CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1
|
|
|
- Ferdinand Carson
- 10 years ago
- Views:
Transcription
1 CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1
2 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The MOSFET, compared to BJTs, can be made very small, that is, it occupies a very small area in IC chip. In the MOSFET, the current is controlled by an electric field applied perpendicular to both the semiconductor surface and to the direction of current. The phenomenon applying an electric field perpendicular to the surface is called the field effect. Basic MOS capacitor structure Electronics I, Neamen 3th Ed. 2
3 The Physics of the MOS Capacitor Gate Electronics I, Neamen 3th Ed. 3
4 The Physics of the MOS Capacitor for N-type Semiconductor Substrate Enhancement mode: a voltage must be applied to the gate to create an inversion layer. P-type: a positive gate voltage must be applied to create the electron inversion layer N-type: a negative gate voltage must be applied to create the hole inversion layer Electronics I, Neamen 3th Ed. 4
5 Transistor Structure NMOS Transistor Operation Large enough positive voltage induces an electron inversion layer. Connection between D and S is created so that a current can be generated. Electronics I, Neamen 3th Ed. 5
6 MOSFET Current-Voltage Characteristics The threshold voltage of the n-channel MOSFET is denoted as and is defined as the applied gate voltage needed to create an inversion charge. We can think of the threshold voltage as the gate voltage required to turn on the transistor. V TN Electronics I, Neamen 3th Ed. 6
7 i MOSFET Current-Voltage Characteristics The versus characteristics for small values of D v DS v DS Electronics I, Neamen 3th Ed. 7
8 MOSFET Current-Voltage Characteristics Electronics I, Neamen 3th Ed. 8
9 Ideal MOSFET Current-Voltage Characteristics Nonsaturation (triode) Region v DS vds ( sat) v GS V TN i D K n 2 [2( vgs VTN ) vds vds ] Kn (2 vds ( sat ) v v 2 ( DS DS ) Saturation Region v i DS D v ( also v V ) K DS ( sat) GS TN n ( v VTN ) GS Note: In the saturation region, 1 r o i D / v DS 2 Electronics I, Neamen 3th Ed. 9
10 Conduction Parameter Conduction Parameter K n C ox n W L W L nc 2 ox (conduction parameter) : oxide capacitance per unit area : electron mobility : channel width : channel length C ox 1 t ox, t ox : oxide thickness The conduction parameter is a function of both electrical and geometric parameters. Electrical Parameters: The oxide capacitance and carrier mobility are essentially constants for a given technology. K n W L k n 2 k n : constant Geometrical Parameters: The width-to-length ratio (W/L) is a variable in the design of MOSFETs that is used to produce specific current-voltage characteritics in MOSFET circuits. Electronics I, Neamen 3th Ed. 10
11 Electronics I, Neamen 3th Ed. 11
12 PMOS In the p-channel enhancement-mode device, a negative gate-to-source voltage must be applied to create the inversion layer of holes that connects the source and drain regions. V TP The threshold voltage, denoted an for the PMOS is negative for an enhancementmode devices. The threshold voltage is positive for a depletion-mode device. Holes flow from the source to the drain, the conventional current enters the source and leaves the drain. Electronics I, Neamen 3th Ed. 12
13 Ideal PMOS Current-Voltage Relationship Nonsaturation (triode) Region when v v ) SD v V SD( sat SG TP : i D K p 2 [2( vsg VTP ) vsd vsd ] K p (2 vsd( sat ) v v 2 ( SD SD ) Saturation Region 2 when v v ( ) ( also v V 0) : i K ( v VTP) ) SD SD sat SG TP D p SG Electronics I, Neamen 3th Ed. 13
14 Circuit Symbols N-channel enhancementmode MOSFET P-channel enhancement- mode MOSFET Electronics I, Neamen 3th Ed. 14
15 CMOS Complement MOS (CMOS) technology uses both NMOS and PMOS in the same circuit. To design electrically equivalent NMOS and PMOS devices, adjusting the W/L ratios of the transistors is required. Electronics I, Neamen 3th Ed. 15
16 Summary of MOS Transistor Operation Electronics I, Neamen 3th Ed. 16
17 NMOS Common-Source Circuit Electronics I, Neamen 3th Ed. 17
18 PMOS Common-Source Circuit Electronics I, Neamen 3th Ed. 18
19 Electronics I, Neamen 3th Ed. 19
20 Electronics I, Neamen 3th Ed. 20
21 Electronics I, Neamen 3th Ed. 21
22 Electronics I, Neamen 3th Ed. 22
23 Load Line Load Line V I DS D V 5 20 DD I 5 DS D V 20 R D (ma) 5 I (20) D Electronics I, Neamen 3th Ed. 23
24 Electronics I, Neamen 3th Ed. 24
25 Electronics I, Neamen 3th Ed. 25
26 Electronics I, Neamen 3th Ed. 26
27 中 央 大 學 通 訊 系 張 大 中 Electronics I, Neamen 3th Ed. 27
28 Nonlinear Resistor An enhancement-mode MOSFET is used as a nonlinear resistor. The transistor is always biased in the saturation region and called a load device. v DS v GS v, DS ( Sat ) vgs VTN VTN 0 i D K 2 n( vgs VTN ) Kn( vds VTN ) 2 Electronics I, Neamen 3th Ed. 28
29 Electronics I, Neamen 3th Ed. 29
30 中 央 大 學 通 訊 系 張 大 中 Electronics I, Neamen 3th Ed. 30
31 Electronics I, Neamen 3th Ed. 31
32 CMOS Inverter Electronics I, Neamen 3th Ed. 32
33 If v, the transistor is in cut-off. I V TN NMOS Inverter i v D O 0 V DD If v (and make v V v ), the transistor is biased in the non-saturation region. I V TN I TN DS i v D O K [2( v V ) v v ] v n DD i I D R D TN O 2 O Electronics I, Neamen 3th Ed. 33
34 Electronics I, Neamen 3th Ed. 34
35 Digital Logic Gate Electronics I, Neamen 3th Ed. 35
36 MOS Small-Signal Amplifier We can establish a particular Q-point on the load line by designing the ratio of the bias resistors and. R1 R2 Electronics I, Neamen 3th Ed. 36
37 Constant-Current Biasing Electronics I, Neamen 3th Ed. 37
38 Electronics I, Neamen 3th Ed. 38
39 中 央 大 學 通 訊 系 張 大 中 Electronics I, Neamen 3th Ed. 39
40 Electronics I, Neamen 3th Ed. 40
41 Constant-Current Biasing K V V 2 2 n3 ( VGS 3 VTN 3) Kn4( VGS 4 VTN 4) V GS 4 GS 3 GS 3 V V V V K TN 4 TN 3 1 Kn3 / Kn4 n3 / Kn4 I Q K 2 n2 ( VGS 3 VTN 2) Electronics I, Neamen 3th Ed. 41
42 中 央 大 學 通 訊 系 張 大 中 Electronics I, Neamen 3th Ed. 42
43 Multitransistor Circuit: Cascade Configuration 中 央 大 學 通 訊 系 張 大 中 Electronics I, Neamen 3th Ed. 43
44 Electronics I, Neamen 3th Ed. 44
45 Multitransistor Circuit: Cascode Configuration 中 央 大 學 通 訊 系 張 大 中 Electronics I, Neamen 3th Ed. 45
46 Electronics I, Neamen 3th Ed. 46
Bob York. Transistor Basics - MOSFETs
Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:
Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER
C H A P T E R 6 Basic FET Ampli ers 6.0 PREVIEW In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits containing these
EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1
EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect
Field-Effect (FET) transistors
Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,
Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by
11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal
COMMON-SOURCE JFET AMPLIFIER
EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC
Chapter 10 Advanced CMOS Circuits
Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in
Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005
6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics October 6, 25 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation
Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003
6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics March 6, 23 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation
Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS
Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections
Integrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 [email protected] I D -V DS Characteristics
The MOSFET Transistor
The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls
Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.
Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block
W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören
W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors
Junction FETs. FETs. Enhancement Not Possible. n p n p n p
A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function
MOS Transistors as Switches
MOS Transistors as Switches G (gate) nmos transistor: Closed (conducting) when Gate = 1 (V DD ) D (drain) S (source) Oen (non-conducting) when Gate = 0 (ground, 0V) G MOS transistor: Closed (conducting)
5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)
This material is from a previous edition of Microelectronic Circuits. These sections provide valuable information, but please note that the references do not correspond to the 6th or 7th edition of the
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]
Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel
Application Note AN-940
Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching
Field Effect Transistors
506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of
Biasing in MOSFET Amplifiers
Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing
Introduction to CMOS VLSI Design
Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known
Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.
Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and
AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs
Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential
CMOS, the Ideal Logic Family
CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)
CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.
Power MOSFET Basics Abdus Sattar, IXYS Corporation
Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier
A Review of MOS Device Physics
A Review of MOS Device Physics 1.0 Introduction This set of notes focuses on those aspects of transistor behavior that are of immediate relevance to the analog circuit designer. Separation of first order
MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V
Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid
Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1
Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model
Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002
Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that
Class 11: Transmission Gates, Latches
Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates
Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits
Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure
How To Make A Field Effect Transistor (Field Effect Transistor) From Silicon P Channel (Mos) To P Channel Power (Mos) (M2) (Mm2)
TPC811 TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPC811 Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications Unit: mm Small footprint due
AN10441. Level shifting techniques in I 2 C-bus design. Document information
Rev. 01 18 June 2007 Application note Document information Info Keywords Abstract Content I2C-bus, level shifting Logic level shifting may be required when interfacing legacy devices with newer devices
Understanding Low Drop Out (LDO) Regulators
Understanding Low Drop Out (LDO) Regulators Michael Day, Texas Instruments ABSTRACT This paper provides a basic understanding of the dropout performance of a low dropout linear regulator (LDO). It shows
CMOS Power Consumption and C pd Calculation
CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or
BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information
Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator
BJT Ebers-Moll Model and SPICE MOSFET model
Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll
Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca.
Power MOFET Basics By Vrej Barkhordarian, International Rectifier, El egundo, Ca. Breakdown Voltage... On-resistance... Transconductance... Threshold Voltage... iode Forward Voltage... Power issipation...
CHAPTER 2 POWER AMPLIFIER
CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For
System on Chip Design. Michael Nydegger
Short Questions, 26. February 2015 What is meant by the term n-well process? What does this mean for the n-type MOSFETs in your design? What is the meaning of the threshold voltage (practically)? What
Bi-directional level shifter for I²C-bus and other systems.
APPLICATION NOTE Bi-directional level shifter for I²C-bus and other Abstract With a single MOS-FET a bi-directional level shifter circuit can be realised to connect devices with different supply voltages
Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary
Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at
DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING
SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class
Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation
epletion-mode Power MOSFETs and Applications Abdus Sattar, XYS Corporation Applications like constant current sources, solid-state relays, telecom switches and high voltage C lines in power systems require
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs
Freescale Semiconductor Technical Data RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs These 90 W RF power LDMOS transistors are designed for wideband RF power amplifiers covering the frequency
MOS Field-Effect Transistors (MOSFETs)
MOS Field-Effect Transistors (MOSFETs) 1 BJT Bipolar Junction Transistor MOSFET Metal Oxide Semiconductor Field Effect Transistor É o transistor mais utilizado, principalmente em circuitos integrados Requer
An FET Audio Peak Limiter
1 An FET Audio Peak Limiter W. Marshall Leach, Jr., Professor Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, Georgia 30332-0250 USA email: [email protected] Copyright
Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits
Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits As presented at PCIM 2001 Authors: *Mark Pavier, *Hazel Schofield, *Tim Sammon, **Aram Arzumanyan, **Ritu Sodhi, **Dan Kinzer
EECS 240 Topic 7: Current Sources
EECS 240 Analog Integrated Circuits Topic 7: Current Sources Bernhard E. Boser,Ali M. Niknejad and S.Gambini Department of Electrical Engineering and Computer Sciences Bias Current Sources Applications
ECE 410: VLSI Design Course Introduction
ECE 410: VLSI Design Course Introduction Professor Andrew Mason Michigan State University Spring 2008 ECE 410, Prof. A. Mason Lecture Notes Page i.1 Age of electronics microcontrollers, DSPs, and other
An Introduction to the EKV Model and a Comparison of EKV to BSIM
An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals
Application Report SLVA072
Application Report August 1999 Mixed Signal Products SLVA72 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
Features. Symbol JEDEC TO-220AB
Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching
A Sub-1V, Micropower Bandgap Reference
A Sub-1V, Micropower Bandgap Reference by Gaurav Panchanan Supervisors: Prof. K.A.A. Makinwa, TU Delft Dr. Y. Chae, Yonsei University A thesis submitted in partial fulfillment for the degree of Master
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS Prof. Dr. João Antonio Martino Professor Titular Departamento de Engenharia de Sistemas Eletrônicos Escola Politécnica da Universidade
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:
IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free
Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors
Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors Engineering Practical Jeffrey Frederick Gold Fitzwilliam College University of Cambridge Lent 1997 FABRCATON AND CHARACTERZATON
Introduction to Switched-Capacitor Circuits
12 Introduction to Switched-Capacitor Circuits Our study of amplifiers in previous chapters has dealt with only cases where the input signal is continuously available and applied to the circuit and the
Automotive MOSFETs in Linear Applications: Thermal Instability
Application Note, V1.0, May 2005 Automotive MOSFETs in Linear Applications: Thermal Instability by Peter H. Wilson Automotive Power N e v e r s t o p t h i n k i n g. - 1 - Table of Content 1. Introduction...
Fundamentals of Microelectronics
Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors
05 Bipolar Junction Transistors (BJTs) basics
The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN
Semiconductor I. Semiconductors. germanium. silicon
Basic Electronics Semiconductor I Materials that permit flow of electrons are called conductors (e.g., gold, silver, copper, etc.). Materials that block flow of electrons are called insulators (e.g., rubber,
2SK1056, 2SK1057, 2SK1058
SK6, SK7, SK8 Silicon N-Channel MOS FET Application Low frequency power amplifier Complementary pair with SJ160, SJ161 and SJ16 Features Good frequency characteristic High speed switching Wide area of
Field Effect Transistors and Noise
Physics 3330 Experiment #8 Fall 2005 Field Effect Transistors and Noise Purpose In this experiment we introduce field effect transistors. We will measure the output characteristics of a FET, and then construct
TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS
CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009
A Practical Guide to Free Energy Devices
A Practical Guide to Free Energy Devices Device Patent No 29: Last updated: 7th October 2008 Author: Patrick J. Kelly This is a slightly reworded copy of this patent application which shows a method of
Content Map For Career & Technology
Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
A 2.4GHz Cascode CMOS Low Noise Amplifier
A 2.4GHz Cascode CMOS Low Noise Amplifier Gustavo Campos Martins Universidade Federal de Santa Catarina Florianopolis, Brazil [email protected] Fernando Rangel de Sousa Universidade Federal de Santa Catarina
Physics 120 Lab 6: Field Effect Transistors - Ohmic region
Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V
g fs R D A V D g os g os
AN12 JFET Biasing Techniques Introduction Engineers who are not familiar with proper biasing methods often design FET amplifiers that are unnecessarily sensitive to device characteristics. One way to obtain
Current mirrors are commonly used for current sources in integrated circuit design. This section covers other current sources that are often seen.
c Coyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Comuter Engineering. Current Sources Current mirrors are commonly used for current sources
MOS Transistor 6.1 INTRODUCTION TO THE MOSFET
Hu_ch06v3.fm Page 195 Friday, February 13, 2009 4:51 PM 6 MOS Transistor CHAPTER OBJECTIVES This chapter provides a comprehensive introduction to the modern MOSFETs in their on state. (The off state theory
SSM3K335R SSM3K335R. 1. Applications. 2. Features. 3. Packaging and Pin Configuration. 2012-07-19 Rev.3.0. Silicon N-Channel MOS (U-MOS -H)
MOSFETs Silicon N-Channel MOS (U-MOS-H) SSM3K335R SSM3K335R 1. Applications Power Management Switches DC-DC Converters 2. Features (1) 4.5-V gate drive voltage. (2) Low drain-source on-resistance : R DS(ON)
VI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5
igital Integrated Circuit (IC) Layout and esign - Week 3, Lecture 5! http://www.ee.ucr.edu/~rlake/ee134.html EE134 1 Reading and Prelab " Week 1 - Read Chapter 1 of text. " Week - Read Chapter of text.
Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005
6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 231 Lecture 23 Frequency Response of Amplifiers (I) CommonSource Amplifier December 1, 2005 Contents: 1. Introduction 2. Intrinsic frequency
IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings
PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]
Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II
1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.
IRLR8729PbF IRLU8729PbF
Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits
AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )
PD 9399A AUTOMOTIVE MOSFET Typical Applications Electric Power Steering (EPS) Antilock Braking System (ABS) Wiper Control Climate Control Power Door Benefits Advanced Process Technology Ultra Low OnResistance
10 BIT s Current Mode Pipelined ADC
10 BIT s Current Mode Pipelined ADC K.BHARANI VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA [email protected] P.JAYAKRISHNAN VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA [email protected]
The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6)
The FET Constant-Current ource/limiter Introduction The combination of low associated operating voltage and high output impedance makes the FET attractive as a constant-current source. An adjustable-current
CHAPTER 16 MEMORY CIRCUITS
CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only
UGF09030. 30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET
30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET Designed for base station applications in the frequency band 800MHz to 1000MHz. Rated with a minimum output power of 30W, it
S-Band Low Noise Amplifier Using the ATF-10136. Application Note G004
S-Band Low Noise Amplifier Using the ATF-10136 Application Note G004 Introduction This application note documents the results of using the ATF-10136 in low noise amplifier applications at S band. The ATF-10136
STP6N60FI N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR
N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR TYPE VDSS RDS(on) ID STP6N60FI 600 V < 1.2 Ω 3.8 A TYPICAL R DS(on) =1Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED REPETITIVE AVALANCHE DATA AT
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
A M A A December 995 SEMICONDUCTOR RFG7N6, RFP7N6, RFS7N6, RFS7N6SM 7A, 6V, Avalanche Rated, N-Channel Enhancement-Mode Power MOSFETs Features 7A, 6V r DS(on) =.4Ω Temperature Compensated PSPICE Model
Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)
PD -97428 IRFH5020PbF HEXFET Power MOSFET V DS 200 V 55 m: R DS(on) max (@V GS = V) Q g (typical) 36 nc R G (typical).9 : I D (@T c(bottom) = 25 C) 43 A PQFN 5X6 mm Applications Secondary Side Synchronous
Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches
19-2418; Rev ; 4/2 Quad, Rail-to-Rail, Fault-Protected, General Description The are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard
MITSUBISHI RF MOSFET MODULE RA07H4047M
MITSUBISHI RF MOSFET MODULE RA7H7M RoHS Compliance,-7MHz 7W.V, Stage Amp. For PORTABLE RADIO DESCRIPTION The RA7H7M is a 7-watt RF MOSFET Amplifier Module for.-volt portable radios that operate in the
