ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7
|
|
|
- Stephen Watkins
- 10 years ago
- Views:
Transcription
1 ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology Jri Lee, Behzad Razavi University of California, Los Angeles, CA Clock and data recovery (CDR) circuits operating at tens of gigabits per second pose difficult challenges with respect to speed, jitter, signal distribution, and power consumption. Recent integration of 10Gb/s receivers in CMOS technology encourages further research on CMOS solutions for higher speeds, especially if it leads to low-voltage, low-power realizations. The design and experimental verification of a 40Gb/s CMOS phase-locked CDR is described. Shown in Fig , the architecture incorporates a multiphase voltage-controlled oscillator (VCO), a quarter-rate phase detector (PD), a voltage-to-current (V/I) converter, and a simple loop filter. The PD uses the halfquadrature phases provided by the VCO to sample the input data every 12.5 ps, thereby detecting data edges and determining whether the clock is early or late. Four of these samples fall in the center of the data eye, retiming and demultiplexing the 40Gb/s input into four 10Gb/s outputs. In the absence of data transitions, the V/I converter generates no output current, leaving the oscillator control line undisturbed. With quarter-rate sampling, the flipflops hold time can be four times as long as that required in full-rate operation, but their acquisition speed must still guarantee correct sampling of the input bits in less than 25ps. The speed, jitter, and driving capability required of the oscillator point to the use of an LC realization. Coupled oscillators [1] operate away from the resonance frequency of the tanks to create the required phase shift, bearing a trade-off between reliability of oscillation and the phase noise. The multiphase oscillator in [2] drives transmission lines by a gain stage loaded by resistors, incurring energy loss in each cycle. The multiphase oscillator introduced here is based on the concept of differential stimulus of a closed-loop transmission line at equally-spaced points. Illustrated in Fig a, the circuit sustains a phase separation of 180 O at diagonally-opposite nodes, providing 45 O phase steps in between. Unlike coupled oscillators, this circuit does not operate away from the resonance frequency. Also, in contrast to the design in [2], the transmission line requires no termination resistors, displaying lower phase noise and larger voltage swings for a given power dissipation and inductor Q. The topology of Fig a nonetheless necessitates long interconnects between the nodes and their corresponding G m cells. However, since diagonally-opposite inductors carry currents that are 180 O out of phase, the circuit can be modified as shown in Fig b, where inductor elements are grouped into differential structures and the G m cells are placed in close proximity of the oscillator nodes. SpectreRF simulations indicate that, for a given power dissipation, inductor Q, and frequency of oscillation, the proposed oscillator achieves twice the voltage swings and 12 db lower phase noise than that in [2]. Each differential port of the VCO is buffered by an inductivelyloaded differential pair. These buffers (1) isolate the VCO from the long interconnects going to the PDs that would otherwise introduce greater uncertainty in the oscillation frequency; (2) generate voltage swings above the supply voltage, driving the flipflops efficiently; and (3) isolate the VCO from the data edges coupled through the phase detectors. The PD employs eight flipflops to strobe the data at 12.5ps intervals (Fig ). In a manner similar to an Alexander topology [3], the PD compares every two consecutive samples by means of an XOR gate, generating a net output current if the two are unequal, i.e., if an edge has occurred. With no data transitions, the FFs produce equal outputs, and the V/I converters a zero current. Figure depicts the master-slave flipflop used in the phase detector. Here, NMOS switches M 1 and M 2 sample D in on the parasitic capacitances at nodes X and Y when CK is high. Since the minimum input common-mode (CM) level is dictated by the gatesource voltage of M 3 -M 4 and the headroom required by I SS, the sampling switches experience only an overdrive voltage of 0.5V even if CK reaches V DD, failing to provide fast sampling. This issue is remedied by setting the CM level of CK and CK equal to V DD, a choice afforded by the inductively-loaded VCO buffer. The peak value of CK thus exceeds V DD by 0.8V, more than doubling the sampling speed of M 1 and M 2. With large clock swings available, the current switching in pairs M 5 -M 6, M 7 -M 8 and M 9 -M 10 is accomplished by gate control rather than conventional source-coupled steering. The proposed topology offers two advantages: (1) since the tail current source is removed, M 11 -M 13 can be quite narrower, presenting a smaller capacitance to the VCO buffer; (2) since the drain currents of M 11 - M 13 are not limited by a tail current source, these transistors experience class AB switching, drawing a large current at the peak of the clock swing and providing greater voltage swings and a higher gain in the data path. The CDR circuit has been fabricated in a 0.18µm CMOS technology. Figure shows a photograph of the die, which measures 1.4mm 2. Figure depicts the CDR input and output waveforms under locked condition in response to a pseudo-random sequence of length The demultiplexed data experiences some ISI, but if further demultiplexing is included on the same chip, the ISI can be tolerated. The recovered clock, suggesting an rms jitter of 1.756ps and a peak-to-peak jitter of 9.67ps is displayed in Fig However, as shown in the inset, the oscilloscope itself suffers from rms and peak-to-peak jitters of 1.508ps and 8.89ps, respectively. Thus, the CDR output contains a jitter of 0.9ps,rms and at most 9.67ps,pp. Preliminary measurements indicate a bit error rate of 10-6, demonstrating correct data recovery and demultiplexing. The overall power consumption excluding the output buffers is 144mW from a 2V supply. Acknowledgments The authors thank Multilink, Inc., for measurement support. This work was supported by Semiconductor Research Corporation under contract number 98-HJ-640. References [1] J. Kim and B. Kim, A Low Phase-Noise CMOS LC Oscillator with a Ring Structure, ISSCC Dig. of Tech. Papers, pp , Feb [2] J. E. Rogers and J. R. Long, A 10Gb/s CDR/DEMUX with LC Delay Line VCO in 0.18µm CMOS, ISSCC Dig. of Tech. Papers, pp , Feb [3] J. D. H. Alexander, Clock Recovery from Random Binary Data, Electronics Letters, vol. 11, pp , Oct
2 ISSCC 2003 / February 11, 2003 / Salon 7 / 4:45 PM Figure : CDR architecture. Figure : (a) Multiphase oscillator, (b) modification of (a). 13 Figure : Quarter-rate phase detector. Figure : Proposed flipflop. Figure : Input and outputs of CDR circuit (horizontal scale: 50 ps/div., vertical scale 100mV/div.). Figure : Measured clock and oscilloscope jitter (horizontal scale: 5ps/div).
3 Figure : Chip micrograph. 13
4 Figure : CDR architecture.
5 Figure : (a) Multiphase oscillator, (b) modification of (a).
6 Figure : Quarter-rate phase detector.
7 Figure : Proposed flipflop.
8 Figure : Chip micrograph IEEE International Solid-State Circuits Conference /03/$ IEEE
9 Figure : Input and outputs of CDR circuit (horizontal scale: 50 ps/div., vertical scale 100mV/div.).
10 Figure : Measured clock and oscilloscope jitter (horizontal scale: 5ps/div).
ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.7
ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.7 4.7 A 2.7 Gb/s CDMA-Interconnect Transceiver Chip Set with Multi-Level Signal Data Recovery for Re-configurable VLSI Systems
A 1.62/2.7/5.4 Gbps Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.3, JUNE, 2013 http://dx.doi.org/10.5573/jsts.2013.13.3.185 A 1.62/2.7/5.4 Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO
A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Linear Phase Detector
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001 761 A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Linear Phase Detector Jafar Savoj, Student Member, IEEE, and Behzad Razavi,
A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link
A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link Kang jik Kim, Ki sang Jeong, Seong ik Cho The Department of Electronics Engineering Chonbuk National
A CMOS Clock Recovery Circuit for 2.5-Gb/s NRZ Data
432 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 3, MARCH 2001 A CMOS Clock Recovery Circuit for 2.5-Gb/s NRZ Data Seema Butala Anand and Behzad Razavi, Member, IEEE Abstract This paper describes
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 10.5 Broadband ESD Protection Circuits in CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering Department, University of
IN RECENT YEARS, the increase of data transmission over
1356 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 8, AUGUST 2004 A 3.125-Gb/s Clock and Data Recovery Circuit for the 10-Gbase-LX4 Ethernet Rong-Jyi Yang, Student Member, IEEE, Shang-Ping Chen, and
CLOCK and data recovery (CDR) circuits have found
3590 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 12, DECEMBER 2009 A 20-Gb/s Full-Rate Linear Clock and Data Recovery Circuit With Automatic Frequency Acquisition Jri Lee, Member, IEEE, and Ke-Chung
BURST-MODE communication relies on very fast acquisition
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 8, AUGUST 2005 437 Instantaneous Clockless Data Recovery and Demultiplexing Behnam Analui and Ali Hajimiri Abstract An alternative
Rong-Jyi YANG, Nonmember and Shen-Iuan LIU a), Member
1726 PAPER Special Section on Papers Selected from AP-ASIC 2004 A Fully Integrated 1.7 3.125 Gbps Clock and Data Recovery Circuit Using a Gated Frequency Detector Rong-Jyi YANG, Nonmember and Shen-Iuan
Equalization/Compensation of Transmission Media. Channel (copper or fiber)
Equalization/Compensation of Transmission Media Channel (copper or fiber) 1 Optical Receiver Block Diagram O E TIA LA EQ CDR DMUX -18 dbm 10 µa 10 mv p-p 400 mv p-p 2 Copper Cable Model Copper Cable 4-foot
Clock- and data-recovery IC with demultiplexer for a 2.5 Gb/s ATM physical layer controller
Downloaded from orbit.dtu.dk on: Jan 04, 2016 Clock and datarecovery IC with demultiplexer for a 2.5 Gb/s ATM physical layer controller Hansen, Flemming; Salama, C.A.T. Published in: Proceedings of the
Analysis and Design of Robust Multi-Gb/s Clock and Data Recovery Circuits
Analysis and Design of Robust Multi-Gb/s Clock and Data Recovery Circuits by David J. Rennie A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of
A 1.25-GHz 0.35-m Monolithic CMOS PLL Based on a Multiphase Ring Oscillator
910 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 6, JUNE 2001 A 1.25-GHz 0.35-m Monolithic CMOS PLL Based on a Multiphase Ring Oscillator Lizhong Sun and Tadeusz A. Kwasniewski, Member, IEEE Abstract
A 1.7 Gbps DLL-Based Clock Data Recovery for a Serial Display Interface in 0.35-μm CMOS
A 1.7 Gbps DLL-Based Clock Data Recovery for a Serial Display Interface in 0.35-μm CMOS Yong-Hwan Moon, Sang-Ho Kim, Tae-Ho Kim, Hyung-Min Park, and Jin-Ku Kang This paper presents a delay-locked-loop
Alpha CPU and Clock Design Evolution
Alpha CPU and Clock Design Evolution This lecture uses two papers that discuss the evolution of the Alpha CPU and clocking strategy over three CPU generations Gronowski, Paul E., et.al., High Performance
8 Gbps CMOS interface for parallel fiber-optic interconnects
8 Gbps CMOS interface for parallel fiberoptic interconnects Barton Sano, Bindu Madhavan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California
Phase Locked Loop (PLL) based Clock and Data Recovery Circuits (CDR) using Calibrated Delay Flip Flop
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research 2014 Phase Locked Loop (PLL) based Clock and Data Recovery Circuits (CDR) using Calibrated Delay Flip Flop
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
A 2 Gbps to 12 Gbps Wide-Range CDR with Automatic Frequency Band Selector
JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 10, NO. 1, MARCH 2012 67 A 2 Gbps to 12 Gbps Wide-Range CDR with Automatic Frequency Band Selector Chao-Ye Wen, Zhi-Ge Zou, Wei He, Jian-Ming Lei, and
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
EFMPlus Data Recovery Circuit with a Fast Locking Scheme for 12X Speed DVD-ROM Drivers
Journal of the Korean Physical Society, Vol. 40, No. 4, April 2002, pp. 557 561 EFMPlus Data Recovery Circuit with a Fast Locking Scheme for 12X Speed DVD-ROM Drivers Jae-Chul Lee, Jae-Shin Lee and Suki
High-Speed Electronics
High-Speed Electronics Mentor User Conference 2005 - München Dr. Alex Huber, [email protected] Zentrum für Mikroelektronik Aargau, 5210 Windisch, Switzerland www.zma.ch Page 1 Outline 1. Motivation 2. Speed
11. High-Speed Differential Interfaces in Cyclone II Devices
11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the
CLOCK AND DATA RECOVERY CIRCUITS RUIYUAN ZHANG
CLOCK AND DATA RECOVERY CIRCUITS By RUIYUAN ZHANG A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTER OF PHILOSOPHY WASHINGTON STATE UNIVERSITY School of Electrical
Design and Modelling of Clock and Data Recovery Integrated Circuit in 130 nm CMOS Technology for 10 Gb/s Serial Data Communications
Design and Modelling of Clock and Data Recovery Integrated Circuit in 130 nm CMOS Technology for 10 Gb/s Serial Data Communications A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND ELECTRICAL ENGINEERING
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV February 28, 2005 Research Objective Objective: Electronic design automation
DS2187 Receive Line Interface
Receive Line Interface www.dalsemi.com FEATURES Line interface for T1 (1.544 MHz) and CEPT (2.048 MHz) primary rate networks Extracts clock and data from twisted pair or coax Meets requirements of PUB
S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India
Power reduction on clock-tree using Energy recovery and clock gating technique S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Abstract Power consumption of
International Journal of Electronics and Computer Science Engineering 1482
International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant
A 125-MHz Mixed-Signal Echo Canceller for Gigabit Ethernet on Copper Wire
366 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 3, MARCH 2001 A 125-MHz Mixed-Signal Echo Canceller for Gigabit Ethernet on Copper Wire Tai-Cheng Lee and Behzad Razavi, Member, IEEE Abstract A discrete-time
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING A thesis work submitted to the faculty of San Francisco State University In partial fulfillment of the requirements for
Abstract. Cycle Domain Simulator for Phase-Locked Loops
Abstract Cycle Domain Simulator for Phase-Locked Loops Norman James December 1999 As computers become faster and more complex, clock synthesis becomes critical. Due to the relatively slower bus clocks
Signal Types and Terminations
Helping Customers Innovate, Improve & Grow Application Note Signal Types and Terminations Introduction., H, LV, Sinewave, Clipped Sinewave, TTL, PECL,,, CML Oscillators and frequency control devices come
Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6
Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often
A 3 V 12b 100 MS/s CMOS D/A Converter for High- Speed Communication Systems
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.3, NO., DECEMBER, 3 A 3 V b MS/s CMOS D/A Converter for High- Speed Communication Systems Min-Jung Kim, Hyuen-Hee Bae, Jin-Sik Yoon, and Seung-Hoon
Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1
ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05
A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory
Presented at the 2001 International Solid State Circuits Conference February 5, 2001 A 10,000 Frames/s 0.1 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Stuart Kleinfelder, SukHwan Lim, Xinqiao
DESIGN CHALLENGES OF TECHNOLOGY SCALING
DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE
How PLL Performances Affect Wireless Systems
May 2010 Issue: Tutorial Phase Locked Loop Systems Design for Wireless Infrastructure Applications Use of linear models of phase noise analysis in a closed loop to predict the baseline performance of various
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
Model-Based Synthesis of High- Speed Serial-Link Transmitter Designs
Model-Based Synthesis of High- Speed Serial-Link Transmitter Designs Ikchan Jang 1, Soyeon Joo 1, SoYoung Kim 1, Jintae Kim 2, 1 College of Information and Communication Engineering, Sungkyunkwan University,
Design and analysis of flip flops for low power clocking system
Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,
it4036f 120-ps Wideband Phase Delay Description Features Device Diagram Timing Diagram
Description The it436f is an ultra-wideband phase delay with an ECL topology to ensure high-speed operation that accepts either single-ended or differential data input. Its high output voltage, excellent
A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications
A -GSPS CMOS Flash A/D Converter for System-on-Chip Applications Jincheol Yoo, Kyusun Choi, and Ali Tangel Department of Computer Science & Department of Computer & Engineering Communications Engineering
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department
JITTER tolerance indicates the maximum sinusoidal jitter
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 5, MAY 2008 1217 A Jitter-Tolerance-Enhanced CDR Using a GDCO-Based Phase Detector Che-Fu Liang, Student Member, IEEE, Sy-Chyuan Hwu, and Shen-Iuan Liu,
LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators
Low Power Low Offset Voltage Quad Comparators General Description The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mv max for
VARIABLE-frequency oscillators (VFO s) phase locked
1406 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 9, SEPTEMBER 1998 A 2-V 2-GHz BJT Variable Frequency Oscillator Wei-Zen Chen and Jieh-Tsorng Wu, Member, IEEE Abstract A new LC-tuned negative-resistance
Current-Controlled Slew-Rate Adjustable Trapezoidal Waveform Generators for Low- and High-Voltage Applications
Current-Controlled Slew-Rate Adjustable Trapezoidal Waveform Generators for Low- and High-Voltage Applications Mariusz Jankowski, and Andrzej Napieralski, Senior Member, IEEE Abstract An approach to design
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
A High Frequency Divider in 0.18 um SiGe BiCMOS Technology
A High Frequency Divider in 0.18 um SiGe BiCMOS Technology Noorfazila Kamal 1, Yingbo Zhu 1, Leonard T. Hall 1, Said F. Al-Sarawi 1, Craig Burnet 2, Ian Holland 2, Adnan Khan 2, Andre Pollok 2, Justin
MONOLITHIC PHASE-LOCKED LOOPS AND CLOCK RECOVERY CIRCUITS
MONOLITHIC PHASE-LOCKED LOOPS AND CLOCK RECOVERY CIRCUITS THEORY AND DESIGN Edited by Behzad Razavi AT&T Bell Laboratories The Institute of Electrical and Electronics Engineers, Inc., New York P\WILEY-
On-chip clock error characterization for clock distribution system
On-chip clock error characterization for clock distribution system Chuan Shan, Dimitri Galayko, François Anceau Laboratoire d informatique de Paris 6 (LIP6) Université Pierre & Marie Curie (UPMC), Paris,
A Wideband mm-wave CMOS Receiver for Gb/s Communications Employing Interstage Coupled Resonators
A Wideband mm-wave CMOS Receiver for Gb/s Communications Employing Interstage Coupled Resonators Federico Vecchi 1,2, Stefano Bozzola 3, Massimo Pozzoni 4, Davide Guermandi 5, Enrico Temporiti 4, Matteo
Clocks Basics in 10 Minutes or Less. Edgar Pineda Field Applications Engineer Arrow Components Mexico
Clocks Basics in 10 Minutes or Less Edgar Pineda Field Applications Engineer Arrow Components Mexico Presentation Overview Introduction to Clocks Clock Functions Clock Parameters Common Applications Summary
A 40 Gb/s Clock and Data Recovery Module with Improved Phase-Locked Loop Circuits
A 40 Gb/s Clock and Data Recovery Module with Improved PhaseLocked Loop Circuits Hyun Park, Kang Wook Kim, SangKyu Lim, and Jesoo Ko A 40 Gb/s clock and data recovery (CDR) module for a fiberoptic receiver
PowerPC Microprocessor Clock Modes
nc. Freescale Semiconductor AN1269 (Freescale Order Number) 1/96 Application Note PowerPC Microprocessor Clock Modes The PowerPC microprocessors offer customers numerous clocking options. An internal phase-lock
Using Pre-Emphasis and Equalization with Stratix GX
Introduction White Paper Using Pre-Emphasis and Equalization with Stratix GX New high speed serial interfaces provide a major benefit to designers looking to provide greater data bandwidth across the backplanes
A true low voltage class-ab current mirror
A true low voltage class-ab current mirror A. Torralba, 1a) R. G. Carvajal, 1 M. Jiménez, 1 F. Muñoz, 1 and J. Ramírez-Angulo 2 1 Departamento de Ingeniería Electrónica, Escuela Superior de Ingenieros,
Design of a Reliable Broadband I/O Employing T-coil
198 SEOK KIM et al : DESIGN OF A RELIABLE BROADBAND I/O EMPLOYING T-COIL Design of a Reliable Broadband I/O Employing T-coil Seok Kim, Shinae Kim, Goeun Jung, Kee-Won Kwon, and Jung-Hoon Chun Abstract
Interconnection Network of OTA-based FPAA
Chapter S Interconnection Network of OTA-based FPAA 5.1 Introduction Aside from CAB components, a number of different interconnect structures have been proposed for FPAAs. The choice of an intercmmcclion
INJECTION of a periodic signal into an oscillator leads
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 9, SEPTEMBER 2004 1415 A Study of Injection Locking and Pulling in Oscillators Behzad Razavi, Fellow, IEEE Abstract Injection locking characteristics
A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION
35'th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting San Diego, December 2-4, 2003 A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION Józef Kalisz and Ryszard Szplet
Output Ripple and Noise Measurement Methods for Ericsson Power Modules
Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and
An All-Digital Phase-Locked Loop with High Resolution for Local On-Chip Clock Synthesis
An All-Digital Phase-Locked Loop with High Resolution for Local On-Chip Clock Synthesis Oliver Schrape 1, Frank Winkler 2, Steffen Zeidler 1, Markus Petri 1, Eckhard Grass 1, Ulrich Jagdhold 1 International
A Survey on Sequential Elements for Low Power Clocking System
Journal of Computer Applications ISSN: 0974 1925, Volume-5, Issue EICA2012-3, February 10, 2012 A Survey on Sequential Elements for Low Power Clocking System Bhuvana S ECE Department, Avinashilingam University
Ultra Wideband Signal Impact on IEEE802.11b Network Performance
Ultra Wideband Signal Impact on IEEE802.11b Network Performance Matti Hämäläinen 1, Jani Saloranta 1, Juha-Pekka Mäkelä 1, Tero Patana 2, Ian Oppermann 1 1 Centre for Wireless Communications (CWC), University
CMOS, the Ideal Logic Family
CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have
EECS 240 Topic 7: Current Sources
EECS 240 Analog Integrated Circuits Topic 7: Current Sources Bernhard E. Boser,Ali M. Niknejad and S.Gambini Department of Electrical Engineering and Computer Sciences Bias Current Sources Applications
Class 11: Transmission Gates, Latches
Topics: 1. Intro 2. Transmission Gate Logic Design 3. X-Gate 2-to-1 MUX 4. X-Gate XOR 5. X-Gate 8-to-1 MUX 6. X-Gate Logic Latch 7. Voltage Drop of n-ch X-Gates 8. n-ch Pass Transistors vs. CMOS X-Gates
Bridgeless PFC Implementation Using One Cycle Control Technique
Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061
AN460 Using the P82B96 for bus interface
INTEGRATED CIRCUITS 2001 Feb 14 IC12a and IC28 Data Handbook The P82B96 offers many different ways in which it can be used as a bus interface. In its simplest application it can be used as an interface
How To Test The Performance Of An Oversampling Cdr In An Fgpa, Jitter And Memory On A Black Box (Cdr) In A Test Program
74 M. KUBÍČEK, Z. KOLKA, BLIND OVERSAMPLING DATA RECOVERY WITH LOW HARDWARE COMPLEXITY Blind Oversampling Data Recovery with Low Hardware Complexity Michal KUBÍČEK, Zdeněk KOLKA Dept. of Radio Electronics,
Low latency synchronization through speculation
Low latency synchronization through speculation D.J.Kinniment, and A.V.Yakovlev School of Electrical and Electronic and Computer Engineering, University of Newcastle, NE1 7RU, UK {David.Kinniment,Alex.Yakovlev}@ncl.ac.uk
FINAL PROJECT THESIS. Ana Armendáriz Hugalde. ANALYSIS AND DESIGN OF PFDs IN CADENCE
ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF PHYSICS ELECTRONICS DEPARTMENT FINAL PROJECT THESIS Ana Armendáriz Hugalde ANALYSIS AND DESIGN OF PFDs IN CADENCE Supervisor: Dr. T. Laopoulos, professor,
Sequential Circuit Design
Sequential Circuit Design Lan-Da Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 [email protected] http://www.cs.nctu.edu.tw/~ldvan/ Outlines
Lecture 2. High-Speed I/O
Lecture 2 High-Speed I/O Mark Horowitz Computer Systems Laboratory Stanford University [email protected] Copyright 2007 by Mark Horowitz, with material from Stefanos Sidiropoulos, and Vladimir Stojanovic
Sequential 4-bit Adder Design Report
UNIVERSITY OF WATERLOO Faculty of Engineering E&CE 438: Digital Integrated Circuits Sequential 4-bit Adder Design Report Prepared by: Ian Hung (ixxxxxx), 99XXXXXX Annette Lo (axxxxxx), 99XXXXXX Pamela
W a d i a D i g i t a l
Wadia Decoding Computer Overview A Definition What is a Decoding Computer? The Wadia Decoding Computer is a small form factor digital-to-analog converter with digital pre-amplifier capabilities. It is
1997 Mixed-Signal Products SLAA011B
Application Report 1997 Mixed-Signal Products SLAA011B Contents 1 Introduction................................................................................... 1 2 Theory of an Analog Phase-Locked Loop
Bi-directional Power System for Laptop Computers
Bi-directional Power System for Laptop Computers Terry L. Cleveland Staff Applications Engineer Microchip Technology Inc. [email protected] Abstract- Today the typical laptop computer uses
A 10GB/S FULL ON-CHIP BANG-BANG CLOCK AND DATA RECOVERY SYSTEM USING AN ADAPTIVE LOOP BANDWIDTH STRATEGY. A Thesis HYUNG-JOON JEON
A 10GB/S FULL ON-CHIP BANG-BANG CLOCK AND DATA RECOVERY SYSTEM USING AN ADAPTIVE LOOP BANDWIDTH STRATEGY A Thesis by HYUNG-JOON JEON Submitted to the Office of Graduate Studies of Texas A&M University
Core Power Delivery Network Analysis of Core and Coreless Substrates in a Multilayer Organic Buildup Package
Core Power Delivery Network Analysis of Core and Coreless Substrates in a Multilayer Organic Buildup Package Ozgur Misman, Mike DeVita, Nozad Karim, Amkor Technology, AZ, USA 1900 S. Price Rd, Chandler,
Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
Programmable Single-/Dual-/Triple- Tone Gong SAE 800
Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones
A/D Converter based on Binary Search Algorithm
École Polytechnique Fédérale de Lausanne Politecnico di Torino Institut National Polytechnique de Grenoble Master s degree in Micro and Nano Technologies for Integrated Systems Master s Thesis A/D Converter
1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L HITLESS PROTECTION SWITCHING
1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L APPLICATION NOTE AN-357 1.0 INTRODUCTION In today's highly competitive market, high quality of service, QOS, and reliability is
Digital to Analog Converter. Raghu Tumati
Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................
Microcontroller-based experiments for a control systems course in electrical engineering technology
Microcontroller-based experiments for a control systems course in electrical engineering technology Albert Lozano-Nieto Penn State University, Wilkes-Barre Campus, Lehman, PA, USA E-mail: [email protected]
Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption
Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Introduction By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications
LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays
AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as
Duobinary Modulation For Optical Systems
Introduction Duobinary Modulation For Optical Systems Hari Shanar Inphi Corporation Optical systems by and large use NRZ modulation. While NRZ modulation is suitable for long haul systems in which the
