Biasing in MOSFET Amplifiers
|
|
|
- Thomas Walters
- 9 years ago
- Views:
Transcription
1 Biasing in MOSFET Amplifiers Biasing: Creating the circuit to establish the desired DC oltages and currents for the operation of the amplifier Four common ways:. Biasing by fixing GS. Biasing by fixing G and connecting a resistance in the Source 3. Biasing using a Drain-to-Gate Feedback Resistor 4. Biasing Using a Constant-Current Source MOSFETs
2 Biasing in MOSFET Amplifiers Biasing by fixing GS DD D k k ε n W L ox n μ n tox ( ) μ C n GS ox t GG RG G R D D M S R S - EE When the MOSFET deice is changed (een using the same supplier), this method can result in a large ariability in the alue of D. Deices and represent extremes among units of the same type. MOSFETs
3 Biasing in MOSFET Amplifiers Biasing by fixing G and connecting a resistance in the Source Degeneration Resistance MOSFETs 3
4 Biasing in MOSFET Amplifiers Biasing using a Drain-to-Gate Feedback Resistor Large Resistor MOSFETs 4
5 Biasing in MOSFET Amplifiers Biasing Using a Constant-Current Source Current Mirror Used in ntegrated Circuits Figure 4.33 (a) Biasing the MOSFET using a constant-current source. (b) mplementation of the constant-current source using a current mirror. MOSFETs 5
6 Current Mirror DC Analysis The width and length (the W/L aspect ratio) and the parameters of the two transistors can be different We can choose W/L freely n this circuit, consider W/L of both MOSFETs are the same and transistors are identical. The Gate-Source oltages are also the same, then REF k n k W L n W L ( ) GS ( ) GS t t REF W L L W REF W L - GS + + GS - MOSFETs 6 W L
7 Current Mirror DC Analysis Designing REF REF REF k n DD W L R GS + ( ) GS t SS t is often needed to find the alue of R in order to achiee a desired REF MOSFETs 7
8 Biasing of MOSFET Amplifier - ntro to MOS Field Effect Transistor (MOSFET) - NMOS FET 3- PMOS FET 4- DC Analysis of MOSFET Circuits 5- MOSFET Amplifier 6- MOSFET Small Signal Model 7- MOSFET ntegrated Circuits 8- CSA, CGA, CDA 9- CMOS nerter & MOS Digital Logic MOSFETs 8
9 MOSFET Design Space Modern integrated circuits use MOSFETs extensiely ery high densities of transistors up to 0 9 transistors/cm in some ULS memory arrays. Off-chip discrete resistors and capacitors are NOT commonly used On-chip resistors and capacitors generally small Multistage amplifiers are usually DC-coupled Transistors used whereer possible to implement current sources, resistors, capacitors, MOSFETs 9
10 Using MOSFETs to implement R s and C s Resistors: Actie Loads (large R s) Diode-connected loads (small R s) MOSFET Triode-Region (moderate R s) Capacitors Most obious is the gate-body capacitor Can be used to hae ariable-capacitors as well Current Mirrors MOSFETs 0
11 MOSFET Actie Loads MOSFETs used as an actie load for high resistances: MOSFET is held in saturation with the source and gate held at a constant DC oltage Drain connected to circuit r o is inersely proportional to D r o λ D gs 0 g m gs 0 R in r o R in? MOSFETs
12 Diode-Connected MOSFETs A Diode connected MOSFET can be used to achiee small resistances: The Drain is directly connected to Gate, and therefore it can only be operated in saturation (or cutoff) Source Absorption Theorem MOSFETs
13 MOSFET Current Mirrors Used extensiely in MOSFET C applications Often r o,is neglected. Since there is no gate current, the drain currents of M and M are identical n practice, REF due to finite r o. (Not included in EC) W REF kn X t ( + λx L X ( ) ) GS DS X - GS GS The current will also depend on DS - MOSFETs 3
14 Current Mirror DC Analysis The width and length (the W/L aspect ratio) of MOSFETs can be designed almost freely Since the W/L of M and M need not be the same, the size ratios can affect current ratios REF k REF n k n W L W L W L ( ) GS ( ) GS L W t t W L W L - GS + + GS - MOSFETs 4
15 W L Current Scaling (Steering) Ratio of aspect ratios can be selected to W L W L W L achiee nearly any scale factor / REF Note: All gates are connected MOSFETs 5
16 Current Mirroring Pushing and Pulling MOSFETs 6
17 Small Signal Transistor M is diode connected and acts like a resistor to s.-s. ground. r o MOSFETs 7
18 Outline of Chapter 5 - ntro to MOS Field Effect Transistor (MOSFET) - NMOS FET 3- PMOS FET 4- DC Analysis of MOSFET Circuits 5- MOSFET Amplifier 6- MOSFET Small Signal Model 7- MOSFET ntegrated Circuits 8- CSA, CGA, CDA 9- CMOS nerter & MOS Digital Logic MOSFETs 8
19 DC and AC - Body-Effect / CLM Three types of analysis: Neglect DC Body-Effect & DC CLM Use DC Body-Effect Three types of analysis: Neglect AC Body-Effect & AC CLM Use AC Body-Effect Use AC Body-Effect / Use CLM / Neglect DC CLM Use DC Body-Effect / Use DC CLM / Neglect AC CLM DC Analysis Use whateer DC alues for and in the small-signal analysis AC Analysis (small-signal) MOSFETs 9
20 Common Source Amplifier (CSA) Current source implemented with current mirror. Current mirror proides actie load at drain Source terminal grounded no DC or AC Body effect MOSFETs 0
21 CSA with Current Mirror r o CSA MOSFETs
22 CSA Small Signal Analysis out From MOSFET Current-Mirror: only r o appears in analysis g gs i ( r r ) o o m gs A out i g ( r r ) m o o MOSFETs
23 CSA nput/output Resistance nput Resistance R N Output resistance gs 0 g m gs 0 R r OUT r o o MOSFETs 3
24 CSA Calculations n practice, difficult to keep all transistors operating in saturation OUT is hard to control, and sensitie to: W/L, G, and CLM λ λ 0.0 k t 50μ A k 5μ A W L n R t p DD REF W 50, L 5, kω SS 40 g r o A G.596mA OUT m Hand: m 38.5kΩ 00 A A G SPCE:.58.57mA OUT MOSFETs 4
25 Common Gate Amplifier (CGA) A pmos current mirror is used as REF including the output resistance. The gate terminal held at a DC oltage. (AC Ground) Since source terminal not at signal ground, the body effect is present. Typically used as second stage of a multi-stage amplifier circuit MOSFETs 5
26 CGA DC Analysis Current mirror is assumed to be ideal during the DC analysis, thus REF DC oltage at the source terminal ( S ) must be obtained from driing the current REF through the transistor. This assumes that the input oltage source is set to zero R is part of the source oltage Sole for O, with S and G known, and including CLM W ( ) k [ ( )] n G S t + λ O S L MOSFETs 6
27 CGA Replace with a current source including output resistance r o r o Choice of analysis: Neglect AC Body-Effect & CLM Use AC Body-Effect / Neglect CLM Use AC Body-Effect / Use CLM MOSFETs 7
28 CGA No Body Effect or CLM o g m gs r o i0 gs g + g m m R Non nerting A o r + g m o R MOSFETs 8
29 CGA R N & R OUT, No Body Effect or CLM R N g m R OUT 0 R N R OUT r o MOSFETs 9
30 CGA With Body Effect & no CLM X R N o o Sole at x first: bs ( g ) m x g mb x r o + gs ( g ) m gs g mb bs r o + x nclude R and sole for total oltage gain in term of R N A o A + x ( g + g ) o o x total m mb o i x i ( g m g mb ) r o r R N RN + R MOSFETs 30
31 CGA R N With Body Effect & no CLM i X i N X R N bs gs x i ) x ( g + m gmb x i ) in ( g + m gmb x Neglect nput oltage Source R N g m + g mb MOSFETs 3
32 CGA - With Body Effect & CLM i X x gs i X X Neglect nput oltage Source i x A o ( g + g ) m mb x i x + r o x r o o x ( r ) o ro + gm + gmb ro o MOSFETs 3
33 CGA R N With Body Effect & CLM i X X R N o i x r o Neglect nput oltage Source i x ( g + g ) R N m i x x mb r o + + g x r r m o o + + g x mb r o o MOSFETs 33
Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.
Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 2
Small Signal Analysis of a PMOS transistor Consider the following PMOS transistor to be in saturation. Then, 1 I SD = µ pcox( VSG Vtp)^2(1 + VSDλ) 2 From this equation it is evident that I SD is a function
Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits
Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure
Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II
1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.
Lecture 39: Intro to Differential Amplifiers. Context
Lecture 39: Intro to Differential Amplifiers Prof J. S. Smith Context Next week is the last week of lecture, and we will spend those three lectures reiewing the material of the course, and looking at applications
CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1
CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The
Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002
Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that
An Introduction to the EKV Model and a Comparison of EKV to BSIM
An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals
Bob York. Transistor Basics - MOSFETs
Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:
Chapter 10 Advanced CMOS Circuits
Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in
COMMON-SOURCE JFET AMPLIFIER
EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC
Basic FET Ampli ers 6.0 PREVIEW 6.1 THE MOSFET AMPLIFIER
C H A P T E R 6 Basic FET Ampli ers 6.0 PREVIEW In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits containing these
Field Effect Transistors
506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of
EECS 240 Topic 7: Current Sources
EECS 240 Analog Integrated Circuits Topic 7: Current Sources Bernhard E. Boser,Ali M. Niknejad and S.Gambini Department of Electrical Engineering and Computer Sciences Bias Current Sources Applications
Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by
11 (Saturated) MOSFET Small-Signal Model Transconductance Concept: find an equivalent circuit which interrelates the incremental changes in i D v GS v DS etc. for the MOSFET in saturation The small-signal
Fully Differential CMOS Amplifier
ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational
EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier
EE 330 Lecture 21 Small Signal Analsis Small Signal Analsis of BJT Amplifier Review from Last Lecture Comparison of Gains for MOSFET and BJT Circuits IN (t) A B BJT CC 1 R EE OUT I R C 1 t If I D R =I
Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]
Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel
Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.
Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational
g fs R D A V D g os g os
AN12 JFET Biasing Techniques Introduction Engineers who are not familiar with proper biasing methods often design FET amplifiers that are unnecessarily sensitive to device characteristics. One way to obtain
CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS
CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier
Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs
10 BIT s Current Mode Pipelined ADC
10 BIT s Current Mode Pipelined ADC K.BHARANI VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA [email protected] P.JAYAKRISHNAN VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA [email protected]
AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs
Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential
Design of a Fully Differential Two-Stage CMOS Op-Amp for High Gain, High Bandwidth Applications
Design of a Fully Differential Two-Stage CMOS Op-Amp for High Gain, High Bandwidth Applications Rajkumar S. Parihar Microchip Technology Inc. [email protected] Anu Gupta Birla Institute of
CMOS Differential Amplifier
MOS Differential Amplifier. urrent Equations of Differential Amplifier DD D D (7 D ( E D / G G GS GS G (0 E D / ( G (a (b Fiure. General MOS Differential Amplifier: (a Schematic Diaram, (b nput Gate oltaes
VI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005
6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 231 Lecture 23 Frequency Response of Amplifiers (I) CommonSource Amplifier December 1, 2005 Contents: 1. Introduction 2. Intrinsic frequency
Field Effect Transistors and Noise
Physics 3330 Experiment #8 Fall 2005 Field Effect Transistors and Noise Purpose In this experiment we introduce field effect transistors. We will measure the output characteristics of a FET, and then construct
BJT Ebers-Moll Model and SPICE MOSFET model
Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll
Transistor amplifiers: Biasing and Small Signal Model
Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT
Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits
Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Objectives In this lecture you will learn the following Introduction Logical Effort of an Inverter
Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1
Lecture 9 Large Signal MOSFET Model (3/24/1) Page 9-1 LECTURE 9 LARGE SIGNAL MOSFET MODEL LECTURE ORGANIZATION Outline Introduction to modeling Operation of the MOS transistor Simple large signal model
MOS Transistors as Switches
MOS Transistors as Switches G (gate) nmos transistor: Closed (conducting) when Gate = 1 (V DD ) D (drain) S (source) Oen (non-conducting) when Gate = 0 (ground, 0V) G MOS transistor: Closed (conducting)
Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.
Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block
CMOS COMPARATOR. 1. Comparator Design Specifications. Figure 1. Comparator Transfer Characteristics.
CMOS COMARATOR. Comparator Design Specifications o OH ( in+ - in- ) OL (a) OH L H ( in+ - in- ) OL (b) OS OH L H ( in+ - in- ) OL (c) Figure. Comparator Transfer Characteristics. A comparator is a circuit
Digital to Analog Converter. Raghu Tumati
Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................
Depletion-Mode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation
epletion-mode Power MOSFETs and Applications Abdus Sattar, XYS Corporation Applications like constant current sources, solid-state relays, telecom switches and high voltage C lines in power systems require
Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
Fundamentals of Microelectronics
Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors
The 2N3393 Bipolar Junction Transistor
The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.
SPICE MOSFET Declaration
SPICE MOSFET Declaration The MOSFET is a 4-terminal device that is specified in the netlist as: Mname ND NG NS NB ModName The optional para are: L= value W= value AD=value AS=value PD=value
CHAPTER 16 MEMORY CIRCUITS
CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only
Current mirrors are commonly used for current sources in integrated circuit design. This section covers other current sources that are often seen.
c Coyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Comuter Engineering. Current Sources Current mirrors are commonly used for current sources
An FET Audio Peak Limiter
1 An FET Audio Peak Limiter W. Marshall Leach, Jr., Professor Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, Georgia 30332-0250 USA email: [email protected] Copyright
Design of a TL431-Based Controller for a Flyback Converter
Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used
Log and AntiLog Amplifiers. Recommended Text: Pallas-Areny, R. & Webster, J.G., Analog Signal Processing, Wiley (1999) pp. 293-321
Log and AntiLog Amplifiers Recommended Text: Pallas-Areny, R. & Webster, J.G., Analog Signal Processing, Wiley (999) pp. 93-3 ntroduction Log and Antilog Amplifiers are non-linear circuits in which the
Field-Effect (FET) transistors
Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,
Common-Emitter Amplifier
Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,
TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:
Low-power single CMOS timer Description Datasheet - production data The TS555 is a single CMOS timer with very low consumption: Features SO8 (plastic micropackage) Pin connections (top view) (I cc(typ)
The BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A
The FET Constant-Current Source/Limiter. I D = ( V DS )(g oss ) (3) R L. g oss. where g oss = g oss (5) when V GS = 0 (6)
The FET Constant-Current ource/limiter Introduction The combination of low associated operating voltage and high output impedance makes the FET attractive as a constant-current source. An adjustable-current
CHAPTER 2 POWER AMPLIFIER
CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For
3.4 - BJT DIFFERENTIAL AMPLIFIERS
BJT Differential Amplifiers (6/4/00) Page 1 3.4 BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the
DC Parameters: Input Offset Voltage (V IO )
Application Report SLOA059 March 2001 DC Parameters: Input Offset oltage ( IO ) Richard Palmer Advanced Analog Products ABSTRACT The input offset voltage, IO, is a common dc parameter in operational amplifier
MAS.836 HOW TO BIAS AN OP-AMP
MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic
Integrated Circuits & Systems
Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 11 MOSFET part 2 [email protected] I D -V DS Characteristics
W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören
W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors
Zero voltage drop synthetic rectifier
Zero voltage drop synthetic rectifier Vratislav Michal Brno University of Technology, Dpt of Theoretical and Experimental Electrical Engineering Kolejní 4/2904, 612 00 Brno Czech Republic [email protected],
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Evaluating AC Current Sensor Options for Power Delivery Systems
Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy
The MOSFET Transistor
The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls
University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits
University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits LTSpice LTSpice is a free circuit simulator based on Berkeley
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences Elad Alon Homework #4 Solutions EECS141 PROBLEM 1: Shoot-Through Current In this problem,
Monte Carlo Simulation of Device Variations and Mismatch in Analog Integrated Circuits
Proceedings of The National Conference On Undergraduate Research (NCUR) 2006 The University of North Carolina at Asheville Asheville, North Carolina April 6 8, 2006 Monte Carlo Simulation of Device Variations
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
Understanding Low Drop Out (LDO) Regulators
Understanding Low Drop Out (LDO) Regulators Michael Day, Texas Instruments ABSTRACT This paper provides a basic understanding of the dropout performance of a low dropout linear regulator (LDO). It shows
Physics 120 Lab 6: Field Effect Transistors - Ohmic region
Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V
Lab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF.
In many applications, a key design goal is to minimize variations in power delivered to a load as the supply voltage varies. This application brief describes a simple DC brush motor control circuit using
LM2576R. 3.0A, 52kHz, Step-Down Switching Regulator FEATURES. Applications DESCRIPTION TO-220 PKG TO-220V PKG TO-263 PKG ORDERING INFORMATION
LM2576 FEATURES 3.3, 5.0, 12, 15, and Adjustable Output ersions Adjustable ersion Output oltage Range, 1.23 to 37 +/- 4% AG10Maximum Over Line and Load Conditions Guaranteed 3.0A Output Current Wide Input
MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V
Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz. The high power, high gain and broadband performance of these devices makes possible solid
DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING
SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,
Series and Parallel Circuits
Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)
AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)
Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:
Semiconductor Memories
Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35
Sampling switches, charge injection, Nyquist data converter fundamentals Tuesday, February 8th, 9:15 11:35 Snorre Aunet ([email protected]) Nanoelectronics group Department of Informatics University of Oslo
Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf
EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load
Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics
192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
Using Op Amps As Comparators
TUTORIAL Using Op Amps As Comparators Even though op amps and comparators may seem interchangeable at first glance there are some important differences. Comparators are designed to work open-loop, they
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Chapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)
This material is from a previous edition of Microelectronic Circuits. These sections provide valuable information, but please note that the references do not correspond to the 6th or 7th edition of the
Building the AMP Amplifier
Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;
Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction
Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and
EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1
EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect
Design of Two-Stage CMOS Op-Amp and Analyze the Effect of Scaling
Design of Two-Stage CMOS Op-Amp and Analyze the Effect of Scaling Amana Yadav Department of Electronics and Communication Engineering, FET-MRIU, Faridabad, Haryana Abstract:- A method described in this
ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742
1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers
ECE124 Digital Circuits and Systems Page 1
ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly
Layout of Multiple Cells
Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed
RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs
Freescale Semiconductor Technical Data RF Power LDMOS Transistors Enhancement--Mode Lateral MOSFETs These 90 W RF power LDMOS transistors are designed for wideband RF power amplifiers covering the frequency
