# COMMON-SOURCE JFET AMPLIFIER

Size: px
Start display at page:

## Transcription

1 EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC source capacitively coupled to the gate is shown in Figure 1-a.The resistor, R G, serves for two purposes: it keeps the gate at approximately 0 V dc (because I GSS is extremely small), and its large value (usually several megohms) prevents loading of the ac signal source. The bias voltage is created by the drop across R S. The bypass capacitor, C 2, keeps the source of the FET effectively at ac ground. The signal voltage causes the gate-to-source voltage to swing above and below its Q-point value, causing a swing in drain current. As the drain current increases, the voltage drop across R D also increases, causing the drain voltage to decrease. The drain current swings above and below its Q-point value in-phase with the gate-to-source voltage. The drain-to-source voltage swings above and below its Q-point value 180 out-of-phase with the gate-to-source voltage, as illustrated Figure 1-b. Figure 1 The operation just described for an n-channel JFET can be illustrated graphically on both the transfer characteristic curve and the drain characteristic curve in Figure 2. Figure 2-a shows how a sinusoidal variation, V gs, produces a corresponding variation in I d. As V gs swings from the Q point to a more negative value, I d decreases from its Q-point value. As V gs swings to a less negative value, I d increases. Figure 2-b shows a view of the same operation using the drain curves. The signal at the gate drives the drain current equally above and below the Q 1

2 point on the load line, as indicated by the arrows. Lines projected from the peaks of the gate voltage across to the I D axis and down to the V DS axis indicate the peak-to-peak variations of the drain current and drain-to-source voltage, as shown. Figure 2 Small signal model of JFET is identical to that of the MOSFET in Figure 3. Here, g m is given by 2 I DSS V GS g m = 1 - Vp Vp or alternatively by g m = 2 I DSS I D Figure 3 Vp I DSS where V GS and I D are the DC bias quantities, and V A r O = and g mo = - 2 I DSS / Vp I D At high frequencies, the equivalent circuit of Figure 4 applies with C gs and C gd being both depletion capacitances. Typically, C gs =1..3 pf, C gd = pf and f T = MHz; and also there is a knowledge about the following: Figure 4 2

3 A V = g m (R D // R L ) (R S bypass) A V = g m R d / (1 + g m R S ), R d = (R D // R L )...(normally) I D = 2 I DSS [ (R S g mo +1) - (2R S g mo +1) 1/2 ] / (R S g mo ) 2 For the n-channel JFET current-voltage characteristics described as follows: Cutoff : V GS Vp, i D =0 Triode region : Vp V GS 0, V DS V GS -Vp V GS V DS V DS 2 i D = I DSS Vp -Vp Vp Saturation reg.: Vp V GS 0, V DS V GS -Vp (pinch-off) V GS 2 i D = I DSS 1- (1+λV DS ) Vp λ is the inverse of the Early voltage; λ=1/v A. V A and λ are positive for n-channel devices.. Preliminary Work: (Choose and solve at least one question in each part A,B,C-) Please use the formulae above! A. Find the values of I D, V GS and V DS and find g m in the circuit of Figure 7 then fill the Table 1 in the report to compare the measured ones. B. In following questions 1 to 4, let the n-channel JFET have Vp= -4V and I DSS =10mA, and unless otherwise specified assume that in pinch-off (saturation) the output resistance is infinite. 1. For V GS = -2V, find the minimum V DS for the device to operate in pinch-off. Calculate i D for V GS = -2V and V DS = 3V. 2. For V DS = 3V, find the change in i D corresponding to a change in V GS from 2 to 1.6 V. 3. For small V DS, calculate the value of r DS at V GS = 0V and at V GS = -3V. C. 4. If V A = 100V, find the JFET output resistance r O when operating in pinch-off at a current of 1 ma, 2.5 ma and 10 ma. 1. The JFET in the circuit of Figure 5 has Vp= -3V, I DSS = 9 ma, and λ=0. Find the values of all resistors so that V G = 5V, I D = 4 ma, and V D = 11V. Design for 0.05 ma in the voltage divider. 3

4 2. For the JFET circuit designed in question 6, let an input signal v i be capacitively coupled to the gate, a large bypass capacitor be connected between the source and ground, and the output signal v O be taken from the drain through a large coupling capacitor. The resulting common-source amplifier is shown in Figure 6. Calculate g m and r O (assuming V A = 100V). Also find R i,a V =v O /v i, and R O. Procedure: Figure 5 Figure 6 1. Construct the circuit in Figure 7: 4

5 Figure 7 2. Measure the values of I D, V GS and V DS and find g m then fill the Table 1 in report part with your calculated values and compare the results. 3. With oscillator, obtain a 5 KHz signal with 0.5 Vpp and connect to the circuit as Vin, observe the Vout signal and find the voltage gain. 4. Measure the AC voltage at source point of FET as V S and write some comments on this occurence. 5. Reduce the R L and find the voltage gain. 6. Reduce the bypass capacitor and find the voltage gain. (!Never ask which capacitor?!) 7. Draw all graphs for Vin and Vout, indicate the phase differences if they exist. Equipment List: References: MPF102 FET transistor or equivalent DC power supply (15 V) Capacitors : 2*2.2 µf, 1*100 µf Resistors: 2*1 kω, 1*4.7 KΩ, 1*100 KΩ Oscilloscope Microelectronic Circuits, Fourth Edition, Sedra&Smith, FET Small Signal Analysis Electronic Devices, Third Edition, Floyd, JFET Amplifers 5

6 REPORT: 2. Student ID # : Name : TABLE 1 parameter measured calculated I D V GS V DS g m A V = A V = (reduced R L ) A V = (reduced C bypass ) Drawings for 3, 5, 6: (Draw in different colors for Vin and Vout) (3) (5) (6) 6

### Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

### AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential

### CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The

### LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

### Bob York. Transistor Basics - MOSFETs

Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

### An FET Audio Peak Limiter

1 An FET Audio Peak Limiter W. Marshall Leach, Jr., Professor Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, Georgia 30332-0250 USA email: mleach@ee.gatech.edu Copyright

### Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

### Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER

C H A P T E R 6 Basic FET Ampli ers 6.0 PREVIEW In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits containing these

### g fs R D A V D g os g os

AN12 JFET Biasing Techniques Introduction Engineers who are not familiar with proper biasing methods often design FET amplifiers that are unnecessarily sensitive to device characteristics. One way to obtain

### Field Effect Transistors and Noise

Physics 3330 Experiment #8 Fall 2005 Field Effect Transistors and Noise Purpose In this experiment we introduce field effect transistors. We will measure the output characteristics of a FET, and then construct

### Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

### Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

### Field Effect Transistors

506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of

### Features Benefits Applications

N9 N-Channel JFET Product Summary V GS(off) (V) V (BR)GSS Min (V) g fs Min SS Min (ma) 5 Features Benefits Applications Excellent High-Frequency Gain: Gps db @ MHz Very Low Noise: db @ MHz Very Low Distortion

### Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### 5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

This material is from a previous edition of Microelectronic Circuits. These sections provide valuable information, but please note that the references do not correspond to the 6th or 7th edition of the

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and

### EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1

EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect

### Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.

INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a

### Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

### W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

### Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:

### Testing a power supply for line and load transients

Testing a power supply for line and load transients Power-supply specifications for line and load transients describe the response of a power supply to abrupt changes in line voltage and load current.

### Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics March 6, 23 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

### Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation

epletion-mode Power MOSFETs and Applications Abdus Sattar, XYS Corporation Applications like constant current sources, solid-state relays, telecom switches and high voltage C lines in power systems require

### MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

### Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

### Chapter 10 Advanced CMOS Circuits

Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

### Experiment EB1: FET Amplifier Frequency Response

EEE106 Electronics II: : FET Amplifier Frequency Response earng Outcome O4: Analyze the operation of JFET, MOSFET and BJT amplifiers and switchg circuits 1.0 Apparatus Equipment required Components required

### Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

### Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics October 6, 25 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

### Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

### CHAPTER 2 POWER AMPLIFIER

CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

### Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

### Oscillations and Regenerative Amplification using Negative Resistance Devices

Oscillations and Regenerative Amplification using Negative Resistance Devices Ramon Vargas Patron rvargas@inictel.gob.pe INICTEL The usual procedure for the production of sustained oscillations in tuned

### OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS

1. The early effect in a bipolar junction transistor is caused by (a) fast turn-on (c) large collector-base reverse bias (b)fast turn-off (d) large emitter-base forward bias 2. MOSFET can be used as a

### BJT Amplifier Circuits

JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

### Understanding Low Drop Out (LDO) Regulators

Understanding Low Drop Out (LDO) Regulators Michael Day, Texas Instruments ABSTRACT This paper provides a basic understanding of the dropout performance of a low dropout linear regulator (LDO). It shows

### The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

### Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.

### UGF09030. 30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET

30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET Designed for base station applications in the frequency band 800MHz to 1000MHz. Rated with a minimum output power of 30W, it

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### 11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

### Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

### In a stereo, radio, or television, the input signal is small. After several. stages of voltage gain, however, the signal becomes large and uses the

chapter 12 Power Amplifiers In a stereo, radio, or television, the input signal is small. After several stages of voltage gain, however, the signal becomes large and uses the entire load line. In these

### Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

### *For stability of the feedback loop, the differential gain must vary as

ECE137a Lab project 3 You will first be designing and building an op-amp. The op-amp will then be configured as a narrow-band amplifier for amplification of voice signals in a public address system. Part

### Current mirrors are commonly used for current sources in integrated circuit design. This section covers other current sources that are often seen.

c Coyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Comuter Engineering. Current Sources Current mirrors are commonly used for current sources

### Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### Push-Pull FET Driver with Integrated Oscillator and Clock Output

19-3662; Rev 1; 5/7 Push-Pull FET Driver with Integrated Oscillator General Description The is a +4.5V to +15V push-pull, current-fed topology driver subsystem with an integrated oscillator for use in

### Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

### Common Emitter BJT Amplifier Design Current Mirror Design

Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite

### Lab #9: AC Steady State Analysis

Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

### The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6)

The FET Constant-Current ource/limiter Introduction The combination of low associated operating voltage and high output impedance makes the FET attractive as a constant-current source. An adjustable-current

### ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

### Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit

Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 986 Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit TUTORIAL 986 Input and

### Fully Differential CMOS Amplifier

ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational

### Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections

### Bipolar Junction Transistors

Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

### Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF.

In many applications, a key design goal is to minimize variations in power delivered to a load as the supply voltage varies. This application brief describes a simple DC brush motor control circuit using

### VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

### MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid

### Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### LM386 Low Voltage Audio Power Amplifier

Low Voltage Audio Power Amplifier General Description The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count

### S-Band Low Noise Amplifier Using the ATF-10136. Application Note G004

S-Band Low Noise Amplifier Using the ATF-10136 Application Note G004 Introduction This application note documents the results of using the ATF-10136 in low noise amplifier applications at S band. The ATF-10136

### BJT Amplifier Circuits

JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

### Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

### DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

### BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

### IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET

Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free

### Biasing in MOSFET Amplifiers

Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing

### Features. Symbol JEDEC TO-220AB

Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

### Lecture 24: Oscillators. Clapp Oscillator. VFO Startup

Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

### Title : Analog Circuit for Sound Localization Applications

Title : Analog Circuit for Sound Localization Applications Author s Name : Saurabh Kumar Tiwary Brett Diamond Andrea Okerholm Contact Author : Saurabh Kumar Tiwary A-51 Amberson Plaza 5030 Center Avenue

### Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

### 3-Phase DC Brushless Motor Pre-Drivers Technical Information NJM2625A

3Phase DC Brushless Motor PreDrivers 1.FEATURE NJM2625 is a controller and predriver for speed control 3phase blushless DC motor. The device provides the proper sequencing of 3phase drive output with external

### IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]

### Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) () = 0.54 Q g max. (nc) 8.3 Q gs (nc) 2.3 Q gd (nc) 3.8 Configuration Single D TO220AB G FEATURES Dynamic dv/dt rating Available Repetitive avalanche rated

### Features. Ordering Information. * Underbar marking may not be to scale. Part Identification

MIC86 Teeny Ultra Low Power Op Amp General Description The MIC86 is a rail-to-rail output, input common-mode to ground, operational amplifier in Teeny SC7 packaging. The MIC86 provides 4kHz gain-bandwidth

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Fully Avalanche Rated l Optimized for SMPS Applications Description Advanced

### Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal

### Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

### Integrated Circuits & Systems

Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 guntzel@inf.ufsc.br I D -V DS Characteristics

### Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

Power MOSFET PRODUCT SUMMARY (V) 00 R DS(on) ( ) = 1.5 Q g (Max.) (nc) 8. Q gs (nc) 1.8 Q gd (nc) 4.5 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of

### Step Response of RC Circuits

Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

### Amplifier Teaching Aid

Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

### The Laboratory Staff will not help debug any circuit whose power supplies have not been properly decoupled!

University of California at Berkeley Physics 111 Laboratory Basic emiconductor Circuits (BC) Lab 5 JFET Circuits II 2010 by the egents of the University of California. All rights reserved. eferences: Hayes

### Field-Effect (FET) transistors

Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

### LAB 12: ACTIVE FILTERS

A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op- amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequency-selecting circuit designed

### AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

### Application of Rail-to-Rail Operational Amplifiers

Application Report SLOA039A - December 1999 Application of Rail-to-Rail Operational Amplifiers Andreas Hahn Mixed Signal Products ABSTRACT This application report assists design engineers to understand