technology. Chapter 1, Introduction. Hong Xiao, Ph. D.

Lecture Notes 3 Introduction to Image Sensors

SMA Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

Chapter 10 Advanced CMOS Circuits

1.1 Silicon on Insulator a brief Introduction

Introduction to PSP MOSFET Model

Comparison study of FinFETs: SOI vs. Bulk Performance, Manufacturing Variability and Cost

Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1

Introduction to CMOS VLSI Design

Lecture 15. Advanced Technology Platforms. Background and Trends State-of-the-Art CMOS Platforms

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

Metal Gate / High-k Reliability Characterization: From Research to Development and Manufacturing. Andreas Kerber, PhD Technology Research Group

Chapter 2 Sources of Variation

5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures

MOS Transistors as Switches

SIPMOS Small-Signal-Transistor

Low Power and Reliable SRAM Memory Cell and Array Design

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

UGF W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET

VLSI Design Verification and Testing

TPN4R712MD TPN4R712MD. 1. Applications. 2. Features. 3. Packaging and Internal Circuit Rev.4.0. Silicon P-Channel MOS (U-MOS )

Implementation Of High-k/Metal Gates In High-Volume Manufacturing

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST

Diodes and Transistors

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Features. Symbol JEDEC TO-220AB

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Unternehmerseminar WS 2009 / 2010

e.g. τ = 12 ps in 180nm, 40 ps in 0.6 µm Delay has two components where, f = Effort Delay (stage effort)= gh p =Parasitic Delay

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2

RF Energy Harvesting Circuits

Final data. Maximum Ratings Parameter Symbol Value Unit

ENEE 313, Spr 09 Midterm II Solution

nanohub.org Toward On-Line Simulation for Materials and Nanodevices by Design


Biasing in MOSFET Amplifiers

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Supplement Reading on Diode Circuits. edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

Transcription:

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 765-494-3515 lundstro@purdue.edu 1

evolution of silicon technology Bell Labs, 1947 Intel, 2002 2

Evolution of silicon technology Minimum Feature Size 100 µ m 1 10 µ m 1K 1M 1 µm 100 nm 1G 1T? 10 nm 1P 1 nm 1950 1970 1990 2010 2030 2050 Year 2004 ITRS: 2004: 37 nm 2006: 28 nm 2008: 22 nm 2010: 18 nm 2014: 11 nm 2016: 9 nm 2018: 7 nm www.public.itrs.net 3

course objectives» To understand nanoscale MOSFET device physics» To appreciate how device performance affects circuits and systems» To understand device scaling challenges» To be introduced to new material/device approaches 4

course prerequisites» Introductory level understanding of semiconductor physics and devices as well as basic electronic circuits. (EE255 and EE305/606 at Purdue) (basic MOS physics, devices, and CMOS circuits will be briefly reviewed) 5

course outline Part 1: Sub-micron MOSFETs, Circuits, and Systems 10 weeks 2 exams Part 2: Nanoscale MOSFETs 5 weeks final exam Part 3: Supplemental Seminars online at www.nanohub.org live 6

course text Fundamentals of Modern VLSI Devices Yuan Taur and Tak Ning Cambridge Univ. Press, 1998 www.cup.cam.ac.uk/ 7

course grading Exam 1: 25% -classic, long-channel MOSFETs Exam 2: 25% -submicron MOSFETs, circuits and systems Homework: 25% Final: 25% -nanoscale MOSFETs 8

course overview Part 1a: -introduction -semiconductor equations / device simulation -1D MOS electrostatics / capacitors -polysilicon gates / non-equilibrium effects MOSFET IV: exact, square law, bulk charge ballistic velocity saturation subthreshold conduction Vt, body effect, effective mobility 9

semiconductor equations conservation laws: r D = ρ r ( J q)= G R n r ( J q)= G R p n, p,v ( ) ( ) constitutive relations: r r r D = κε 0 E = κε 0 V ρ = q( p n + N D+ N ) A r r r J n = nqµ n E + qd n n r r r J p = pqµ p E qd p p R = f (n, p) etc. 10

device simulation MINIMOS 6.0 * SIMPLE MINIMOS SIMULATION DEVICE CHANNEL=N GATE=NPOLY + TOX=150.E-8 W=1.E-4 L=0.85E-4 BIAS UD=4. UG=1.5 PROFILE NB=5.2E16 ELEM=AS DOSE=2.E15 + TOX=500.E-8 AKEV=160. + TEMP=1050. TIME=2700 IMPLANT ELEM=B DOSE=1.E12 AKEV=12 + TEMP=940 TIME=1000 OPTION MODEL=2-D OUTPUT ALL=YES END 11

1D MOS electrostatics (L >> t ox ) V = 0 V = 0 V G qψ S E C x E FG E F E V V = 0 12

1D MOS electrostatics accumulation flat band depletion/ inversion qψ S E C E C qψ S E C E FG E F E FG E F E F E FG E V E V E V ψ S < 0 ψ S = 0 ψ S > 0 13

Poisson-Boltzmann equation D r = ρ ( J r n q)= G R ( J r p q)= G R ( ) ( ) qψ S E FG E C E F E V d 2 ψ dx = q 2 ε N A e qψ / k BT 1 ( ) n 2 i N A ( e qψ /k BT ) ψ S > 0 14

1D MOS electrostatics log 10 Q S ( ψ S ) C/cm 2 qψ S E C ~ e qψ S /2k B T ~ e qψ S /2k B T E F E G E V ~ ψ S ψ S > 0 ψ S 15

depletion approximation ρ W x qn A qψ S E C E E G E F E V E S W ψ S > 0 16

depletion approximation E E S de dx = qn A ε ψ S = 1 2 E S W ρ W W x W = 2ε Siψ S qn A D S qn A Q S ( ψ S )= qn A W = 2qε Si N A ψ S D S = ε Si E S = ρ S = qn A W 17

δ-depletion approximation log 10 Q S ( ψ S ) C/cm 2 qψ S E C ~ e qψ S /2k B T ~ e qψ S /2k B T E F E G E V Q S = 2qN A ε Si ψ S ψ S > 0 2ψ B ψ S 18

1D MOS electrostatics C Q i acc FB C ox inv depl V G V T V G above threshold: Q i = C ox ( V GS V T ) 19

Inversion layer charge Q = C ( V V )? i ox GS T V GS 1.2V V T = 0.3V Q i 2 10 6 C/cm 2 T ox = 1.5 nm Q i q 1 1013 /cm 2 20

MOSFET IV: low V DS 0 V G V D Q i ( x)= C ox V GS V T V(x) ( ) I D = W Q i ( x)υ x (x) = W Q i ( 0)υ x (0) I D = W C ox ( V GS V T )µ eff E x E x = V DS L I D = W L µ C V eff ox( V GS T )V DS 21

MOSFET IV: high V DS 0 V G V D V( x)= ( V GS V T ) I D = W Q i ( x)υ x (x) = W Q i ( 0)υ x (0) I D = W C ox ( V GS V T )µ eff E x I D = W L µ eff C ox V GS V T ( ) 2 2 ( E x = V V GS T) L 22

MOSFET IV I D V GS I D = W 2L µ C V eff ox( V GS T) 2 square law V DS I D = W L µ C V eff ox( V GS T )V DS 23

real MOSFETs 130 nm technology (L G = 60 nm) Intel Technical J., Vol. 6, May 16, 2002. 24

velocity saturation 1.5V 60nm 25 104 V/cm velocity cm/s ---> 10 7 υ = µe υ = υ sat 10 4 electric field V/cm ---> 25

MOSFET IV: high V DS 0 V G V D I D = W Q i ( x)υ x (x) = W Q i ( 0)υ x (0) I D = W C ox ( V GS V T )υ sat E >>10 4 I D = W υ sat C ox ( V GS V T ) 26

real MOSFETs 130 nm technology (L G = 60 nm) I D W Q i (0)υ sat 1.6 ma/µm Intel Technical J., Vol. 6, May 16, 2002. 27

MOSFET IV: subthreshold Q i Q i = C ox ( V GS V T ) log 10 Q i Q i = C ox ( V GS V T ) Q i ~ e q ( V GS V T )/k B T V T V G V G 28

MOSFET IV: subthreshold 0 V G V D Log 10 I DS --> on-current S > 60 mv/decade off-current V GS --> 29

MOSFETs fundamentals For a review, consult: R. F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley. 30

course overview Part 1b: -2d electrostatics -channel length / effective channel length -parasitic S/D resistance / gate resistance -MOSFET scaling Vt considerations / channel profile design Interconnects CMOS circuits (digital) CMOS systems and ultimate limits CMOS circuits (RF) 31

2D electrostatics reverse short channel effect V T = φ ms + 2ψ B Q S (2ψ B ) C ox V T --> classic short channel effect V T roll-off channel length ---> 32

2D electrostatics M. Ieong, et al., Science, Vol. 306, p. 2058, Dec. 17, 2004 electrostatic integrity 33

device scaling ~ L Each technology generation: L L 2 A A 2 Number of transistors per chip doubles (scaling) (Moore s Law) 34

device scaling Goals of device scaling: shrink size by factor, κ shrink area by κ 2 reduce voltages by factor, κ reduce current by factor, κ result is lower power-delay product, but Off-currents are increasing exponentially! Log 10 I DS --> S > 60 mv/decade V GS --> 35

circuits V DD V DD V IN P V OUT V OUT --> N V DD V IN --> 36

circuit speed V OUT If C load = C G : V IN C load τ = C GV DD I D (on) L υ 0.5 ps --> f = 2000 GHz! 37

interconnects Metal 7 Metal 6 Metal 5 Metal 4 Metal 3 Metal 2 Metal 1 transistor 38

speed τ = C LoadV DD I D (on) speed is controlled by the DC on-current 39

power P1 1) standby power: N1 I D (off) P off = N G I D (off)v DD P1 V dd I charge 2) dynamic power: V in N1 C L P on =α f C TOT V DD 2 I discharge 40

power Power density will increase Power Density (W/cm2) 10000 1000 100 10 1 4004 8008 8080 8086 Rocket Nozzle Nuclear Reactor Hot Plate 8085 286 386 486 P6 Pentium proc 1970 1980 1990 2000 2010 Year Power density too high to keep junctions at low temp 41

course overview Part 2: nanoscale MOSFETs -gate capacitance -gate leakage -high-k gate dielectrics -reliability -SOI technology -SOI devices -strained channel MOSFETs -new channel materials Ballistic MOSFETs 42

nanoscale CMOS 43

gate capacitance 1.2 nm 44

gate capacitance Q i = C ( G V GS V ) T C G = C ox C inv C ox + C inv C ox? C ox = ε ox t ox C inv = ε Si t inv Is t ox >> t inv still a good assumption at the nanoscale? 45

quantum effects classical n(x) = N C F 1/2 [( E F E C )/k B T] energy--> E F n(x) quantum n(x) ~ sin 2 kx 0 W x W x 46

quantum effects n(x) E C E G E F E V ψ S > 0 47

gate leakage Jim Hutchby, 2003 48

SOI technology Device physics: -floating body effects, ideal subthreshold swing Device structures: -partially depleted, fully-depleted, UTB, DG, tri-gate, FinFET, M. Ieong, et al., Science, Vol. 306, p. 2058, Dec. 17, 2004 49

strained channel MOSFETs Strained Silicon Silicon germanium Rim, et al., 1998 IEDM 50

ballistic MOSFETs L = 10 nm n(x, E) 51

course overview Part 3: - a collection of seminars on nanoscale CMOS and beyond 52

ultimate CMOS Gate Source Drain TSi=7nm Lgate=6nm L ~ 6 nm IBM (2002) Jim Hutchby, 2003 Berkeley FinFET Intel tri-gate 53

carbon nanotube transistors? Source Drain Gate 8nm HfO 2 CNT Pd CNT Pd SiO 2 50nm p ++ Si Stanford, Purdue, Harvard, 2004 Delft, 1998 54

molecular transistors? G D S 55

EE-612 at the intersection of: -devices and circuits -microelectronics and nanoelectronics 56