3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1
|
|
|
- Cameron Harrison
- 9 years ago
- Views:
Transcription
1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1
2 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current in one direction only. Two terminals: anode and cathode. When the positive polarity is at the anode the diode is forward biased and is conducting. When the positive polarity is at the cathode the diode is reversed biased and is not conducting. If the reverse-biasing voltage is sufficiently large the diode is in reverse-breakdown region and large current flows though it. Breakdown voltage. Figure 3.1 Semiconductor diode. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 2
3 Zener Diodes Figure 3.2 Volt-ampere characteristic for a typical small-signal silicon diode at a temperature of 300 K. Notice the changes of scale. Zener diodes: doides intended to operate in breakdown region. If breakdown voltage > 6V: avalanche breakdown. If breakdown voltage < 6V: tunneling mechanism of breakdown. Voltage drop across the diode when forward biased: V. The current though the diode when reversed biased: ~ 1nA (10-9 A) Temperature dependence: As the temperature increases, the voltage of the knee decreases by 2mV/K. The reverse current doubles for each 10K increase in the temperature. Figure 3.3 Zener diode symbol. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 3
4 3.3 The Ideal - Diode Model Ideal diode: perfect conductor with zero voltage drop when the diode is forward biased; open circuit, when the diode is reversed biased. Figure 3.8 Ideal-diode volt-ampere characteristic. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 4
5 Assumed States for Analysis of Ideal - Diode Circuits Example 3.3 Circuit Solution By Assumed Diode States Analyze the circuit illustrated in Figure 3.9a using the ideal - diode model. Figure 3.9 Analysis of a diode circuit using the ideal-diode model. Solution Step 1. We start by assuming that D 1 is off and D 2 is on. Step 2. The equivalent circuit is shown in Figure 3.9b. i D2 =0.5mA and v D1 =7V. Step 3. We have v D1 =+7V, which is not consistent with our assumption. Another Assumption Step 1. We assume that D 1 is on and D 2 is off. Step 2. The equivalent circuit is shown in Figure 3.5c. i D1 =1 ma and v D2 = -3 V. Step 3. These conditions are consistent with the assumption. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 5
6 Exercise 3.2 Show that the condition D 1 off and D 2 off is not valid for the circuit of the Figure 3.9a kΩ V v D1 6kΩ v D2 3V Equivalent circuit to Figure 3.9a when D 1 is off and D 2 is off. Solution v D1 = 10V; v D2 = 3V. The both diodes must be on since the voltages across them are positive. + - Exercise 3.3 Show that the condition D 1 on and D 2 on is not valid for the circuit of the Figure 3.9a kΩ 10V i D1 i D1 +i D2 6kΩ i D2 3V Equivalent circuit to Figure 3.9a when D 1 is on and D 2 is on. Solution i i i D1 D1 D2 3V + id2 = 6kΩ 10V 3V = 4kΩ = = 0.5mA = 1.75mA ( i + i ) i = = 1.25mA D1 D2 D1 The negative sign of i D2 means that it flows in the opposite direction to the assumed, i.e. from the cathode to the anode of D 2. This is impossible Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 6
7 3.4 Rectifier Circuits Rectifiers: circuits, which convert ac power into dc power. Half - Wave Rectifier Circuits Figure 3.11 Half-wave rectifier with resistive load. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 7
8 Half - Wave Rectifier with Smoothing Capacitor Figure 3.12a Half-wave rectifier with smoothing capacitor. Figure 3.12b & c Half-wave rectifier with smoothing capacitor. Peak Inverse Voltage Peak inverse voltage (PIV) across the diode: a parameter, which defines the choice of the diode. For Figure 3.11 PIV = V m ; For Figure 3.12 PIV 2V m. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 8
9 Problem 3.24 Half-wave battery charger. Consider the battery charging circuit in Figure P3.24 with V m = 20V, R = 10Ω and V B = 14V. Find the peak current assuming an ideal diode. Also, find the percentage of each cycle in which the diode is in on state. Sketch v s (t) and i(t) to scale against time. + - Current limiting resistor R v s (t) V m sin(ωt) i(t) + - V B The diode is on for 45 ωt 135 or for 90 of the phase angle. The whole period is 360, so the diode is on for 0 90 = 0.25 = 25% of the time The peak current is when the ac voltage is at the peak and is v, i I m V = m V R B = 10 = 0.6A Figure P3.24 Half-wave battery charger. Solution: The diode is on when V m ( ωt) > V or 20sin( ωt) 14 sin > The diode goes to on state at 20sin ωt = ( ωt) = arcsin 20 B = arcsin ; v s (t) t The wave-shapes of v s (t) and i(t). 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/ V 14V i(t)
10 Full - Wave Rectifier Circuits Figure 3.14 Diode-bridge full-wave rectifier. Figure 3.13 Full-wave rectifier. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
11 3.7 Voltage - Regulator Circuits Figure 3.24 A voltage regulator supplies constant voltage to a load. A Simple Zener-Diode Voltage Regulator Figure 3.25 A simple regulator circuit that provides a nearly constant output voltage from a variable supply voltage. In the voltage regulator the zener-diode operates in the breakdown region, which ensures approximately constant voltage across it. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
12 Dynamic Resistance 3.6 Linear Small - Signal Equivalent Circuits id did dvd Q (3.11) vd 1 di r D D (3.12) dvd Q v i D D (3.13) r D Figure 3.31 Diode characteristic, illustrating the Q-point. v i D = D (3.14) r D 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
13 The Shockley Equation D v D = I s exp 1 nvt i (3.15) I s saturation current. For small signal diodes at 300K: I s ~10-14 A. n emission coefficient; n = for small-signal diodes. V T thermal voltage: T absolute temperature in K; k = J/K the Boltzmann s constant; q = C the charge of the electron; At T = 300K V T 0.026V = 26mV kt V T = (3.16) q 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
14 3.7 Basic Semiconductor Concepts Intrinsic Silicon Crystalline lattice of intrinsic silicon in the space. Bohr model of the silicon atom: 14 electrons surround the nucleus; Electron orbits grouped in shells Outermost orbit contains 4 electrons valence shell; Atoms are arranged in crystalline lattice; Each pair of neighbor atoms in the lattice form a covalent bond; The covalent bond consists from two electrons that orbit around the both atoms. Each atom contributes one electron in the pair. At 0K temperature all valence electrons are in bound in the covalence bonds and the conductivity is Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
15 Figure 3.37 Thermal energy can break a bond, creating a vacancy and a free electron, both of which can move freely through the crystal. Figure 3.36 Intrinsic silicon crystal (simplified picture in the plane). Free electrons appear at room temperature due to breaking of the covalent bonds. Only one per bonds is broken. The concentration of the free electrons is small, n i free electrons per cm 3. The conductivity is small: semiconductor. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
16 Conduction by Holes Generation and Recombination Figure 3.38 As electrons move to the left to fill a hole, the hole moves to the right. After breaking the bond the atom is positive charged and the vacancy of the electron is called hole. In the intrinsic silicon the concentration of the electrons n i is equal to the concentration of the holes p i : Generation: breaking the covalent bonds and appearing free electrons and holes. Recombination: free electron encounters a hole. At higher temperature the rate of the generation is higher. When the temperature is constant, the generation and recombination are in equilibrium. n i = p i (3.24) 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
17 n - Type Semiconductor Material Extrinsic semiconductor: silicon with small concentration of impurities, which change its conductivity. Donor atom: atom of 5 th valence. Example: phosphorus. The extra valence electron of the phosphorus always is free electron. n = p + N D (3.25) Figure 3.39 n-type silicon is created by adding valence five impurity atoms. n-type semiconductor: semiconductor with 5 th valence impurities and conductivity, based on the free electrons mostly. Majority carriers in n-type silicon: electrons. Minority carriers in n-type silicon: holes. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
18 p - Type Semiconductor Material Acceptor: atom of 3 rd valence. Example: boron. The acceptor atoms always accept an extra electron, creating negative ionized cores and shortage of free electrons. N A + n = p (3.28) p-type semiconductor: semiconductor with 3 rd valence impurities and conductivity, based on the holes mostly. Majority carriers in p-type silicon: holes. Minority carriers in p-type silicon: electrons. Figure 3.40 p-type silicon is created by adding valence three impurity atoms. The Mass - Action Law pn = p i n i (3.26) Since p i = n i pn = n 2 i (3.27) 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
19 Cycling the type of the material In fabricating the integrated circuits the impurities are added in stages, changing every time the type of the conductivity p ND = n + N A Drift The carriers move in random fashion in the crystal due to thermal agitation. If electric field is applied to the random motion is added a constant component. The averaged motion of the charge carriers due to the electric field: drift. Drift velocity is proportional to the electric field vector. V Ε n = µ n V Ε p = µ p + (3.29) µ n is the mobility of the free electrons; µ p is the mobility of the holes. µ p < µ n (3.30) (3.31) Diffusion If there is a difference in the concentration of the charges in the crystal, appears a flow of charges toward the region with small concentration, determining diffusion current. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
20 The Unbiased pn Junction 3.8 Physics of the Junction Diode Figure 3.42 If a pn junction could be formed by joining a p-type crystal to an n-type crystal, a sharp gradient of hole concentration and electron concentration would exist at the junction immediately after joining the crystals. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
21 Figure 3.43 Diffusion of majority carriers into the opposite sides causes a depletion region to appear at the junction. The field of depletion region prevents the flow of majority carriers. A built-in barrier potential exists for them due to depletion region. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
22 The pn Junction with Reverse Bias The pn Junction with Forward Bias Forward bias: when the external voltage has opposite polarity to the field of the depletion region. Forward biasing narrows the depletion region and reduces the barrier potential. When the barrier potential is reduced to 0, a significant current flows through the diode. Figure 3.44 Under reverse bias, the depletion region becomes wider. Reverse bias: when the external voltage has the same polarity as the field of the depletion region. Reversed biasing extends the depletion region and fully stops the current through the diode. Figure 3.45 Carrier concentration versus distance for a forward biased pn junction. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
23 3.9 Switching and High - Frequency Behavior Review of Capacitance Q = CV (3.33) C = εa (3.34) d Figure 3.46 Parallel-plate capacitor. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
24 Depletion Capacitance dq C = (3.36) dv D C C j0 = (3.37) [ 1 ( V / φ )] m DQ 0 Figure 3.46 As the reverse bias voltage becomes greater, the charge stored in the depletion region increases. Figure 3.48 Depletion capacitance versus bias voltage for the 1N4148 diode. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
25 Diffusion Capacitance Figure 3.49 Hole concentration versus distance for two values of forward current. C dif τ I T DQ = (3.38) VT 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
26 Complete Small - Signal Diode Model Figure 3.50 Small-signal linear circuits for the pn-junction diode. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
27 Large - Signal Switching Behavior Figure 3.51 Circuit illustrating switching behavior of a pn-junction diode. t s storage interval; t t transition time; t rr reverse recovery time: total time in which the diode is open after switching t t + t rr = (3.40) s t Figure 3.52 Waveforms for the circuit of Figure Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
28 Figure 3.53 Another set of waveforms for the circuit of Figure Notice the absence of a storage interval. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/
Figure 1. Diode circuit model
Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The
Yrd. Doç. Dr. Aytaç Gören
H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps
David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction
David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated
Semiconductors, diodes, transistors
Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!
Chapter 3. Diodes and Applications. Introduction [5], [6]
Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode
ENEE 313, Spr 09 Midterm II Solution
ENEE 313, Spr 09 Midterm II Solution PART I DRIFT AND DIFFUSION, 30 pts 1. We have a silicon sample with non-uniform doping. The sample is 200 µm long: In the figure, L = 200 µm= 0.02 cm. At the x = 0
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
Diodes and Transistors
Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)
Fundamentals of Microelectronics
Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors
Solid State Detectors = Semi-Conductor based Detectors
Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)
Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
Properties of electrical signals
DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier
Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf
EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load
Lab 1 Diode Characteristics
Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.
Conduction in Semiconductors
Chapter 1 Conduction in Semiconductors 1.1 Introduction All solid-state devices, e.g. diodes and transistors, are fabricated from materials known as semiconductors. In order to understand the operation
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
BASIC ELECTRONICS TRANSISTOR THEORY. December 2011
AM 5-204 BASIC ELECTRONICS TRANSISTOR THEORY December 2011 DISTRIBUTION RESTRICTION: Approved for Public Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT
Diodes. 1 Introduction 1 1.1 Diode equation... 2 1.1.1 Reverse Bias... 2 1.1.2 Forward Bias... 2 1.2 General Diode Specifications...
Diodes Contents 1 Introduction 1 1.1 Diode equation................................... 2 1.1.1 Reverse Bias................................ 2 1.1.2 Forward Bias................................ 2 1.2 General
Rectifier circuits & DC power supplies
Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
The D.C Power Supply
The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output
Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.
Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van
Special-Purpose Diodes
7 Special-Purpose Diodes 7.1 Zener Diode 7.2 Light-Emitting Diode (LED) 7.3 LED Voltage and Current 7.4 Advantages of LED 7.5 Multicolour LEDs 7.6 Applications of LEDs 7.7 Photo-diode 7.8 Photo-diode operation
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.
Amplifier Teaching Aid
Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar
Precision Diode Rectifiers
by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic
LAB IV. SILICON DIODE CHARACTERISTICS
LAB IV. SILICON DIODE CHARACTERISTICS 1. OBJECTIVE In this lab you are to measure I-V characteristics of rectifier and Zener diodes in both forward and reverse-bias mode, as well as learn to recognize
Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero
Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban
Theory of Transistors and Other Semiconductor Devices
Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per
Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics
76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave
Lecture 2 - Semiconductor Physics (I) September 13, 2005
6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination
Semiconductor I. Semiconductors. germanium. silicon
Basic Electronics Semiconductor I Materials that permit flow of electrons are called conductors (e.g., gold, silver, copper, etc.). Materials that block flow of electrons are called insulators (e.g., rubber,
Characteristic and use
. Basic principle A PSD basically consists of a uniform resistive layer formed on one or both surfaces of a high-resistivity semiconductor substrate, and a pair of electrodes formed on both ends of the
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
Chapter 3 Diode Circuits. 3.1 Ideal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes
Chapter 3 Diode Circuits 3.1 deal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes 1 Diode s Application: Cell Phone Charger An important application of diode is chargers. 充 電 器 Diode acts as
V-I CHARACTERISTICS OF DIODE
V-I CHARACTERISTICS OF DIODE RAVITEJ UPPU 1 1. Aim We try to see the Voltage-Current realtion in Diodes and compare the difference between various types of diodes including Zener Diode. 2. Theory The diode
CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)
CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
Questions and Answers for Units III, IV & V I B.Tech I Sem BASIC ELECTRICAL AND ELECTRONICS ENGINEERING N. Madhusudhana Rao Department of ECE GRIET Syllabus UNIT I: ELECTRICAL and SINGLE PHASE AC CIRCUITS
electronics fundamentals
electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier
The Physics of Energy sources Renewable sources of energy. Solar Energy
The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei [email protected] Renewable sources 1 Solar power! There are basically two ways of using directly the radiative
AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level
AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between
FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights
PAGE 1 FEBRUARY 2009 Schottky Diodes by Rick Cory, Skyworks Solutions, Inc. Introduction Schottky diodes have been used for several decades as the key elements in frequency mixer and RF power detector
Solar Cell Parameters and Equivalent Circuit
9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit
Experiment 2 Diode Applications: Rectifiers
ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness
Fundamental Characteristics of Thyristors
A1001 Introduction The Thyristor family of semiconductors consists of several very useful devices. The most widely used of this family are silicon controlled rectifiers (SCRs), Triacs, SIDACs, and DIACs.
Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.
Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an
Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1
Module 1 Power Semiconductor Devices Version 2 EE IIT, Kharagpur 1 Lesson 2 Constructional Features, Operating Principle, Characteristics and Specification of Power Semiconductor Diode Version 2 EE IIT,
FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html
FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,
Silicon Controlled Rectifiers
554 20 Principles of Electronics Silicon Controlled Rectifiers 20.1 Silicon Controlled Rectifier (SCR) 20.2 Working of SCR 20.3 Equivalent Circuit of SCR 20.4 Important Terms 20.5 V-I Characteristics of
Analog Electronics I. Laboratory
Analog Electronics I Laboratory Exercise 1 DC Power Supply Circuits Aim of the exercise The aim of this laboratory exercise is to become familiar with rectifying circuits and voltage stabilization techniques
Electronic Devices and Circuit Theory
Instructor s Resource Manual to accompany Electronic Devices and Circuit Theory Tenth Edition Robert L. Boylestad Louis Nashelsky Upper Saddle River, New Jersey Columbus, Ohio Copyright 2009 by Pearson
GenTech Practice Questions
GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
Transistors. NPN Bipolar Junction Transistor
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction
Chapter 20 Quasi-Resonant Converters
Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms
CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low
CIRCUITS LABORATORY EXPERIMENT 6 TRANSISTOR CHARACTERISTICS 6.1 ABSTRACT In this experiment, the output I-V characteristic curves, the small-signal low frequency equivalent circuit parameters, and the
X-ray Imaging System. X-Ray Circuit. Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry
Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry X-ray Imaging System Operating console Set x-ray tube current (quantity) and voltage (quality) Controls line compensation, kvp,
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2
Abstract - An important circuit design parameter in a high-power p-i-n diode application is the selection of an appropriate applied dc reverse bias voltage. Until now, this important circuit parameter
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
Characteristic curves of a solar cell
Related Topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence
BIPOLAR JUNCTION TRANSISTORS
CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back
Analog & Digital Electronics Course No: PH-218
Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:
Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification
FUNDAMENTAL PROPERTIES OF SOLAR CELLS
FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of
The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor
Efficient and reliable operation of LED lighting is dependent on the right choice of current-limiting resistor Phil Ebbert, VP of Engineering, Riedon Inc. Introduction Not all resistors are the same and
Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution
Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized
ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section
ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)
Zero voltage drop synthetic rectifier
Zero voltage drop synthetic rectifier Vratislav Michal Brno University of Technology, Dpt of Theoretical and Experimental Electrical Engineering Kolejní 4/2904, 612 00 Brno Czech Republic [email protected],
CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher
CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation
Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF
Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier
Field-Effect (FET) transistors
Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,
Bipolar Junction Transistors
Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:
Junction FETs. FETs. Enhancement Not Possible. n p n p n p
A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley
Chapter 22 Further Electronics
hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor
7. The current voltage characteristic of electric conductors
KL 7. The current voltage characteristic of electric conductors 7.1 ntroduction The purpose of the present laboratory is to measure the current voltage characteristic of different conducting components.
Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
Regulated D.C. Power Supply
442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator
Lab 3 Rectifier Circuits
ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct
Basics of LED drivers. Functions Requirements Selection
Andreas Hagemeyer Master of Science 05.2015 This article is meant to provide the reader with basic knowledge about the functional principle of LED luminaires, to explain the requirements for an LED driver
The Electronic Power Supply. 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor
I N T E R D I S C I P L I N A R Y L I V E L Y A P P L I C A T I O N S P R O J E C T M A T E R I A L S 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor Computing Requirements:
List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.
Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals
TEA1024/ TEA1124. Zero Voltage Switch with Fixed Ramp. Description. Features. Block Diagram
Zero Voltage Switch with Fixed Ramp TEA04/ TEA4 Description The monolithic integrated bipolar circuit, TEA04/ TEA4 is a zero voltage switch for triac control in domestic equipments. It offers not only
III. Reaction Kinetics
III. Reaction Kinetics Lecture 13: Butler-Volmer equation Notes by ChangHoon Lim (and MZB) 1. Interfacial Equilibrium At lecture 11, the reaction rate R for the general Faradaic half-cell reaction was
Fundamentals of Signature Analysis
Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...
Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics
192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing
RF Energy Harvesting Circuits
RF Energy Harvesting Circuits Joseph Record University of Maine ECE 547 Fall 2011 Abstract This project presents the design and simulation of various energy harvester circuits. The overall design consists
AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)
Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
Sheet Resistance = R (L/W) = R N ------------------ L
Sheet Resistance Rewrite the resistance equation to separate (L / W), the length-to-width ratio... which is the number of squares N from R, the sheet resistance = (σ n t) - R L = -----------------------
05 Bipolar Junction Transistors (BJTs) basics
The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN
Current and Temperature Ratings
Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and
