Introduction to CMOS VLSI Design
|
|
|
- Wesley Sims
- 10 years ago
- Views:
Transcription
1 Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration (VLSI): very many transistors on one chip Complementary Metal Oxide Semiconductor (CMOS): fast, cheap, low power 2
2 Outline A Brief History MOS transistors CMOS Logic CMOS Fabrication and Layout Chip esign Challenges System esign Logic esign Physical esign esign Verification Fabrication, Packaging and Testing 3 A Brief History T-R-A-N-S-I-S-T-O-R = TRANsfer resistor 947: John Bardeen, Walter Brattain and William Schokley at Bell laboratories built the first working point contact transistor (Nobel Prize in Physics in 956) 958: Jack Kylby built the first integrated circuit flip flop at Texas Instruments (Nobel Prize in Physics in 2) 925: Julius Lilienfield patents the original idea of field effect transistors 935: Oskar Heil patents the first MOSFET 963: Frank Wanlass at Fairchild describes the first CMOS logic gate (nmos and pmos) 97: Processes using nmos became dominant 98: Power consumption become a major issue. CMOS process are widely adopted. 4
3 A Brief History Integrated Circuits enabled today s way of life 8 transistors manufactured in 23 million for every human on the planet 5 Moore s Law In 963 Gordon Moore predicted that as a result of continuous miniaturization transistor count would double every 8 months 53% compound annual growth rate over 45 years No other technology has grown so fast so long Transistors become smaller, faster, consume less power, and are cheaper to manufacture 6
4 Clock Frequencies of Intel Processors Transistor count is not the only factor that has grown exponentially, e.g. clock frequencies have doubled roughly every 34 months 7 Chip Integration Level SSI = small-scale integration ( up to gates) MSI = medium-scale integration ( up to gates) LSI = large-scale integration (up to gates) VLSI = very large-scale integration (over gates) 8
5 Technology Scaling 97: Intel 44 transistors with minimum dimension of um 23: Pentium 4 transistors with minimum dimension of 3 nm Scaling cannot go on forever because transistors cannot be smaller than atoms 9 The Productivity Gap esigners rely increasingly on design automation software tools: to seek productivity gains to cope with increased complexity Source: SEMATECH
6 licon Lattice licon is a semiconductor Transistors are built on a silicon substrate licon is a Group IV material Forms crystal lattice with bonds to four neighbors opants Pure silicon has no free carriers and conducts poorly Adding dopants increases the conductivity Group V: extra electron (n-type) Group III: missing electron, called hole (p-type) As B - 2
7 Transistor Types Bipolar transistors npn or pnp silicon structure Small current into very thin base layer controls large currents between emitter and collector Base currents limit integration density Metal Oxide Semiconductor Field Effect Transistors nmos and pmos MOSFETS Voltage applied to insulated gate controls current between source and drain Low power allows very high integration 3 MOS Transistors Four terminals: gate, source, drain, body (= bulk = substrate) 4
8 nmos Operation Body is commonly tied to ground ( V) When the gate is at a low voltage: P-type body is at low voltage Source-body and drain-body diodes are OFF No current flows, transistor is OFF Source Gate rain Polysilicon O 2 n+ p n+ bulk S 5 nmos Operation Cont. When the gate is at a high voltage: Positive charge on gate of MOS capacitor Negative charge attracted to body channel under gate gets inverted to n-type Now current can flow through n-type silicon from source through channel to drain, transistor is ON Source Gate rain Polysilicon O 2 n+ p n+ bulk S 6
9 pmos Transistor milar, but doping and voltages reversed Body tied to high voltage (V ) Gate low: transistor ON Gate high: transistor OFF Bubble indicates inverted behavior Polysilicon Source Gate rain O 2 p+ p+ n bulk 7 Power Supply Voltage GN = V In 98 s, V = 5V V has decreased in modern processes High V would damage modern tiny transistors Lower V saves power V = 3.3, 2.5,.8,.5,.2,., 8
10 MOS Transistors as switches We can model MOS transistors as controlled switches Voltage at gate controls path from source to drain 9 CMOS Technology CMOS technology uses both nmos and pmos transistors. The transistors are arranged in a structure formed by two complementary networks Pull-up network is complement of pull-down Parallel -> series, series -> parallel 2
11 CMOS Logic Inverter A ON OFF = = = = OFF ON Y 2 CMOS Logic NAN 22
12 CMOS Logic NOR 23 CMOS Logic Gates (a.k.a. Static CMOS) Pull-up network is complement of pull-down Parallel series, series parallel 24
13 Compound Gates Example: Y = (A+B+C) ABC Y 25 Compound Gates 26
14 How good is the output signal? gnal Strength Strength of signal How close it approximates ideal voltage source V and GN rails are strongest and sources nmos and pmos are not ideal switches nmos pass strong, but degraded or weak pmos pass strong, but degraded or weak Thus: nmos are best for pull-down network pmos are best for pull-up network 27 Pass Transistors Transistors can be used as switches 28
15 Transmission Gates Pass transistors produce degraded outputs Transmission gates pass both and well 29 Static CMOS gates are fully restored In static CMOS, the nmos transistors only need to pass s and the pmos only pass s, so the output is always strongly driven and the levels are never degraded This is called a fully restored logic gate 3
16 Static CMOS is inherently inverting CMOS single stage gates must be inverting To build non inverting functions we need multiple stages 3 Tristates Tristate buffer produces Z when not enabled EN A Y Z Z 32
17 Nonrestoring Tristates Transmission gate acts as tristate buffer Only two transistors But nonrestoring A is passed on to Y as it is (thus, Y is not always a strong s or s) 33 Tristate Inverter Tristate inverter produces restored output For a non inverting tristate add an inverter in front 34
18 Multiplexers 2: multiplexer chooses between two inputs S X X X X Y S Y 35 Gate-Level Mux esign Y = S + S How many transistors are needed? S Y = 2 = = Too Many!! S Y 36
19 Transmission Gate Mux Nonrestoring mux uses two transmission gates Only 4 transistors 37 Inverting Mux Inverting multiplexer Use compound gate or pair of tristate inverters Essentially the same thing For noninverting multiplexer add an inverter 38
20 Latch When =, latch is transparent flows through to like a buffer When =, the latch is opaque holds its old value independent of a.k.a. transparent latch or level-sensitive latch Latch 39 Latch esign Multiplexer chooses or hold 4
21 Latch Operation = = 4 Flip-flop When rises, is copied to At all other times, holds its value a.k.a. positive edge-triggered flip-flop, masterslave flip-flop Flop 42
22 Flip-flop esign Built from master and slave latches M Latch M Latch 43 Flip-flop Operation M = M = 44
23 Summary If the automobile had followed the same development cycle as the computer, a Rolls Royce would today cost $, get one million miles per gallon, and explode once a year Robert X. Cringely, InfoWorld Magazine 45
Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1
Chapter 1 Introduction to The Semiconductor Industry 1 The Semiconductor Industry INFRASTRUCTURE Industry Standards (SIA, SEMI, NIST, etc.) Production Tools Utilities Materials & Chemicals Metrology Tools
Lecture 10: Sequential Circuits
Introduction to CMOS VLSI esign Lecture 10: Sequential Circuits avid Harris Harvey Mudd College Spring 2004 Outline q Sequencing q Sequencing Element esign q Max and Min-elay q Clock Skew q Time Borrowing
Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)
Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review
ECE 410: VLSI Design Course Introduction
ECE 410: VLSI Design Course Introduction Professor Andrew Mason Michigan State University Spring 2008 ECE 410, Prof. A. Mason Lecture Notes Page i.1 Age of electronics microcontrollers, DSPs, and other
Lecture 11: Sequential Circuit Design
Lecture 11: Sequential Circuit esign Outline Sequencing Sequencing Element esign Max and Min-elay Clock Skew Time Borrowing Two-Phase Clocking 2 Sequencing Combinational logic output depends on current
Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1
ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05
Sequential Circuits. Combinational Circuits Outputs depend on the current inputs
Principles of VLSI esign Sequential Circuits Sequential Circuits Combinational Circuits Outputs depend on the current inputs Sequential Circuits Outputs depend on current and previous inputs Requires separating
CMOS, the Ideal Logic Family
CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have
Introduction to VLSI Programming. TU/e course 2IN30. Prof.dr.ir. Kees van Berkel Dr. Johan Lukkien [Dr.ir. Ad Peeters, Philips Nat.
Introduction to VLSI Programming TU/e course 2IN30 Prof.dr.ir. Kees van Berkel Dr. Johan Lukkien [Dr.ir. Ad Peeters, Philips Nat.Lab] Introduction to VLSI Programming Goals Create silicon (CMOS) awareness
Module 7 : I/O PADs Lecture 33 : I/O PADs
Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up
Lecture 10 Sequential Circuit Design Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS igital IC esign & Analysis Lecture 10 Sequential Circuit esign Zhuo Feng 10.1 Z. Feng MTU EE4800 CMOS igital IC esign & Analysis 2010 Sequencing Outline Sequencing Element esign Max and Min-elay
The MOSFET Transistor
The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls
CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1
CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The
System on Chip Design. Michael Nydegger
Short Questions, 26. February 2015 What is meant by the term n-well process? What does this mean for the n-type MOSFETs in your design? What is the meaning of the threshold voltage (practically)? What
Theory of Transistors and Other Semiconductor Devices
Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
Chapter 10 Advanced CMOS Circuits
Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in
W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören
W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Introduction to Semiconductor Manufacturing Technology. Chapter 1, Introduction. Hong Xiao, Ph. D. [email protected]
Introduction to Semiconductor Manufacturing Technology Chapter 1, Introduction Hong Xiao, Ph. D. [email protected] Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objective After taking this
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
Sequential 4-bit Adder Design Report
UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela
Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary
Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at
CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)
CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.
Content Map For Career & Technology
Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.
Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van
1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.
.Introduction If the automobile had followed the same development cycle as the computer, a Rolls- Royce would today cost $00, get one million miles to the gallon and explode once a year Most of slides
NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6
E.T.S.E.T.B. MSc in ICT FINAL EXAM VLSI Digital Design Spring Course 2005-2006 June 6, 2006 Score publication date: June 19, 2006 Exam review request deadline: June 22, 2006 Academic consultancy: June
Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.
Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block
Semiconductors, diodes, transistors
Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS
DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS Prof. Dr. João Antonio Martino Professor Titular Departamento de Engenharia de Sistemas Eletrônicos Escola Politécnica da Universidade
Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
Advanced VLSI Design CMOS Processing Technology
Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli
Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation
International Journal of Electronics and Computer Science Engineering 1482
International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant
AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level
AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between
Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems
Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College [email protected] Based on EE271 developed by Mark Horowitz, Stanford University MAH
Field-Effect (FET) transistors
Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Design and analysis of flip flops for low power clocking system
Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known
What is this course is about? Design of Digital Circuitsit. Digital Integrated Circuits. What is this course is about?
What is this course is about? Design of Digital Circuitsit Design of digital microelectronic circuits.» CMOS devices and manufacturing technology.» Digital gates. Propagation delay, noise margins, and
05 Bipolar Junction Transistors (BJTs) basics
The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN
Lecture 10: Latch and Flip-Flop Design. Outline
Lecture 1: Latch and Flip-Flop esign Slides orginally from: Vladimir Stojanovic Computer Systems Laboratory Stanford University [email protected] 1 Outline Recent interest in latches and flip-flops
Signal Types and Terminations
Helping Customers Innovate, Improve & Grow Application Note Signal Types and Terminations Introduction., H, LV, Sinewave, Clipped Sinewave, TTL, PECL,,, CML Oscillators and frequency control devices come
S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India
Power reduction on clock-tree using Energy recovery and clock gating technique S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Abstract Power consumption of
Yrd. Doç. Dr. Aytaç Gören
H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps
CMOS Power Consumption and C pd Calculation
CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or
Implementation Of High-k/Metal Gates In High-Volume Manufacturing
White Paper Implementation Of High-k/Metal Gates In High-Volume Manufacturing INTRODUCTION There have been significant breakthroughs in IC technology in the past decade. The upper interconnect layers of
VLSI Fabrication Process
VLSI Fabrication Process Om prakash 5 th sem ASCT, Bhopal [email protected] Manisha Kumari 5 th sem ASCT, Bhopal [email protected] Abstract VLSI stands for "Very Large Scale Integration". This
1.1 Silicon on Insulator a brief Introduction
Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial
Lecture 7: Clocking of VLSI Systems
Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis
Lecture-3 MEMORY: Development of Memory:
Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories
Handout 17 by Dr Sheikh Sharif Iqbal Memory Unit and Read Only Memories Objective: - To discuss different types of memories used in 80x86 systems for storing digital information. - To learn the electronic
Sequential Circuit Design
Sequential Circuit Design Lan-Da Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 [email protected] http://www.cs.nctu.edu.tw/~ldvan/ Outlines
Class 11: Transmission Gates, Latches
Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates
Weste07r4.fm Page 183 Monday, January 5, 2004 1:39 AM. 7.1 Introduction
Weste07r4.fm Page 183 Monday, January 5, 2004 1:39 AM 7 7.1 Introduction The previous chapter addressed combinational circuits in which the output is a function of the current inputs. This chapter discusses
Class 18: Memories-DRAMs
Topics: 1. Introduction 2. Advantages and Disadvantages of DRAMs 3. Evolution of DRAMs 4. Evolution of DRAMs 5. Basics of DRAMs 6. Basics of DRAMs 7. Write Operation 8. SA-Normal Operation 9. SA-Read Operation
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:
ECE124 Digital Circuits and Systems Page 1
ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly
CHARGE pumps are the circuits that used to generate dc
INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JUNE 2011 27 A Charge Pump Circuit by using Voltage-Doubler as Clock Scheme Wen Chang Huang, Jin Chang Cheng,
Sequential Logic: Clocks, Registers, etc.
ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design
Application Note AN-940
Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching
Semiconductor I. Semiconductors. germanium. silicon
Basic Electronics Semiconductor I Materials that permit flow of electrons are called conductors (e.g., gold, silver, copper, etc.). Materials that block flow of electrons are called insulators (e.g., rubber,
1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology
1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology Munaf Rahimo, Jan Vobecky, Chiara Corvasce ISPS, September 2010, Prague, Czech Republic Copyright [2010] IEEE. Reprinted from the
GLOLAB Two Wire Stepper Motor Positioner
Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and
Introduction to Microprocessors
Introduction to Microprocessors Yuri Baida [email protected] [email protected] October 2, 2010 Moscow Institute of Physics and Technology Agenda Background and History What is a microprocessor?
Integrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 [email protected] I D -V DS Characteristics
A Survey on Sequential Elements for Low Power Clocking System
Journal of Computer Applications ISSN: 0974 1925, Volume-5, Issue EICA2012-3, February 10, 2012 A Survey on Sequential Elements for Low Power Clocking System Bhuvana S ECE Department, Avinashilingam University
Leakage Power Reduction Using Sleepy Stack Power Gating Technique
Leakage Power Reduction Using Sleepy Stack Power Gating Technique M.Lavanya, P.Anitha M.E Student [Applied Electronics], Dept. of ECE, Kingston Engineering College, Vellore, Tamil Nadu, India Assistant
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department
1ED Compact A new high performance, cost efficient, high voltage gate driver IC family
1ED Compact A new high performance, cost efficient, high voltage gate driver IC family Heiko Rettinger, Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany, [email protected]
Junction FETs. FETs. Enhancement Not Possible. n p n p n p
A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley
MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V
Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid
Memory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
Two-Phase Clocking Scheme for Low-Power and High- Speed VLSI
International Journal of Advances in Engineering Science and Technology 225 www.sestindia.org/volume-ijaest/ and www.ijaestonline.com ISSN: 2319-1120 Two-Phase Clocking Scheme for Low-Power and High- Speed
Low Power AMD Athlon 64 and AMD Opteron Processors
Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD
Flip-Flops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
Intel s Revolutionary 22 nm Transistor Technology
Intel s Revolutionary 22 nm Transistor Technology Mark Bohr Intel Senior Fellow Kaizad Mistry 22 nm Program Manager May, 2011 1 Key Messages Intel is introducing revolutionary Tri-Gate transistors on its
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING A thesis work submitted to the faculty of San Francisco State University In partial fulfillment of the requirements for
5V Tolerance Techniques for CoolRunner-II Devices
Application Note: Coolunner-II CPLDs XAPP429 (v1.0) August 8, 2003 5V Tolerance Techniques for Summary This document describes several different methods for interfacing 5V signals to Coolunner - II devices.
Layout of Multiple Cells
Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed
CHAPTER 11 LATCHES AND FLIP-FLOPS
CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop
Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251
Gates J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, T 77251 1. The Evolution of Electronic Digital Devices...1 2. Logical Operations and the Behavior of Gates...2
DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING
SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class
DESIGN CHALLENGES OF TECHNOLOGY SCALING
DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE
Design Verification & Testing Design for Testability and Scan
Overview esign for testability (FT) makes it possible to: Assure the detection of all faults in a circuit Reduce the cost and time associated with test development Reduce the execution time of performing
ECE380 Digital Logic
ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during
Lezioni di Tecnologie e Materiali per l Elettronica
Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta [email protected] microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies
EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1
EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect
Fabrication and Manufacturing (Basics) Batch processes
Fabrication and Manufacturing (Basics) Batch processes Fabrication time independent of design complexity Standard process Customization by masks Each mask defines geometry on one layer Lower-level masks
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
AN900 APPLICATION NOTE
AN900 APPLICATION NOTE INTRODUCTION TO SEMICONDUCTOR TECHNOLOGY INTRODUCTION by Microcontroller Division Applications An integrated circuit is a small but sophisticated device implementing several electronic
Interfacing To Alphanumeric Displays
Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems
Area 3: Analog and Digital Electronics. D.A. Johns
Area 3: Analog and Digital Electronics D.A. Johns 1 1970 2012 Tech Advancements Everything but Electronics: Roughly factor of 2 improvement Cars and airplanes: 70% more fuel efficient Materials: up to
