Introduction to PSP MOSFET Model

Size: px
Start display at page:

Download "Introduction to PSP MOSFET Model"

Transcription

1 Introduction to PSP MOSFET Model G. Gildenblat, X. Li, H. Wang, W. Wu Department of Electrical Engineering The Pennsylvania State University, USA and R. van Langevelde, A.J. Scholten, G.D.J. Smit and D.B.M. Klaassen Philips Research Laboratories, The Netherlands

2 OUTLINE Origin and General Features of PSP Project Technical Details Fitting Examples NQS Simulation Examples Conclusions

3 Key Objectives of PSP Project Merge the best features of the two most advanced Surface-Potential- Based Models (SPBM): SP and MM11 Provide the modeling capabilities down to 65nm node and beyond (in the nearest future) Strengthen the infrastructure of the SPBM

4 What Makes PSP Project Possible Similar approach to compact modeling at PSU and Philips Research Similar modular structure of SP and MM11 Extension of Symmetric Linearization Method beyond SP and MM11

5 Structure of PSP Model Global Parameter Set Local Parameter Set Core Intrinsic Extrinsic Support Modules PSP JUNCAP NQS

6 Worth Noting PSP is far more than mixture of the best SP and MM11 modules. For example, the following PSP submodels go beyond both SP and MM11 versions. NQS Gate current

7 General Features of PSP (I) Physical surface-potential-based formulation in both intrinsic and extrinsic model modules Physical and accurate description of the accumulation region Inclusion of all relevant small-geometry effects Modeling of the halo implant effects, including the output conductance degradation in long devices Coulomb scattering and non-universality in the mobility model Non-singular velocity-field relation enabling the modeling of RF distortions including intermodulation effects. Complete Gummel symmetry

8 General Features of PSP (II) Mid-point bias linearization enabling accurate modeling of the ratio-based circuits (e.g. R2R circuits) Quantum-mechanical corrections Correction for the polysilicon depletion effects GIDL/GISL model Surface-potential-based noise model including channel thermal noise, flicker noise and channelinduced gate noise. Advanced junction model including trap-assisted tunneling, band-to-band tunneling and avalanche breakdown Spline-collocation-based NQS model including all terminal currents Stress model

9 OUTLINE Origin and General Features of PSP Technical Details Fitting Examples NQS Simulation Examples Conclusions

10 Surface Potential without Minority Carriers (for use in S/D overlap regions) Surface Potential (V) Numerical Solution Analytical Approximation V gs (V) Error (pv)

11 PSP: ψ calculation s V SB =1V with F PSP (u)

12 Accuracy of ψ approximation s

13 Mobility PSP uses SP mobility model. It includes universal dependence on the vertical effective field E eff and the deviations from the universality associated with the Coulomb scattering. µ = ( E ) eff MU0 µ THEMU 1+ MUE + x q CS q 2 bm ( ) bm + q im 2

14 Drift Velocity PSP uses MM11 drift velocity model that is conducive to the highly accurate description of saturation region including high order drain conductances. V d = µ E ( E E ) y c This form also assures compliance with Gummel symmetry test and non-singular model behavior at V ds = 0. y

15 Drain Current I d = ( W L)( q ) 2µ + αφ ψ im ( ψ EL) 2 c t ; ψ = ψ ψ sd ss No need for correction factors used in older SPBMs to reproduce proper behavior for small V ds Subthreshold region is accurately modeled through ψ Velocity saturation is introduced in such a way that its effects automatically vanish in subthreshold.

16 Lateral Field Gradient f = ε qn ψ y 1 s sub s ( )( 2 2) Most SPBMs use GCA: HiSIM: f = f ( L,W) SP, PSP: f = f f = 1 ( L, W, V ) gs, V sb, Vds

17 Symmetric Linearization (I) Symmetric Linearization (I) ( ) m i s q im q ψ ψ α = ( ) ( ) + = m y y HL H y m ψ ψ ψ = H L y m ψ These equations are the same in SP and PSP

18 Symmetric Linearization (II) Variable H in PSP is defined differently than in SP Without velocity saturation: ( ) H = q α + φ 0 im t In SP: In PSP: ( ) 1 H = H 1 + δξ ; ξ= ψ EcL SP HPSP = hh0 1 + h ; h= ( ξ ) ( ξ )

19 Normalized Quasi-Static Charges Using Ward-Dutton partition Q Q Q D I G q im α ψ ψ ψ = H 20H PSP 2 α ψ = qim 12H PSP 2 ψ = Voxm 12H PSP 2 PSP Q S = QI QD QB = QG QI

20 Verification of Symmetric Linearization Normalized Transcapacitances 0.9 Linearized CSM Original CSM C gg C sg C dg V gs (V) V ds = 2V, V bs = 0 V, V fb =-1V Cbg

21 PSP Noise Model Includes thermal channel noise, 1/f noise, channelinduced gate noise and shot-noise in the gate-current Thermal channel noise automatically becomes shot noise below threshold, so it is not necessary to model this phenomena separately Rigorously includes fluctuations in the velocity saturation term. Based on MM11 formulation Takes advantage of symmetric linearization to simplify expressions for the spectral densities Experimentally verified

22 Example Drain (S id ) and gate (S ig ) current noise spectral densities

23 Gate Current Model Based on Tsu-Esaki formulation, includes supply function Includes contributions from both the channel and the overlap regions. Automatic scaling (no scaling parameters) SP model extended MM11 formulation of I gate by including supply function. PSP version is based on SP but is further developed Experimentally verified using several processes from four different production facilities

24 Example V sb =0V, V ds =0.025, 0.042, 0.61 and 1V

25 OUTLINE Origin and General Features of PSP Technical Details Fitting Examples (Global fit, no binning) NQS Simulation Examples Conclusions

26 I D -VGS for long/wide device I D ( µ A) 10 V 8 BS = V V DS = V V GS (V) I D (A) V DS = V V GS (V) Philips 90nm LP-process NMOS W/L = 10µm/10µm

27 g m and g m /I D for long/wide device g m ( µ A/V) V BS = V g m / I D (1/V) V GS (V) V DS = V V DS = V I D (A) Philips 90nm LP-process NMOS W/L = 10µm/10µm

28 I D -VDS for long/wide device V GS = V V BS = 0V 10-4 I D (ma) g DS (A/V) V DS (V) V DS (V) Philips 90nm LP-process NMOS W/L = 10µm/10µm

29 I D -VGS for short/narrow device I D ( µ A) V BS = V V DS = V V GS (V) I D (A) V DS = V V GS (V) Philips 90nm LP-process NMOS W/L = 110nm/100nm

30 g m and g m /I D for short/narrow device 8 V BS = V g m ( µ A/V) 4 2 g m / I D (1/V) V DS = V V GS (V) V DS = V I D (A) Philips 90nm LP-process NMOS W/L = 110nm/100nm

31 I D -VDS for short/narrow device I D (ma) V GS = V V BS = 0V g DS (A/V) V DS (V) V DS (V) Philips 90nm LP-process NMOS W/L = 110nm/100nm

32 CV Characteristics W/L = 800µm/90nm, V ds =0, V sb =0

33 OUTLINE Origin and General Features of PSP Technical Details Fitting Examples NQS Simulation Examples Conclusions

34 PSP NQS Model Unified model for AC and transient simulations Spline-collocation-based Consistent with QS, includes all terminal currents, and all operation regions Verified by comparison with experiments and channel segmentation method Includes all major small-geometry effects Similar to SP but further developed

35 Subcircuit-Based Implementation The differential equations to be solved: duk = f (,..., k u1 un) dt Using sub-circuit approach (for N=2): (, ), (, ) f = f V V f = f V V V 1 =u 1 V 2 =u 2 R C R Cf 1 Cf 2 C R is sufficiently large so that the current flow through it is negligible

36 Extended Operation Range 2 Currents (ma) IG IB -3V 0.6ns 3V 3V QS NQS Currents (ma) V 0.6ns 3V 3V IS ID QS NQS Time (ns) Time (ns)

37 Mobility Degradation Effects 1.6 3V 3V Currents (ma) V 0.3ns Symbols: NQS QS TCAD constant µ field-dependent µ Time (ns)

38 RF Modeling 90-nm Philips low-power technology Ground-signal-ground configuration; common source bulk; pad open-short-dedicated open de-embedding (Tiemeijer et al.) L=3 µm; Wfing=10 µm; Nfing=6; MULT=2 i.o.w. total width=120 µm markers: measurements dashed lines: PSP-QS solid lines: PSP-NQS

39 PSP, SWNQS=5 Re[Y 11] V DS =1.5 V V GS =0.5 V V GS =1.0 V V GS =1.5 V PSP, SWNQS=9 MM11, 5 segments

40 PSP, SWNQS=5 Cgg V DS =1.5 V V GS =0.5 V V GS =1.0 V V GS =1.5 V PSP, SWNQS=9 MM11, 5 segments

41 The Killer NOR Gate Vdd A B X MP1 MP2 Q MN1 MN2 MP1 W/L=8.0/10.0um MP2, MN1, MN2 W/L=8.0/3.0um

42 Node Voltages (V) V(A) V(B) V(Q) NQS V(Q) QS Time (ns)

43 Node Voltage at X (V) QS NQS Time (ns) PSP Default Parameter Set

44 Node Voltage at X (V) QS NQS Time (ns) Generic 90nm Process Parameter Set

45 Acknowledgement The Authors are grateful to C. McAndrew, J. Watson, P. Bendix, D. Foty, B. Mulvaney, N. Arora, W. Grabinski, J. Victory, G. Workman and S. Veeraraghavan for numerous stimulating discussion of the subject and to D. Gloria and S. Boret for kindly providing the 90 nm RF data. PSP development at PSU was supported in part by SRC, LSI Logic, Freescale Semiconductor, IBM and by simulation tools provided by Freescale Semiconductor, Mentor Graphics and Agilent.

46 PSP Code and Documentation /Philips_Models/mos_models/psp/index.html documentation of the model and parameter extraction strategy Verilog-A code C-code Modules that can be directly linked to Spectre and ADS

47 Conclusions The commonality between SP and MM11 has been used to merge them into a powerful new model PSP PSP has been extensively tested on several 90 nm nodes PSP satisfies all the requirements for a next generation compact MOSFET model PSP-SOI is in progress

Fourth generation MOSFET model and its VHDL-AMS implementation

Fourth generation MOSFET model and its VHDL-AMS implementation Fourth generation MOSFET model and its VHDL-AMS implementation Fabien Prégaldiny and Christophe Lallement fabien.pregaldiny@phase.c-strasbourg.fr ERM-PHASE, Parc d innovation, BP 10413, 67412 Illkirch

More information

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN Student name: Truong, Long Giang Student #: 970304580 Course: ECE1352F 1. INTRODUCTION The technological trend towards deep sub-micrometer dimensions,

More information

Bob York. Transistor Basics - MOSFETs

Bob York. Transistor Basics - MOSFETs Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

More information

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS Outline 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation 3. I-V characteristics Reading Assignment: Howe and Sodini, Chapter 4, Sections

More information

BJT Ebers-Moll Model and SPICE MOSFET model

BJT Ebers-Moll Model and SPICE MOSFET model Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 guntzel@inf.ufsc.br I D -V DS Characteristics

More information

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by 11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal

More information

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:

More information

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003 6.12 - Microelectronic Devices and Circuits - Spring 23 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics March 6, 23 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

More information

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005 6.12 - Microelectronic Devices and Circuits - Fall 25 Lecture 9-1 Lecture 9 - MOSFET (I) MOSFET I-V Characteristics October 6, 25 Contents: 1. MOSFET: cross-section, layout, symbols 2. Qualitative operation

More information

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

More information

N-channel enhancement mode TrenchMOS transistor

N-channel enhancement mode TrenchMOS transistor FEATURES SYMBOL QUICK REFERENCE DATA Trench technology d V DSS = V Low on-state resistance Fast switching I D = A High thermal cycling performance Low thermal resistance R DS(ON) mω (V GS = V) g s R DS(ON)

More information

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known

More information

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach) CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

More information

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005 Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 765-494-3515 lundstro@purdue.edu 1 evolution

More information

Monte Carlo Simulation of Device Variations and Mismatch in Analog Integrated Circuits

Monte Carlo Simulation of Device Variations and Mismatch in Analog Integrated Circuits Proceedings of The National Conference On Undergraduate Research (NCUR) 2006 The University of North Carolina at Asheville Asheville, North Carolina April 6 8, 2006 Monte Carlo Simulation of Device Variations

More information

Mansun Chan, Xuemei Xi, Jin He, and Chenming Hu

Mansun Chan, Xuemei Xi, Jin He, and Chenming Hu Mansun Chan, Xuemei Xi, Jin He, and Chenming Hu Acknowledgement The BSIM project is partially supported by SRC, CMC, Conexant, TI, Mentor Graphics, and Xilinx BSIM Team: Prof. Chenming Hu, Dr, Jane Xi,

More information

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

Application Note AN-1070

Application Note AN-1070 Application Note AN-1070 Class D Audio Amplifier Performance Relationship to MOSFET Parameters By Jorge Cerezo, International Rectifier Table of Contents Page Abstract... 2 Introduction... 2 Key MOSFET

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]

More information

The MOSFET Transistor

The MOSFET Transistor The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

More information

Automotive MOSFETs in Linear Applications: Thermal Instability

Automotive MOSFETs in Linear Applications: Thermal Instability Application Note, V1.0, May 2005 Automotive MOSFETs in Linear Applications: Thermal Instability by Peter H. Wilson Automotive Power N e v e r s t o p t h i n k i n g. - 1 - Table of Content 1. Introduction...

More information

Evaluation of the Surface State Using Charge Pumping Methods

Evaluation of the Surface State Using Charge Pumping Methods Evaluation of the Surface State Using Charge Pumping Methods Application Note 4156-9 Agilent 4155C/4156C Semiconductor Parameter Analyzer Introduction As device features get smaller, hot carrier induced

More information

CHAPTER 2 POWER AMPLIFIER

CHAPTER 2 POWER AMPLIFIER CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

More information

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1 Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model

More information

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2

Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2 Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function

More information

Features. Symbol JEDEC TO-220AB

Features. Symbol JEDEC TO-220AB Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

More information

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor CoolMOS TM Power Transistor Features New revolutionary high voltage technology Intrinsic fast-recovery body diode Extremely low reverse recovery charge Ultra low gate charge Extreme dv /dt rated Product

More information

MOS Transistors as Switches

MOS Transistors as Switches MOS Transistors as Switches G (gate) nmos transistor: Closed (conducting) when Gate = 1 (V DD ) D (drain) S (source) Oen (non-conducting) when Gate = 0 (ground, 0V) G MOS transistor: Closed (conducting)

More information

OptiMOS Power-Transistor Product Summary

OptiMOS Power-Transistor Product Summary OptiMOS Power-Transistor Product Summary V DS 55 V R DS(on),max 4) 35 mω Features Dual N-channel Logic Level - Enhancement mode AEC Q11 qualified I D 2 A PG-TDSON-8-4 MSL1 up to 26 C peak reflow 175 C

More information

MOSFET N-channel enhancement switching transistor IMPORTANT NOTICE. http://www.philips.semiconductors.com use http://www.nxp.com

MOSFET N-channel enhancement switching transistor IMPORTANT NOTICE. http://www.philips.semiconductors.com use http://www.nxp.com Rev. 3 21 November 27 Product data sheet Dear customer, IMPORTANT NOTICE As from October 1st, 26 Philips Semiconductors has a new trade name - NXP Semiconductors, which will be used in future data sheets

More information

An Introduction to the EKV Model and a Comparison of EKV to BSIM

An Introduction to the EKV Model and a Comparison of EKV to BSIM An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals

More information

IRF840. 8A, 500V, 0.850 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002

IRF840. 8A, 500V, 0.850 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002 IRF84 Data Sheet January 22 8A, 5V,.85 Ohm, N-Channel Power MOSFET This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed

More information

Final data. Maximum Ratings Parameter Symbol Value Unit

Final data. Maximum Ratings Parameter Symbol Value Unit SPPN8C3 SPN8C3 Cool MOS Power Transistor V DS 8 V Feature R DS(on).45 Ω New revolutionary high voltage technology Ultra low gate charge I D Periodic avalanche rated Extreme dv/dt rated Ultra low effective

More information

IRF510. 5.6A, 100V, 0.540 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002

IRF510. 5.6A, 100V, 0.540 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002 IRF5 Data Sheet January 22 5.6A, V,.5 Ohm, N-Channel Power MOSFET This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed

More information

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor Type IPD6N3L G OptiMOS 3 Power-Transistor Features Fast switching MOSFET for SMPS Optimized technology for DC/DC converters Qualified according to JEDEC 1) for target applications Product Summary V DS

More information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Fully Avalanche Rated l Optimized for SMPS Applications Description Advanced

More information

RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM

RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM A M A A December 995 SEMICONDUCTOR RFG7N6, RFP7N6, RFS7N6, RFS7N6SM 7A, 6V, Avalanche Rated, N-Channel Enhancement-Mode Power MOSFETs Features 7A, 6V r DS(on) =.4Ω Temperature Compensated PSPICE Model

More information

The MOS Transistor in Weak Inversion

The MOS Transistor in Weak Inversion MOFE Operation in eak and Moderate nversion he MO ransistor in eak nversion n this section we will lore the behavior of the MO transistor in the subthreshold regime where the channel is weakly inverted.

More information

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- , Raj Kamal, 1 EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect

More information

BSN20. 1. Description. 2. Features. 3. Applications. 4. Pinning information. N-channel enhancement mode field-effect transistor

BSN20. 1. Description. 2. Features. 3. Applications. 4. Pinning information. N-channel enhancement mode field-effect transistor Rev. 3 26 June 2 Product specification. Description in a plastic package using TrenchMOS technology. Product availability: in SOT23. 2. Features TrenchMOS technology Very fast switching Logic level compatible

More information

SPW32N50C3. Cool MOS Power Transistor V DS @ T jmax 560 V

SPW32N50C3. Cool MOS Power Transistor V DS @ T jmax 560 V SPW3N5C3 Cool MOS Power Transistor V DS @ T jmax 56 V Feature New revolutionary high voltage technology Ultra low gate charge Periodic avalanche rated Extreme dv/dt rated Ultra low effective capacitances

More information

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) PD 9399A AUTOMOTIVE MOSFET Typical Applications Electric Power Steering (EPS) Antilock Braking System (ABS) Wiper Control Climate Control Power Door Benefits Advanced Process Technology Ultra Low OnResistance

More information

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) () = 0.54 Q g max. (nc) 8.3 Q gs (nc) 2.3 Q gd (nc) 3.8 Configuration Single D TO220AB G FEATURES Dynamic dv/dt rating Available Repetitive avalanche rated

More information

NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features

NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features NTMS9N Power MOSFET 3 V, 7 A, N Channel, SO Features Low R DS(on) to Minimize Conduction Losses Low Capacitance to Minimize Driver Losses Optimized Gate Charge to Minimize Switching Losses These Devices

More information

Application Note AN-1194

Application Note AN-1194 Application Note Using MOSFET Spice Models for Analyzing Application Performance By David Divins Table of Contents Page Uses for MOSFET Spice Models... 2 MOSFET Spice Model Availability... 2 Power MOSFET

More information

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1 CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The

More information

V DSS R DS(on) max Qg. 30V 3.2mΩ 36nC

V DSS R DS(on) max Qg. 30V 3.2mΩ 36nC PD - 96232 Applications l Optimized for UPS/Inverter Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification

More information

N-channel TrenchMOS logic level FET

N-channel TrenchMOS logic level FET SOT23 Rev. 2 7 November 2 Product data sheet. Product profile. General description Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology.

More information

IRF640, RF1S640, RF1S640SM

IRF640, RF1S640, RF1S640SM IRF64, RFS64, RFS64SM Data Sheet January 22 8A, 2V,.8 Ohm, N-Channel Power MOSFETs These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed,

More information

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C Power MOSFET PRODUCT SUMMARY (V) 60 R DS(on) (Ω) V GS = 10 V 0.028 Q g (Max.) (nc) 67 Q gs (nc) 18 Q gd (nc) 25 Configuration Single FEATURES Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching

More information

Power MOSFET Basics Abdus Sattar, IXYS Corporation

Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier

More information

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540 Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) (Ω) = 5.0 V 0.077 Q g (Max.) (nc) 64 Q gs (nc) 9.4 Q gd (nc) 27 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel

More information

200V, N-CHANNEL. Absolute Maximum Ratings. Features: www.irf.com 1 PD - 90370

200V, N-CHANNEL. Absolute Maximum Ratings. Features: www.irf.com 1 PD - 90370 PD - 90370 REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) IRF240 200V, N-CHANNEL Product Summary Part Number BVDSS RDS(on) ID IRF240 200V 0.18Ω 18A The HEXFET technology

More information

DC to 30GHz Broadband MMIC Low-Power Amplifier

DC to 30GHz Broadband MMIC Low-Power Amplifier DC to 30GHz Broadband MMIC Low-Power Amplifier Features Integrated LFX technology: Simplified low-cost assembly Drain bias inductor not required Broadband 45GHz performance: Good gain (10 ± 1.25dB) 14.5dBm

More information

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor Type IPD36N4L G OptiMOS 3 Power-Transistor Features Fast switching MOSFET for SMPS Optimized technology for DC/DC converters Qualified according to JEDEC ) for target applications Product Summary V DS

More information

Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube

Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube N-channel 80 V, 0.0056 Ω typ.,110 A, STripFET F6 Power MOSFET in a TO-220 package Features Datasheet - production data Order code V DS R DS(on)max I D P TOT TAB STP110N8F6 80 V 0.0065 Ω 110 A 200 W TO-220

More information

SPICE MOSFET Declaration

SPICE MOSFET Declaration SPICE MOSFET Declaration The MOSFET is a 4-terminal device that is specified in the netlist as: Mname ND NG NS NB ModName The optional para are: L= value W= value AD=value AS=value PD=value

More information

IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET

IRLR8743PbF IRLU8743PbF HEXFET Power MOSFET Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free

More information

DE275-102N06A RF Power MOSFET

DE275-102N06A RF Power MOSFET N-Channel Enhancement Mode Low Q g and R g High dv/dt Nanosecond Switching Ideal for Class C, D, & E Applications Symbol Test Conditions Maximum Ratings V DSS T J = 25 C to 150 C 00 V V DGR T J = 25 C

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

RoHS Compliant Containing no Lead, no Bromide and no Halogen. IRF9310PbF SO8 Tube/Bulk 95 IRF9310TRPbF SO8 Tape and Reel 4000

RoHS Compliant Containing no Lead, no Bromide and no Halogen. IRF9310PbF SO8 Tube/Bulk 95 IRF9310TRPbF SO8 Tape and Reel 4000 PD 97437A IRF93PbF HEXFET Power MOSFET V DS 30 V R DS(on) max (@V GS = V) I D (@T A = 25 C) 4. mω 20 A * SO8 Applications Charge and Discharge Switch for Notebook PC Battery Application Features and Benefits

More information

RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs These 90 W RF power LDMOS transistors are designed for wideband RF power amplifiers covering the frequency

More information

Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination

Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination Vol. 31, No. 7 Journal of Semiconductors July 2010 Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination Zhang Qian( 张 倩 ), Zhang Yuming( 张 玉 明 ), and Zhang Yimen( 张 义 门

More information

I n t r o d u c t i o n t o I n f i n e o n s S i m u l a t i o n M o d e l s P o w e r M O S F E T s

I n t r o d u c t i o n t o I n f i n e o n s S i m u l a t i o n M o d e l s P o w e r M O S F E T s I n t r o d u c t i o n t o I n f i n e o n s S i m u l a t i o n M o d e l s P o w e r M O S F E T s IFAT PMM F. Stueckler G. Noebauer K. Bueyuektas Edition 2013-09-16 Published by Infineon Technologies

More information

Features. T A=25 o C unless otherwise noted. Symbol Parameter Ratings Units. (Note 1b) 0.46

Features. T A=25 o C unless otherwise noted. Symbol Parameter Ratings Units. (Note 1b) 0.46 N-Channel.8 Vgs Specified PowerTrench MOSFET October 2 General Description This 2V N-Channel MOSFET uses Fairchild s high voltage PowerTrench process. It has been optimized for power management applications.

More information

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 00 R DS(on) ( ) = 1.5 Q g (Max.) (nc) 8. Q gs (nc) 1.8 Q gd (nc) 4.5 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of

More information

OptiMOS TM Power-Transistor

OptiMOS TM Power-Transistor Type BSC28N6NS OptiMOS TM Power-Transistor Features Optimized for high performance SMPS, e.g. sync. rec. % avalanche tested Superior thermal resistance N-channel Qualified according to JEDEC ) for target

More information

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 231 Lecture 23 Frequency Response of Amplifiers (I) CommonSource Amplifier December 1, 2005 Contents: 1. Introduction 2. Intrinsic frequency

More information

Analyzing Electrical Effects of RTA-driven Local Anneal Temperature Variation

Analyzing Electrical Effects of RTA-driven Local Anneal Temperature Variation 1 Analyzing Electrical Effects of RTA-driven Local Anneal Temperature Variation Vivek Joshi, Kanak Agarwal*, Dennis Sylvester, David Blaauw Electrical Engineering & Computer Science University of Michigan,

More information

V DSS I D. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

V DSS I D. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175 PD 973B IRFB432PbF Applications l Motion Control Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l Hard Switched and High Frequency Circuits Benefits l Low

More information

Avalanche Photodiodes: A User's Guide

Avalanche Photodiodes: A User's Guide !"#$%& Abstract Avalanche Photodiodes: A User's Guide Avalanche photodiode detectors have and will continue to be used in many diverse applications such as laser range finders and photon correlation studies.

More information

AUIRLR2905 AUIRLU2905

AUIRLR2905 AUIRLU2905 Features dvanced Planar Technology Logic Level Gate Drive Low On-Resistance Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fully valanche Rated Repetitive valanche llowed up to Tjmax Lead-Free,

More information

LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN DEVICE MODELLING

LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN DEVICE MODELLING Ewout Vandamme (Agilent Technologies, NMDG), Wladek Grabinski (Motorola, Geneva), Dominique Schreurs (K.U.Leuven), and Thomas Gneiting (ADMOS) LARGE-SIGNAL NETWORK ANALYZER MEASUREMENTS AND THEIR USE IN

More information

A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE. by J. H. Huang, 2. H. Liu, M. C. Jeng, P. K. KO, C. Hu. Memorandum No.

A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE. by J. H. Huang, 2. H. Liu, M. C. Jeng, P. K. KO, C. Hu. Memorandum No. A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE by J. H. Huang, 2. H. Liu, M. C. Jeng, P. K. KO, C. Hu Memorandum No. UCB/ERL M93/56 21 July 1993 A PHYSICAL MODEL FOR MOSFET OUTPUT RESISTANCE by J. H. Huang,

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

AN11261. Using RC Thermal Models. Document information

AN11261. Using RC Thermal Models. Document information Rev. 2 19 May 2014 Application note Document information Info Keywords Abstract Content RC thermal, SPICE, Models, Z th, R th, MOSFET, Power Analysis of the thermal performance of power semiconductors

More information

A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units

A I DM. W/ C V GS Gate-to-Source Voltage ± 20. Thermal Resistance Symbol Parameter Typ. Max. Units V DS 2 V V GS Max ± 2 V R DSon) max @V GS = V) 24 m * PD - 9787A HEXFET Power MOSFET R DSon) max @V GS = 4.V) 4 m 6 Micro3 TM SOT-23) Applications) Load System Switch Features and Benefits Features Benefits

More information

Sequential 4-bit Adder Design Report

Sequential 4-bit Adder Design Report UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela

More information

FDD4243 40V P-Channel PowerTrench MOSFET -40V, -14A, 44mΩ Features

FDD4243 40V P-Channel PowerTrench MOSFET -40V, -14A, 44mΩ Features FDD443 4V P-Channel PowerTrench MOSFET -4V, -4A, 44mΩ Features Max r DS(on) = 44mΩ at V GS = -V, I D = -6.7A Max r DS(on) = 64mΩ at V GS = -4.5V, I D = -5.5A High performance trench technology for extremely

More information

ENEE 313, Spr 09 Midterm II Solution

ENEE 313, Spr 09 Midterm II Solution ENEE 313, Spr 09 Midterm II Solution PART I DRIFT AND DIFFUSION, 30 pts 1. We have a silicon sample with non-uniform doping. The sample is 200 µm long: In the figure, L = 200 µm= 0.02 cm. At the x = 0

More information

California Eastern Laboratories AN1023 Converting GaAs FET Models For Different Nonlinear Simulators

California Eastern Laboratories AN1023 Converting GaAs FET Models For Different Nonlinear Simulators California Eastern Laboratories AN1023 Converting GaAs FET Models For Different Nonlinear Simulators APPLICATION NOTE INTRODUCTION This paper addresses the issues involved in converting GaAs models for

More information

A I DM. W/ C V GS Gate-to-Source Voltage ± 12. Thermal Resistance Symbol Parameter Typ. Max. Units

A I DM. W/ C V GS Gate-to-Source Voltage ± 12. Thermal Resistance Symbol Parameter Typ. Max. Units V DS 2 V V GS Max ±2 V * PD - 973A HEXFET Power MOSFET R DSon) max @V GS = 4.V) 2. m R DSon) max @V GS = 2.V) 27. m 6 Micro3 TM SOT-23) Applications) Load System Switch Features and Benefits Features Benefits

More information

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 400 R DS(on) (Ω) = 0.55 Q g (Max.) (nc) 63 Q gs (nc) 9.0 Q gd (nc) 3 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of

More information

High and Low Side Driver

High and Low Side Driver High and Low Side Driver Features Product Summary Floating channel designed for bootstrap operation Fully operational to 200V Tolerant to negative transient voltage, dv/dt immune Gate drive supply range

More information

UGF09030. 30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET

UGF09030. 30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET 30W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET Designed for base station applications in the frequency band 800MHz to 1000MHz. Rated with a minimum output power of 30W, it

More information

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Product Summary

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Product Summary Data Sheet No. PD6147 rev.u Features Floating channel designed for bootstrap operation Fully operational to +5V or +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 1

More information

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive

More information

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.0. V/ns T J. mj I AR. Thermal Resistance Symbol Parameter Typ. Max.

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.0. V/ns T J. mj I AR. Thermal Resistance Symbol Parameter Typ. Max. PD 9727 IRFP326PbF HEXFET Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits

More information

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 38. V/ns T J. mj I AR

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 38. V/ns T J. mj I AR PD 967 IRFB465PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D S V DSS HEXFET

More information

IR2110(S)/IR2113(S) & (PbF)

IR2110(S)/IR2113(S) & (PbF) Data Sheet No. PD6147 Rev.T Features Floating channel designed for bootstrap operation Fully operational to +5V or +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 1

More information

AUIRFR8405 AUIRFU8405

AUIRFR8405 AUIRFU8405 Features Advanced Process Technology New Ultra Low On-Resistance 75 C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * AUTOMOTIVE

More information

10 BIT s Current Mode Pipelined ADC

10 BIT s Current Mode Pipelined ADC 10 BIT s Current Mode Pipelined ADC K.BHARANI VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA kothareddybharani@yahoo.com P.JAYAKRISHNAN VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA pjayakrishnan@vit.ac.in

More information

Lecture Notes 3 Introduction to Image Sensors

Lecture Notes 3 Introduction to Image Sensors Lecture Notes 3 Introduction to Image Sensors EE 392B Handout #5 Prof. A. El Gamal Spring 01 CCDs basic operation well capacity charge transfer efficiency and readout speed CMOS Passive Pixel Sensor (PPS)

More information

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5 igital Integrated Circuit (IC) Layout and esign - Week 3, Lecture 5! http://www.ee.ucr.edu/~rlake/ee134.html EE134 1 Reading and Prelab " Week 1 - Read Chapter 1 of text. " Week - Read Chapter of text.

More information

How To Make A Field Effect Transistor (Field Effect Transistor) From Silicon P Channel (Mos) To P Channel Power (Mos) (M2) (Mm2)

How To Make A Field Effect Transistor (Field Effect Transistor) From Silicon P Channel (Mos) To P Channel Power (Mos) (M2) (Mm2) TPC811 TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPC811 Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications Unit: mm Small footprint due

More information

CURRENT LIMITING SINGLE CHANNEL DRIVER V OFFSET. Packages

CURRENT LIMITING SINGLE CHANNEL DRIVER V OFFSET. Packages Features Floating channel designed for bootstrap operation Fully operational to +5V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 12 to 18V Undervoltage lockout Current

More information

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2 Abstract - An important circuit design parameter in a high-power p-i-n diode application is the selection of an appropriate applied dc reverse bias voltage. Until now, this important circuit parameter

More information