Bob York. Transistor Basics - MOSFETs
|
|
|
- Austen Dawson
- 9 years ago
- Views:
Transcription
1 Bob York Transistor Basics - MOSFETs
2 Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors: Diodes: I V / R I C dv dt I 1 Vdt L / I I s e V nv T 1 V I(V Transistors add a third terminal to control the current flow through the device. The two most common types of transistors are: Field-Effect Transistors (FETs: voltage-controlled current flow Bipolar Junction Transistors (BJTs: current-controlled current flow Control Terminal V c or I c V I(V, V c or I(V, I c FETs BJTs In ECE, we will not discuss the physics of device operation in depth. The transistor is simply a black box with certain well-defined terminal properties.
3 MOSFETs There are many types of FETs but all share some common features and nomenclature. Key points: Every FET has a gate, drain, and source Current flows between the drain and source. The gate is the control terminal. The DC gate leakage current is negligible, I g 0 Start with n-channel enhancement MOS (NMOS (MOS=Metal-Oxide-Semiconductor. If we take the source as the voltage reference (ground, the drain current will depend on the gate voltage and drain voltage as shown : NMOS Drain Gate Gate Source Drain s (, Source Current-Voltage Characteristic for NMOS Drain Current I g 0 G D S Common-source configuration Gate Voltage Drain Voltage
4 Common-Source NMOS Characteristic N-channel Enhancement MOS vs for specific values of = -V t Ohmic or Triode region Saturation region = V tn +.0 = V tn Increasing I g = 0 G D S Device is off no current flows vs in saturation: V V V ds gs tn I K ( V V d n gs tn = V tn = V tn V tn (cutoff I-V Curves are described analytically by: K V V V V V V V I K V V V V V 0 Vgs V tn n ( gs tn ds ds ds gs tn d n ( gs tn ds gs tn Important observations: V t No current flows for < V tn. V tn is called the Threshold voltage Once the drain voltage exceeds -V tn, a constant current flows that depends on For enhancement-mode NMOS the gate threshold voltage is positive V tn >0
5 MOSFET Saturation Region The saturation region is especially important. The NMOS device is in saturation when the following conditions are satisfied: Vds Vgs Vt Vgs Vt When the device is in saturation the drain current is given by: I K V V d n gs t Device #1 K n and V t are the important device parameters. K n depends on some material constants and the device size/geometry Device # It is difficult to control K n and V t precisely, so two different discrete devices may have significant differences in these parameters V t1 V t Later we will explore some circuit techniques to deal with this issue Note: state-of-the-art devices may follow a different behavior: where α is closer to 1 I K V V d n gs t
6 NMOS Saturation - Examples In the following, the devices have parameters: V t 1V K n 5mA/V Consider: V g =3V +10 V Here we have: I 5mA/V 3V1V 0mA d Vds 10V Vgs 3V so Vds Vgs Vt and Vgs Vt Thus device is in saturation and +5 V 5 ma V out Here we have: V V V so ds gs t V V V ds gs out Device is in saturation so I d V 1V gs 5mA= 5mA/V From this we find Vgs V
7 Common-Source PMOS Characteristic P-channel Enhancement MOS Similar characteristics to PMOS except currents and voltages are reversed V sd =V sg +V tp Ohmic or Triode region Saturation region V sg =V tp +.0 I g = 0 V sg G S D Vsd V sg =V tp V sg =V tp V sg =V tp Increasing V sg V sg V tp (cutoff By convention the threshold voltage for enhancement-mode PMOS is taken as negative vs V sg in saturation: V sd K V V V V V V V I K V V V V V 0 Vsg V tp p ( sg tp sd sd sd sg tp d p ( sg tp sd sg tp Device is off no current flows I K ( V V d p sg tp -V tp V sg
8 PMOS Saturation - Examples In the following, the devices have parameters: V tp 1V K p 5mA/V Consider: V g =6V V sg +10 V V sd Here we have: I 5mA/V 4V1V 45mA d Vsd 10V Vsg 4V so Vsd Vsg Vtp and Vsg Vtp Thus device is in saturation and +5 V Here we have: V V V sd sg out V sg Vsd V V V so sd sg tp Device is in saturation so I d 0mA= 5mA/V V 1V sg 0 ma V out From this we find Vsg 3V V 5V3V V out
9 Depletion-Mode FETs Enhancement-mode devices are normally off devices, since no current flows when =0. A certain applied gate voltage is required to turn on the device and get current flowing Depletion-mode devices are normally on. They conduct current at =0, and an applied gate voltage is required to stop the current flow and turn them off N-channel Depletion-mode MOS P-channel Depletion-mode MOS I g = 0 G D S I g = 0 V sg G S D Vsd symbol symbol vs in saturation: I K ( V V d n gs tn Device is off no current flows ss Threshold voltage has the opposite sign in comparison to enhancement devices. Otherwise the characteristics are similar. vs V sg in saturation: I K ( V V d p sg tp Device is off no current flows ss V tn -V tp V sg
10 MOSFET Construction Source Gate L g W g Gate oxide Drain Key parameters: L : gate length W : gate width c g ox : oxide capacitance density : carrier mobility in semiconductor g Semiconducting substrate Body connection Saturation current parameter: N-channel P-channel 1 W 1 W 1 W 1 W Kn ncox kn Kp pcox kp L L L L g g g g g g g g Engineers control whether a device is an enhancement or depletion device by adding carefully-controlled amounts of impurities ( dopants in the semiconductor Enhancement Devices V 0 Vgs Vt gs Depletion Devices V 0 Vgs Vt gs No charge carriers exist under the gate, so no current flow is possible An applied field allows charge to accumulate under the gate allowing current to flow Charge carriers naturally accumulate under the gate, allowing current to flow The applied field depletes the charge in the channel, cutting off the flow of current
11 JFETs N-ch JFET Drain Gate Source Gate Drain s (, JFETs are another type of depletion-mode FET. They are constructed differently but otherwise behave much like a depletion MOSFET, except that can never exceed zero volts. The maximum current at =0 is ss. JFETs can be made in both n-channel and p-channel versions. Some high-speed compound semiconductor devices (GaAs MESFETs and HEMTs behave like JFETs Source N-ch JFET Ohmic or Triode region Saturation region = 0 ss I g = 0 G D S = V t = V t Increasing = V t V t (cutoff
12 FET Family Tree Field-Effect Transistors JFET, MESFET MOSFET Depletion-mode (normally on Enhancement-mode (normally off Depletion-mode (normally on n-ch p-ch n-ch p-ch n-ch p-ch
13 Discrete Device Example: N7000 This is a popular discrete NMOS device that we will use in the ECE lab. From the data sheet: N7000 Gate A Drain Source Id, ma Vt.35V K 0mA/V n Measured N7000Data Data Model Vgs, Volts The data sheet specifies that V t is between 0.8V and 3V, with a typical value of.1v. Such a wide range of expected V t is typical of many discrete devices. Representative data for small currents is shown at left
CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1
CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The
Field-Effect (FET) transistors
Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,
Chapter 10 Advanced CMOS Circuits
Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in
The MOSFET Transistor
The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls
EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1
EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect
Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005
6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics October 6, 25 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation
Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by
11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal
Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003
6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics March 6, 23 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation
COMMON-SOURCE JFET AMPLIFIER
EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC
Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.
Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs
Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential
Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]
Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel
Junction FETs. FETs. Enhancement Not Possible. n p n p n p
A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley
Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.
Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and
Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS
Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections
BJT Ebers-Moll Model and SPICE MOSFET model
Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll
Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits
Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure
5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)
This material is from a previous edition of Microelectronic Circuits. These sections provide valuable information, but please note that the references do not correspond to the 6th or 7th edition of the
Power MOSFET Basics Abdus Sattar, IXYS Corporation
Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier
Field Effect Transistors
506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function
Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER
C H A P T E R 6 Basic FET Ampli ers 6.0 PREVIEW In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits containing these
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known
MOS Transistors as Switches
MOS Transistors as Switches G (gate) nmos transistor: Closed (conducting) when Gate = 1 (V DD ) D (drain) S (source) Oen (non-conducting) when Gate = 0 (ground, 0V) G MOS transistor: Closed (conducting)
W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören
W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors
CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)
CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.
Physics 120 Lab 6: Field Effect Transistors - Ohmic region
Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V
Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation
epletion-mode Power MOSFETs and Applications Abdus Sattar, XYS Corporation Applications like constant current sources, solid-state relays, telecom switches and high voltage C lines in power systems require
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:
CHAPTER 2 POWER AMPLIFIER
CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For
Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1
Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model
Biasing in MOSFET Amplifiers
Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing
Features. Symbol JEDEC TO-220AB
Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching
N-channel enhancement mode TrenchMOS transistor
FEATURES SYMBOL QUICK REFERENCE DATA Trench technology d V DSS = V Low on-state resistance Fast switching I D = A High thermal cycling performance Low thermal resistance R DS(ON) mω (V GS = V) g s R DS(ON)
Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5
igital Integrated Circuit (IC) Layout and esign - Week 3, Lecture 5! http://www.ee.ucr.edu/~rlake/ee134.html EE134 1 Reading and Prelab " Week 1 - Read Chapter 1 of text. " Week - Read Chapter of text.
Oscillations and Regenerative Amplification using Negative Resistance Devices
Oscillations and Regenerative Amplification using Negative Resistance Devices Ramon Vargas Patron [email protected] INICTEL The usual procedure for the production of sustained oscillations in tuned
Peak Atlas DCA. Semiconductor Component Analyser Model DCA55. User Guide
GB55-7 Peak Atlas DCA Semiconductor Component Analyser Model DCA55 User Guide Peak Electronic Design Limited 2000/2007 In the interests of development, information in this guide is subject to change without
Current mirrors are commonly used for current sources in integrated circuit design. This section covers other current sources that are often seen.
c Coyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Comuter Engineering. Current Sources Current mirrors are commonly used for current sources
Field Effect Transistors and Noise
Physics 3330 Experiment #8 Fall 2005 Field Effect Transistors and Noise Purpose In this experiment we introduce field effect transistors. We will measure the output characteristics of a FET, and then construct
Bob York. Transistor Basics - BJTs
ob York Transistor asics - JTs ipolar Junction Transistors (JTs) Key points: JTs are current-controlled devices very JT has a base, collector, and emitter The base current controls the collector current
Bipolar Junction Transistor Basics
by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical
BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information
Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator
SPICE MOSFET Declaration
SPICE MOSFET Declaration The MOSFET is a 4-terminal device that is specified in the netlist as: Mname ND NG NS NB ModName The optional para are: L= value W= value AD=value AS=value PD=value
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:
MOS Transistor 6.1 INTRODUCTION TO THE MOSFET
Hu_ch06v3.fm Page 195 Friday, February 13, 2009 4:51 PM 6 MOS Transistor CHAPTER OBJECTIVES This chapter provides a comprehensive introduction to the modern MOSFETs in their on state. (The off state theory
An FET Audio Peak Limiter
1 An FET Audio Peak Limiter W. Marshall Leach, Jr., Professor Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, Georgia 30332-0250 USA email: [email protected] Copyright
Application Note AN-940
Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching
An Introduction to the EKV Model and a Comparison of EKV to BSIM
An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals
IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings
PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]
Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier
Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs
The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6)
The FET Constant-Current ource/limiter Introduction The combination of low associated operating voltage and high output impedance makes the FET attractive as a constant-current source. An adjustable-current
Analog & Digital Electronics Course No: PH-218
Analog & Digital Electronics Course No: PH-218 Lec-28: Logic Gates & Family Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Digital Logic Gates
Bi-directional level shifter for I²C-bus and other systems.
APPLICATION NOTE Bi-directional level shifter for I²C-bus and other Abstract With a single MOS-FET a bi-directional level shifter circuit can be realised to connect devices with different supply voltages
Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca.
Power MOFET Basics By Vrej Barkhordarian, International Rectifier, El egundo, Ca. Breakdown Voltage... On-resistance... Transconductance... Threshold Voltage... iode Forward Voltage... Power issipation...
MOSFET N-channel enhancement switching transistor IMPORTANT NOTICE. http://www.philips.semiconductors.com use http://www.nxp.com
Rev. 3 21 November 27 Product data sheet Dear customer, IMPORTANT NOTICE As from October 1st, 26 Philips Semiconductors has a new trade name - NXP Semiconductors, which will be used in future data sheets
CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS
CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis
g fs R D A V D g os g os
AN12 JFET Biasing Techniques Introduction Engineers who are not familiar with proper biasing methods often design FET amplifiers that are unnecessarily sensitive to device characteristics. One way to obtain
DE275-102N06A RF Power MOSFET
N-Channel Enhancement Mode Low Q g and R g High dv/dt Nanosecond Switching Ideal for Class C, D, & E Applications Symbol Test Conditions Maximum Ratings V DSS T J = 25 C to 150 C 00 V V DGR T J = 25 C
BIPOLAR JUNCTION TRANSISTORS
CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back
Transistors. NPN Bipolar Junction Transistor
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction
JFET Characteristics
JFET Characteristics Objective Although arguably the first transistor invented the field-effect transistor did not become established as an important semiconductor device until experience with the BJT
Advanced VLSI Design CMOS Processing Technology
Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies
Diodes and Transistors
Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)
Figure 1. Diode circuit model
Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The
The Flyback Converter
The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
The MOS Transistor in Weak Inversion
MOFE Operation in eak and Moderate nversion he MO ransistor in eak nversion n this section we will lore the behavior of the MO transistor in the subthreshold regime where the channel is weakly inverted.
Semiconductors, diodes, transistors
Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!
Power MOSFET Tutorial
Power MOSFET Tutorial Jonathan Dodge, P.E. Applications Engineering Manager Advanced Power Technology 405 S.W. Columbia Street Bend, OR 97702 Introduction Power MOSFETs are well known for superior switching
Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II
1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.
CMOS, the Ideal Logic Family
CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have
OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS
1. The early effect in a bipolar junction transistor is caused by (a) fast turn-on (c) large collector-base reverse bias (b)fast turn-off (d) large emitter-base forward bias 2. MOSFET can be used as a
200V, N-CHANNEL. Absolute Maximum Ratings. Features: www.irf.com 1 PD - 90370
PD - 90370 REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) IRF240 200V, N-CHANNEL Product Summary Part Number BVDSS RDS(on) ID IRF240 200V 0.18Ω 18A The HEXFET technology
Integrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 [email protected] I D -V DS Characteristics
Features. P-Channel Enhancement Mode MOSFET
P-Channel Enhancement Mode MOSFET Features Pin Description -4V/-25, R DS(ON) = 4mΩ (typ.) @ V GS = -V R DS(ON) = 55mΩ (typ.) @ V GS = -5V Super High Dense Cell Design G D S Reliable and Rugged Lead Free
Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.
INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a
MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V
Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid
A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE. by J. H. Huang, 2. H. Liu, M. C. Jeng, P. K. KO, C. Hu. Memorandum No.
A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE by J. H. Huang, 2. H. Liu, M. C. Jeng, P. K. KO, C. Hu Memorandum No. UCB/ERL M93/56 21 July 1993 A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE by J. H. Huang,
AN10441. Level shifting techniques in I 2 C-bus design. Document information
Rev. 01 18 June 2007 Application note Document information Info Keywords Abstract Content I2C-bus, level shifting Logic level shifting may be required when interfacing legacy devices with newer devices
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
A M A A December 995 SEMICONDUCTOR RFG7N6, RFP7N6, RFS7N6, RFS7N6SM 7A, 6V, Avalanche Rated, N-Channel Enhancement-Mode Power MOSFETs Features 7A, 6V r DS(on) =.4Ω Temperature Compensated PSPICE Model
Series and Parallel Circuits
Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)
Semiconductor I. Semiconductors. germanium. silicon
Basic Electronics Semiconductor I Materials that permit flow of electrons are called conductors (e.g., gold, silver, copper, etc.). Materials that block flow of electrons are called insulators (e.g., rubber,
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor
RoHS Compliant Containing no Lead, no Bromide and no Halogen. IRF9310PbF SO8 Tube/Bulk 95 IRF9310TRPbF SO8 Tape and Reel 4000
PD 97437A IRF93PbF HEXFET Power MOSFET V DS 30 V R DS(on) max (@V GS = V) I D (@T A = 25 C) 4. mω 20 A * SO8 Applications Charge and Discharge Switch for Notebook PC Battery Application Features and Benefits
ECE124 Digital Circuits and Systems Page 1
ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly
SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction
SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction Structure - What are we talking about? Behaviors: Ohmic, rectifying, neither Band picture in thermal equilibrium
RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs
Freescale Semiconductor Technical Data RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs These 90 W RF power LDMOS transistors are designed for wideband RF power amplifiers covering the frequency
Fundamentals of Microelectronics
Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS
NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features
NTMS9N Power MOSFET 3 V, 7 A, N Channel, SO Features Low R DS(on) to Minimize Conduction Losses Low Capacitance to Minimize Driver Losses Optimized Gate Charge to Minimize Switching Losses These Devices
Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube
N-channel 80 V, 0.0056 Ω typ.,110 A, STripFET F6 Power MOSFET in a TO-220 package Features Datasheet - production data Order code V DS R DS(on)max I D P TOT TAB STP110N8F6 80 V 0.0065 Ω 110 A 200 W TO-220
Soft-Switching in DC-DC Converters: Principles, Practical Topologies, Design Techniques, Latest Developments
Soft-Switching in D-D onverters: Principles, Practical Topologies, Design Techniques, Latest Developments Raja Ayyanar Arizona State University Ned Mohan University of Minnesota Eric Persson International
N-Channel 60-V (D-S), 175 C MOSFET
N-Channel 6-V (D-S), 75 C MOSFET SUP/SUB7N6-4 V (BR)DSS (V) r DS(on) ( ) (A) 6.4 7 a TO-22AB D TO-263 DRAIN connected to TAB G G D S Top View SUP7N6-4 G D S Top View SUB7N6-4 S N-Channel MOSFET Parameter
AN-9010 MOSFET Basics
www.fairchildsemi.com AN-9010 MOSFET Basics Summary The Bipolar Power Transistor (BPT), as a switching device for power applications, had a few disadvantages. This led to the development of the power Metal
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic
Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002
Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that
STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET
N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET TYPE V DSS (@Tjmax) R DS(on) I D STW20NM50 550V < 0.25Ω 20 A TYPICAL R DS (on) = 0.20Ω HIGH dv/dt AND AVALANCHE CAPABILITIES 100% AVALANCHE TESTED
