NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6
|
|
|
- Thomasina Gibson
- 10 years ago
- Views:
Transcription
1 E.T.S.E.T.B. MSc in ICT FINAL EXAM VLSI Digital Design Spring Course June 6, 2006 Score publication date: June 19, 2006 Exam review request deadline: June 22, 2006 Academic consultancy: June 22, 2006, from noon to 1pm Final scores: June 23, 2006 NAME AND SURNAME TIME: 1 hour 30 minutes 1 (4 min.) How does the speed of the devices change if dimensions W, L and t ox (oxide thickness) are reduced a factor in all MOS transistors of an integrated circuit? Justify the answer. 2 (3 min.) Specify the classes IP (intellectual property) cores are usually divided in. Indicate which class is the most technology-independent one. 3 (5 min.) Input R of flip-flop FF1 is asynchronous. In order to achieve a synchronous reset in FF1 with an external asynchronous signal Ra by generating the Rs synchronized signal. Does the circuit of the figure achieve this purpose? If the affirmative case, justify it, otherwise propose an alternative. Ra CK CK D Q D Q FF1 R Rs 1/6
2 4 (2 min.) Despite the size of wafers used in VLSI provide room enough to implement large-area chips (more than 50 cm 2 ) it is not common because an important technological drawback discourages it. Which one is it? Justify the answer. 5 (6 min.) Compare the delay of a buffering chain consisting of n 4-input NAND gates with n inverters, both with constant relative fanout. Data: r = 2; t e1 (inverter) = t e1 (NAND4) = 1; t p (inverter) = 1; t p (NAND4) = 2. 6 (6 min.) The Noise Margin can be defined as the minimum interference voltage that can produce an incorrect operation in a circuit. In the dynamic circuit of the figure, V DD = 2.5 V, C IN = 20 ff, C D = 4 ff. Calculate its Noise Margin assuming that the inverter switches at V DD /2. Can the Noise Margin of this circuit be improved without adding any transistor? V DD y CK C IN x 1 C D x 2 C D x3 C D 2/6
3 7 (4 min.) Draw a dynamic OR-NAND gate at transistor level. b c a y 8 (3 min.) Indicate the fundamental difference between a tri-state dynamic flip-flop and a dynamic C 2 MOS flip-flop. 9 (4 min.) Fill in the following logic comparative table for CMOS technology. Indicate the number of transistors for a n-input logic function and the input capacitance per line. Assume gate capacitance C G NMOS = C 1 and r = 2. n Static Pseudo-NMOS Domino Zipper C 2 MOS CVSL C IN 10 (4 min.) Assuming equiprobabilistic and independent inputs, calculate the transition probability of a 3-input static NAND gate. 11 (3 min.) Indicate a design style that exhibits static power consumption. 3/6
4 12 (3 min.) What kind of logic is generally preferred for low power design, static or dynamic? Justify the answer. 13 (4 min.) Does it make sense to operate with a power supply V DD value below the voltage corresponding to the minimum value of the EDP figure of merit? Justify the answer. 14 (4 min.) How can the short-circuit current be completely eliminated in CMOS? 15 (4 min.) Can area and power consumption be exchanged in CMOS circuits? How? 16 (4 min.) Briefly explain the fundamentals of DVS (Dynamic Voltage Scaling)? 17 (4 min.) What difference exists between a PG adder and a carry-lookahead adder? Is the Manchester adder a carry propagate or a carry-lookahead adder? Justify the answers. 4/6
5 18 (6 min.) Calculate area and delay of two 8-bit carry select adders, consisting of 2 and 4 carry select stages, respectively. Which one of the two adders is preferred in terms of area-delay product? Data: Full Adder area: A FA = 1; Full Adder delay: t dfa = 1; MUX area (including sum and carry): A MUX = 0,2; MUX delay t dmux = 0,5 19 (4 min.) Fill in the delay of the following 16-bit multiplies expressed in clock cycles. Parallel/ Parallel Serial/ Parallel Robertson Booth Modified Booth Radix 4 Wallace Trees Serial/ Serial 20 (4 min.) Is it correct to state that the product delay of each multiplier of the previous question is proportional to the table numbers? Justify the answer. 21 (4 min.) Briefly indicate a main similarity and a main difference of an array multiplier and a Wallace-tree multiplier. 5/6
6 22 (5 min.) Which operations has to perform a radix-4 parallel-serial multiplier if the multiplier register contains the following value? /6
CSE140 Homework #7 - Solution
CSE140 Spring2013 CSE140 Homework #7 - Solution You must SHOW ALL STEPS for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting
Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1
ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05
Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary
Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at
System on Chip Design. Michael Nydegger
Short Questions, 26. February 2015 What is meant by the term n-well process? What does this mean for the n-type MOSFETs in your design? What is the meaning of the threshold voltage (practically)? What
Class 11: Transmission Gates, Latches
Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates
路 論 Chapter 15 System-Level Physical Design
Introduction to VLSI Circuits and Systems 路 論 Chapter 15 System-Level Physical Design Dept. of Electronic Engineering National Chin-Yi University of Technology Fall 2007 Outline Clocked Flip-flops CMOS
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
DESIGN CHALLENGES OF TECHNOLOGY SCALING
DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE
S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India
Power reduction on clock-tree using Energy recovery and clock gating technique S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Abstract Power consumption of
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
Power Reduction Techniques in the SoC Clock Network. Clock Power
Power Reduction Techniques in the SoC Network Low Power Design for SoCs ASIC Tutorial SoC.1 Power Why clock power is important/large» Generally the signal with the highest frequency» Typically drives a
HCC/HCF4032B HCC/HCF4038B
HCC/HCF4032B HCC/HCF4038B TRIPLE SERIAL ADDERS INERT INPUTS ON ALL ADDERS FOR SUM COMPLEMENTING APPLICATIONS FULLY STATIC OPERATION...DC TO 10MHz (typ.) @ DD = 10 BUFFERED INPUTS AND OUTPUTS SINGLE-PHASE
Lecture 10: Sequential Circuits
Introduction to CMOS VLSI esign Lecture 10: Sequential Circuits avid Harris Harvey Mudd College Spring 2004 Outline q Sequencing q Sequencing Element esign q Max and Min-elay q Clock Skew q Time Borrowing
Introduction to CMOS VLSI Design
Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
Pass Gate Logic An alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches).
Pass Gate Logic n alternative to implementing complex logic is to realize it using a logic network of pass transistors (switches). Switch Network Regeneration is performed via a buffer. We have already
Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
Lecture 11: Sequential Circuit Design
Lecture 11: Sequential Circuit esign Outline Sequencing Sequencing Element esign Max and Min-elay Clock Skew Time Borrowing Two-Phase Clocking 2 Sequencing Combinational logic output depends on current
Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems
Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College [email protected] Based on EE271 developed by Mark Horowitz, Stanford University MAH
1.1 Silicon on Insulator a brief Introduction
Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial
CMOS, the Ideal Logic Family
CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV February 28, 2005 Research Objective Objective: Electronic design automation
CMOS Logic Integrated Circuits
CMOS Logic Integrated Circuits Introduction CMOS Inverter Parameters of CMOS circuits Circuits for protection Output stage for CMOS circuits Buffering circuits Introduction Symetrical and complementary
Layout of Multiple Cells
Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed
Flip-Flops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
Lecture 7: Clocking of VLSI Systems
Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis
Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
LFSR BASED COUNTERS AVINASH AJANE, B.E. A technical report submitted to the Graduate School. in partial fulfillment of the requirements
LFSR BASED COUNTERS BY AVINASH AJANE, B.E A technical report submitted to the Graduate School in partial fulfillment of the requirements for the degree Master of Science in Electrical Engineering New Mexico
Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards
Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic
ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path
ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path Project Summary This project involves the schematic and layout design of an 8-bit microprocessor data
Three-Phase Dual-Rail Pre-Charge Logic
Infineon Page 1 CHES 2006 - Yokohama Three-Phase Dual-Rail Pre-Charge Logic L. Giancane, R. Luzzi, A. Trifiletti {marco.bucci, raimondo.luzzi}@infineon.com {giancane, trifiletti}@die.mail.uniroma1.it Summary
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Multipliers. Introduction
Multipliers Introduction Multipliers play an important role in today s digital signal processing and various other applications. With advances in technology, many researchers have tried and are trying
數 位 積 體 電 路 Digital Integrated Circuits
IEE5049 - Spring 2012 數 位 積 體 電 路 Digital Integrated Circuits Course Overview Professor Wei Hwang 黃 威 教 授 Department of Electronics Engineering National Chiao Tung University [email protected] Wei
EE411: Introduction to VLSI Design Course Syllabus
: Introduction to Course Syllabus Dr. Mohammad H. Awedh Spring 2008 Course Overview This is an introductory course which covers basic theories and techniques of digital VLSI design in CMOS technology.
Latch Timing Parameters. Flip-flop Timing Parameters. Typical Clock System. Clocking Overhead
Clock - key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where
International Journal of Electronics and Computer Science Engineering 1482
International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant
These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption
Basic Properties of a Digital Design These help quantify the quality of a design from different perspectives: Cost Functionality Robustness Performance Energy consumption Which of these criteria is important
Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells
Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells Sushil B. Bhaisare 1, Sonalee P. Suryawanshi 2, Sagar P. Soitkar 3 1 Lecturer in Electronics Department, Nagpur University, G.H.R.I.E.T.W. Nagpur,
Design and analysis of flip flops for low power clocking system
Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,
Subthreshold Real-Time Counter.
Subthreshold Real-Time Counter. Jonathan Edvard Bjerkedok Master of Science in Electronics Submission date: June 2013 Supervisor: Snorre Aunet, IET Co-supervisor: Øivind Ekelund, Energy Micro AS Norwegian
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department
ANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251
Gates J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, T 77251 1. The Evolution of Electronic Digital Devices...1 2. Logical Operations and the Behavior of Gates...2
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
Sequential Circuit Design
Sequential Circuit Design Lan-Da Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 [email protected] http://www.cs.nctu.edu.tw/~ldvan/ Outlines
Sequential Circuits. Combinational Circuits Outputs depend on the current inputs
Principles of VLSI esign Sequential Circuits Sequential Circuits Combinational Circuits Outputs depend on the current inputs Sequential Circuits Outputs depend on current and previous inputs Requires separating
CpE358/CS381. Switching Theory and Logical Design. Class 4
Switching Theory and Logical Design Class 4 1-122 Today Fundamental concepts of digital systems (Mano Chapter 1) Binary codes, number systems, and arithmetic (Ch 1) Boolean algebra (Ch 2) Simplification
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
Design of Energy Efficient Low Power Full Adder using Supply Voltage Gating
Design of Energy Efficient Low Power Full Adder using Supply Voltage Gating S.Nandhini 1, T.G.Dhaarani 2, P.Kokila 3, P.Premkumar 4 Assistant Professor, Dept. of ECE, Nandha Engineering College, Erode,
The components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC
Model-Based Synthesis of High- Speed Serial-Link Transmitter Designs
Model-Based Synthesis of High- Speed Serial-Link Transmitter Designs Ikchan Jang 1, Soyeon Joo 1, SoYoung Kim 1, Jintae Kim 2, 1 College of Information and Communication Engineering, Sungkyunkwan University,
Set-Reset (SR) Latch
et-eset () Latch Asynchronous Level sensitive cross-coupled Nor gates active high inputs (only one can be active) + + Function 0 0 0 1 0 1 eset 1 0 1 0 et 1 1 0-? 0-? Indeterminate cross-coupled Nand gates
Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
High-Speed Electronics
High-Speed Electronics Mentor User Conference 2005 - München Dr. Alex Huber, [email protected] Zentrum für Mikroelektronik Aargau, 5210 Windisch, Switzerland www.zma.ch Page 1 Outline 1. Motivation 2. Speed
ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7
ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 13.7 A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology Jri Lee, Behzad Razavi University of California, Los Angeles, CA
MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer
MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines
Two-Phase Clocking Scheme for Low-Power and High- Speed VLSI
International Journal of Advances in Engineering Science and Technology 225 www.sestindia.org/volume-ijaest/ and www.ijaestonline.com ISSN: 2319-1120 Two-Phase Clocking Scheme for Low-Power and High- Speed
Reconfigurable ECO Cells for Timing Closure and IR Drop Minimization. TingTing Hwang Tsing Hua University, Hsin-Chu
Reconfigurable ECO Cells for Timing Closure and IR Drop Minimization TingTing Hwang Tsing Hua University, Hsin-Chu 1 Outline Introduction Engineering Change Order (ECO) Voltage drop (IR-DROP) New design
CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1
CO2005: Electronics I The Field-Effect Transistor (FET) Electronics I, Neamen 3th Ed. 1 MOSFET The metal-oxide-semiconductor field-effect transistor (MOSFET) becomes a practical reality in the 1970s. The
DATA SHEET. HEF40193B MSI 4-bit up/down binary counter. For a complete data sheet, please also download: INTEGRATED CIRCUITS
INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,
Adder.PPT(10/1/2009) 5.1. Lecture 13. Adder Circuits
Adder.T(//29) 5. Lecture 3 Adder ircuits Objectives Understand how to add both signed and unsigned numbers Appreciate how the delay of an adder circuit depends on the data values that are being added together
WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
Memory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
Counters & Shift Registers Chapter 8 of R.P Jain
Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING A thesis work submitted to the faculty of San Francisco State University In partial fulfillment of the requirements for
Systems I: Computer Organization and Architecture
Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop
CMOS Binary Full Adder
CMOS Binary Full Adder A Survey of Possible Implementations Group : Eren Turgay Aaron Daniels Michael Bacelieri William Berry - - Table of Contents Key Terminology...- - Introduction...- 3 - Design Architectures...-
Introduction to VLSI Programming. TU/e course 2IN30. Prof.dr.ir. Kees van Berkel Dr. Johan Lukkien [Dr.ir. Ad Peeters, Philips Nat.
Introduction to VLSI Programming TU/e course 2IN30 Prof.dr.ir. Kees van Berkel Dr. Johan Lukkien [Dr.ir. Ad Peeters, Philips Nat.Lab] Introduction to VLSI Programming Goals Create silicon (CMOS) awareness
MM54C150 MM74C150 16-Line to 1-Line Multiplexer
MM54C150 MM74C150 16-Line to 1-Line Multiplexer MM72C19 MM82C19 TRI-STATE 16-Line to 1-Line Multiplexer General Description The MM54C150 MM74C150 and MM72C19 MM82C19 multiplex 16 digital lines to 1 output
Hunting Asynchronous CDC Violations in the Wild
Hunting Asynchronous Violations in the Wild Chris Kwok Principal Engineer May 4, 2015 is the #2 Verification Problem Why is a Big Problem: 10 or More Clock Domains are Common Even FPGA Users Are Suffering
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey Homework #2 EECS 141 Due Friday, February 6, 5pm, box in 240 Cory 1. Suppose you
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
Low leakage and high speed BCD adder using clock gating technique
Low leakage and high speed BCD adder using clock gating technique Mr. Suri shiva 1 Mr K.R.Anudeep Laxmikanth 2 Mr. Naveen Kumar.Ch 3 Abstract The growing market of mobile, battery powered electronic systems
Lecture 10: Latch and Flip-Flop Design. Outline
Lecture 1: Latch and Flip-Flop esign Slides orginally from: Vladimir Stojanovic Computer Systems Laboratory Stanford University [email protected] 1 Outline Recent interest in latches and flip-flops
Class 18: Memories-DRAMs
Topics: 1. Introduction 2. Advantages and Disadvantages of DRAMs 3. Evolution of DRAMs 4. Evolution of DRAMs 5. Basics of DRAMs 6. Basics of DRAMs 7. Write Operation 8. SA-Normal Operation 9. SA-Read Operation
Optimization and Comparison of 4-Stage Inverter, 2-i/p NAND Gate, 2-i/p NOR Gate Driving Standard Load By Using Logical Effort
Optimization and Comparison of -Stage, -i/p NND Gate, -i/p NOR Gate Driving Standard Load By Using Logical Effort Satyajit nand *, and P.K.Ghosh ** * Mody Institute of Technology & Science/ECE, Lakshmangarh,
Timing Methodologies (cont d) Registers. Typical timing specifications. Synchronous System Model. Short Paths. System Clock Frequency
Registers Timing Methodologies (cont d) Sample data using clock Hold data between clock cycles Computation (and delay) occurs between registers efinition of terms setup time: minimum time before the clocking
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,
Standart TTL, Serie 74... Art.Gruppe 13.15. 1...
Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... 7400 Quad 2-Input Nand Gate (TP) DIL14 7402 Quad 2 Input Nor Gate (TP) DIL14 7403 Quad 2 Input Nand Gate (OC) DIL14 7404 Hex Inverter
We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -
. (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)
PRINCIPLES OF CMOS VLSI DESIGN
PRINCIPLES OF CMOS VLSI DESIGN A Systems Perspective Second Edition Neil H. E. Weste TLW, Inc. Kamran Eshraghian University of Adelaide Addison Wesley Longman Reading, Massachusetts Menlo Park, California
Clock Distribution in RNS-based VLSI Systems
Clock Distribution in RNS-based VLSI Systems DANIEL GONZÁLEZ 1, ANTONIO GARCÍA 1, GRAHAM A. JULLIEN 2, JAVIER RAMÍREZ 1, LUIS PARRILLA 1 AND ANTONIO LLORIS 1 1 Dpto. Electrónica y Tecnología de Computadores
Chapter 9 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 9 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Outline Introduction
INTEGRATED CIRCUITS. For a complete data sheet, please also download:
INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS Logic Family Specifications The IC6 74C/CT/CU/CMOS Logic Package Information The IC6 74C/CT/CU/CMOS
. MEDIUM SPEED OPERATION - 8MHz (typ.) @ . MULTI-PACKAGE PARALLEL CLOCKING FOR HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE
HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE. MEDIUM SPEED OPERATION - 8MHz (typ.) @ CL = 50pF AND DD-SS = 10. MULTI-PACKAGE PARALLEL CLOCKING FOR SYNCHRONOUS HIGH SPEED OUTPUT RES-
DATA SHEET. HEF40374B MSI Octal D-type flip-flop with 3-state outputs. For a complete data sheet, please also download: INTEGRATED CIRCUITS
INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,
ECE124 Digital Circuits and Systems Page 1
ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly
CSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
Weste07r4.fm Page 183 Monday, January 5, 2004 1:39 AM. 7.1 Introduction
Weste07r4.fm Page 183 Monday, January 5, 2004 1:39 AM 7 7.1 Introduction The previous chapter addressed combinational circuits in which the output is a function of the current inputs. This chapter discusses
Leakage Power Reduction Using Sleepy Stack Power Gating Technique
Leakage Power Reduction Using Sleepy Stack Power Gating Technique M.Lavanya, P.Anitha M.E Student [Applied Electronics], Dept. of ECE, Kingston Engineering College, Vellore, Tamil Nadu, India Assistant
Upon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
CMOS Power Consumption and C pd Calculation
CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or
Digital Fundamentals. Lab 8 Asynchronous Counter Applications
Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:
