數 位 積 體 電 路 Digital Integrated Circuits
|
|
|
- Alison Norman
- 10 years ago
- Views:
Transcription
1 IEE Spring 2012 數 位 積 體 電 路 Digital Integrated Circuits Course Overview Professor Wei Hwang 黃 威 教 授 Department of Electronics Engineering National Chiao Tung University [email protected] Wei Hwang, NCTU 1 March 2012
2 Course Orientation Course Background Course Focus and Goals Course Contents Course Reference Materials Course Requirements Administrative Issues Wei Hwang, NCTU 2 March 2012
3 Course Goals Aims to learn Energy-Efficient Digital VLSI Integrated Circuits design techniques in nano-scaled CMOS technology. Special attention will devoted to the challenges facing digital circuit designers today and in the near future, particularly, the impacts of technology view: device leakage, process variability, long term reliability, and circuit design view: high performance, power dissipation constraints, SRAM stability, device variability/model accuracy and timing. Emphasis is on the circuit design, and optimization of either low power or high performance circuits for using in applications such as microprocessors, digital signal and multimedia processors, mobile communications, and memory systems. Gain basic understanding of low power system design and technology/circuit/architecture co-design techniques Become familiar with advanced IC/SoC/SiP industry and research trends Wei Hwang, NCTU 3 March 2012
4 Undergraduate Course vs Graduate Course Undergraduate DIC Course Basic transistor and circuit models Basic circuit and logic styles First experiences with design creating a solution given a number of specs Graduate DIC Course Transistor models of varying accuracy Design under constraints: power, performance, area, reliability, variability, cost Learning the more advanced design techniques Study the challenges facing design in the near future (deep nano-scale CMOS, SoC, SiP and 3D IC) Creating new solutions to challenging design problems Wei Hwang, NCTU 4 March 2012
5 Course Materials Class Lecture Notes on web-site ( Required Text Books [1] J. Rabaey et al, Digital Integrated Circuits, Prentice Hall [2] N. Weste and D. Harris, CMOS VLSI Design, 4th Edition, Addison Wesley, 2011 Reference Text Books [3] J. Rabaey, Low Power Design Essential, Springer 2009, [4] Keating and Flynn, Low Power Methodology Manual, Springer, 2007 [5] C. Piquet, low-power CMOS circuits, CRC press, [6] Wang/Calhoun/Chandrakasan, Sub-threshold Design for Ultra Low-Power Systems, Spring, 2006 [7] Narendar, Leakage in Nanometer CMOS Technologies, Springer, 2006 Other Reference Materials [8]. Related IEEE Journal and Major Conference Papers Wei Hwang, NCTU 5 March 2012
6 What will you learn? Course goals To provide a fundamental understanding of energy-efficient digital circuits and to learn how to design and implement integrated circuits and systems in nano-scale CMOS technology Topic include : CMOS nanometer transistor and their models, Circuit Characterization and performance estimation, High performance and Low Power VLSI Design, Timing and Optimizing Power design and Memory Design Course prerequisites Electronics I and II Introduction to VLSI circuits Logic Design of Digital Systems Wei Hwang, NCTU 6 March 2012
7 Topics covered in a typical DIC Course Source from : Sung-Mo Kang Yusuf Leblebici Wei Hwang, NCTU 7 March 2012
8 CMOS digital circuit types Source from : Sung-Mo Kang Yusuf Leblebici Wei Hwang, NCTU 8 March 2012
9 Wei Hwang, NCTU 9 March 2012
10 Wei Hwang, NCTU 10 March 2012
11 Wei Hwang, NCTU 11 March 2012
12 Wei Hwang, NCTU 12 March 2012
13 Special Focus in this Semester High performance and low power VLSI digital IC technology/ circuit /architecture co-design techniques Device leakage currents and Process Variations Robust Design and long term reliability Performance and Optimizing Power Timing and Signaling Strategies Low Power microprocessor /DSP cores Ultra Low-Voltage circuit for Energy Efficiency Chip Design Sub-threshold and Near-threshold logic and memory ULV DSP and Baseband ULV Biomedical Signal Processing Wei Hwang, NCTU 13 March 2012
14 Detailed Topics Nano-Scale CMOS devices and manufacturing technology Transistor Modeling Scaling and Its Limits Propagation delay, noise margins, power Combinational and sequential circuits Data path Arithmetic (Adder and Multiplier) building blocks Control Path FSM Memory Array (SRAM) design Energy-efficient digital design Low Power circuit techniques Ultra-Low Voltage (ULV) logic family Timing and Variability aware VLSI Design Design Methodologies Wei Hwang, NCTU 14 March 2012
15 The flow of circuit design procedures Source from : Sung-Mo Kang Yusuf Leblebici Wei Hwang, NCTU 15 March 2012
16 VLSI design flow in three domains Source from : Sung-Mo Kang Yusuf Leblebici Wei Hwang, NCTU 16 March 2012
17 VLSI design flow - A more simplified view Source from : Sung-Mo Kang Yusuf Leblebici Wei Hwang, NCTU 17 March 2012
18 Design Simulation Tools Cadence Widely used in industry Online tutorials and documentation Circuit implementation tools Verilog, HSPICE Performance and Power Estimation tools PrimePower,PrimeTime NanoSim Synthesis tool DesiginVersion Technology UMC 90 nm CMOS Technology Wei Hwang, NCTU 18 March 2012
19 Grading Policy 1 term-long DIC Design Projects Phase 1: Proposal (by week 3) Phase 2: Study and survey (presentation by week 7) Phase 3: Design results (presentation and report by final week) Project Presentations & Reports (IEEE format) last week of classes 5 (+/-) Home Problem Sets 20% Midterm Exam. (Phase 2) 30% Final Examination (Phase 3) 50% % Wei Hwang, NCTU 19 March 2012
EE411: Introduction to VLSI Design Course Syllabus
: Introduction to Course Syllabus Dr. Mohammad H. Awedh Spring 2008 Course Overview This is an introductory course which covers basic theories and techniques of digital VLSI design in CMOS technology.
Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design
Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design Department of Electrical and Computer Engineering Overview The VLSI Design program is part of two tracks in the department:
Digital Integrated Circuit (IC) Layout and Design
Digital Integrated Circuit (IC) Layout and Design! EE 134 Winter 05 " Lecture Tu & Thurs. 9:40 11am ENGR2 142 " 2 Lab sections M 2:10pm 5pm ENGR2 128 F 11:10am 2pm ENGR2 128 " NO LAB THIS WEEK " FIRST
ECE 410: VLSI Design Course Introduction
ECE 410: VLSI Design Course Introduction Professor Andrew Mason Michigan State University Spring 2008 ECE 410, Prof. A. Mason Lecture Notes Page i.1 Age of electronics microcontrollers, DSPs, and other
Systems on Chip Design
Systems on Chip Design College: Engineering Department: Electrical First: Course Definition, a Summary: 1 Course Code: EE 19 Units: 3 credit hrs 3 Level: 3 rd 4 Prerequisite: Basic knowledge of microprocessor/microcontroller
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department
SRAM Scaling Limit: Its Circuit & Architecture Solutions
SRAM Scaling Limit: Its Circuit & Architecture Solutions Nam Sung Kim, Ph.D. Assistant Professor Department of Electrical and Computer Engineering University of Wisconsin - Madison SRAM VCC min Challenges
ECE 156A - Syllabus. Lecture 0 ECE 156A 1
ECE 156A - Syllabus Lecture 0 ECE 156A 1 Description Introduction to HDL basic elements, HDL simulation concepts, HDL concurrent statements with examples and applications, writing HDL for synthesis, and
International Journal of Electronics and Computer Science Engineering 1482
International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant
NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6
E.T.S.E.T.B. MSc in ICT FINAL EXAM VLSI Digital Design Spring Course 2005-2006 June 6, 2006 Score publication date: June 19, 2006 Exam review request deadline: June 22, 2006 Academic consultancy: June
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
Area 3: Analog and Digital Electronics. D.A. Johns
Area 3: Analog and Digital Electronics D.A. Johns 1 1970 2012 Tech Advancements Everything but Electronics: Roughly factor of 2 improvement Cars and airplanes: 70% more fuel efficient Materials: up to
Agenda. Michele Taliercio, Il circuito Integrato, Novembre 2001
Agenda Introduzione Il mercato Dal circuito integrato al System on a Chip (SoC) La progettazione di un SoC La tecnologia Una fabbrica di circuiti integrati 28 How to handle complexity G The engineering
Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic
Aims and Objectives E 3.05 Digital System Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: [email protected] How to go
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,
Graduate Option in Electronics Department of Electrical and Computer Engineering University of Puerto Rico at Mayagüez
Introduction Graduate Option in Electronics Department of Electrical and Computer Engineering University of Puerto Rico at Mayagüez This document defines the Electronics Option in the Electrical Engineering
DESIGN CHALLENGES OF TECHNOLOGY SCALING
DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE
Digital Systems Design! Lecture 1 - Introduction!!
ECE 3401! Digital Systems Design! Lecture 1 - Introduction!! Course Basics Classes: Tu/Th 11-12:15, ITE 127 Instructor Mohammad Tehranipoor Office hours: T 1-2pm, or upon appointments @ ITE 441 Email:
Intel Labs at ISSCC 2012. Copyright Intel Corporation 2012
Intel Labs at ISSCC 2012 Copyright Intel Corporation 2012 Intel Labs ISSCC 2012 Highlights 1. Efficient Computing Research: Making the most of every milliwatt to make computing greener and more scalable
Undergraduate Major in Computer Science and Engineering
University of California, Irvine 2015-2016 1 Undergraduate Major in Computer Science and Engineering On This Page: Overview Admissions Requirements for the B.S. in Computer Science and Engineering Sample
EEC 119B Spring 2014 Final Project: System-On-Chip Module
EEC 119B Spring 2014 Final Project: System-On-Chip Module Dept. of Electrical and Computer Engineering University of California, Davis Issued: March 14, 2014 Subject to Revision Final Report Due: June
Power Reduction Techniques in the SoC Clock Network. Clock Power
Power Reduction Techniques in the SoC Network Low Power Design for SoCs ASIC Tutorial SoC.1 Power Why clock power is important/large» Generally the signal with the highest frequency» Typically drives a
MAJORS: Computer Engineering, Computer Science, Electrical Engineering
Qualcomm MAJORS: Computer Engineering, Computer Science, Electrical Engineering TITLE: Intern - Software Engineer - Summer 2012 JOB DESCRIPTION: G1889814 Job Title Intern - Software Engineer - Summer 2012
Design and analysis of flip flops for low power clocking system
Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,
EEM870 Embedded System and Experiment Lecture 1: SoC Design Overview
EEM870 Embedded System and Experiment Lecture 1: SoC Design Overview Wen-Yen Lin, Ph.D. Department of Electrical Engineering Chang Gung University Email: [email protected] Feb. 2013 Course Overview
ANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
FACULTY OF POSTGRADUATESTUDIES Master of Science in Computer Engineering The Future University
FACULTY OF POSTGRADUATESTUDIES Master of Science in Computer Engineering The Future University 2 Table of Contents: Page I. Introduction 1 II. Philosophy of the Program 2 III. Aims of the Program 2 IV.
Intel s Revolutionary 22 nm Transistor Technology
Intel s Revolutionary 22 nm Transistor Technology Mark Bohr Intel Senior Fellow Kaizad Mistry 22 nm Program Manager May, 2011 1 Key Messages Intel is introducing revolutionary Tri-Gate transistors on its
INF4420 Introduction
INF4420 Introduction Spring 2012 Jørgen Andreas Michaelsen ([email protected]) Outline Practical information about the course. Context (placing what we will learn in a larger context) Outline of the
CSEN301 Embedded Systems Trimester 1
Victoria University of Wellington (VUW) course offering for NZ-EU Joint Mobility Project Novel Sensing Technologies and Instrumentation in Environmental Climate Change Monitoring 1. General The Victoria
imtech Curriculum Presentation
imtech Curriculum Presentation Effective from Batch 2015 Onwards April, 2015 Course Structure Every course has a fixed number of credits associated with it (e.g., 4 credits) One has to earn 200 credits
路 論 Chapter 15 System-Level Physical Design
Introduction to VLSI Circuits and Systems 路 論 Chapter 15 System-Level Physical Design Dept. of Electronic Engineering National Chin-Yi University of Technology Fall 2007 Outline Clocked Flip-flops CMOS
ESE 50 ISE 10 ESE - 50 20 - - 4 2 ISE -
Second Year B.Tech. Program in Electronics Semester I 1MA 203 201 202 203 204 252 253 Applied Mathematics III Circuits Theory L T P Credits Scheme Theory Marks Practical Marks -- Data Structures and Algorithms
Leakage Power Reduction Using Sleepy Stack Power Gating Technique
Leakage Power Reduction Using Sleepy Stack Power Gating Technique M.Lavanya, P.Anitha M.E Student [Applied Electronics], Dept. of ECE, Kingston Engineering College, Vellore, Tamil Nadu, India Assistant
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009
Academic Course Description
Academic Course Description Course (catalog) description: IP cores and application specific design is becoming the order of the day. Because of usefulness of this for both VLSI and embedded students this
A New Low Power Dynamic Full Adder Cell Based on Majority Function
World Applied Sciences Journal 4 (1): 133-141, 2008 ISSN 1818-4952 IDOSI Publications, 2008 A New Low Power Dynamic Full Adder Cell Based on Majority Function 1 Vahid Foroutan, 2 Keivan Navi and 1 Majid
System on Chip Design. Michael Nydegger
Short Questions, 26. February 2015 What is meant by the term n-well process? What does this mean for the n-type MOSFETs in your design? What is the meaning of the threshold voltage (practically)? What
Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems
Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College [email protected] Based on EE271 developed by Mark Horowitz, Stanford University MAH
At-Speed Test Considering Deep Submicron Effects. D. M. H. Walker Dept. of Computer Science Texas A&M University [email protected].
At-Speed Test Considering Deep Submicron Effects D. M. H. Walker Dept. of Computer Science Teas A&M University [email protected] Integrated Circuit Testing IC Test What s Going On Test Generation Test
Digital Systems. Syllabus 8/18/2010 1
Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,
University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54
Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING Course Title VLSI DESIGN Course Code 57035 Regulation R09 COURSE DESCRIPTION Course Structure
NATIONAL SUN YAT-SEN UNIVERSITY
NATIONAL SUN YAT-SEN UNIVERSITY Department of Electrical Engineering (Master s Degree, Doctoral Program Course, International Master's Program in Electric Power Engineering) Course Structure Course Structures
How To Design A Single Chip System Bus (Amba) For A Single Threaded Microprocessor (Mma) (I386) (Mmb) (Microprocessor) (Ai) (Bower) (Dmi) (Dual
Architetture di bus per System-On On-Chip Massimo Bocchi Corso di Architettura dei Sistemi Integrati A.A. 2002/2003 System-on on-chip motivations 400 300 200 100 0 19971999 2001 2003 2005 2007 2009 Transistors
EE361: Digital Computer Organization Course Syllabus
EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices)
A Mixed-Signal System-on-Chip Audio Decoder Design for Education
A Mixed-Signal System-on-Chip Audio Decoder Design for Education R. Koenig, A. Thomas, M. Kuehnle, J. Becker, E.Crocoll, M. Siegel @itiv.uni-karlsruhe.de @ims.uni-karlsruhe.de
Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells
Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells Sushil B. Bhaisare 1, Sonalee P. Suryawanshi 2, Sagar P. Soitkar 3 1 Lecturer in Electronics Department, Nagpur University, G.H.R.I.E.T.W. Nagpur,
Test Solution for Data Retention Faults in Low-Power SRAMs
Test Solution for Data Retention Faults in Low-Power SRAMs L. B. Zordan 1 A. Bosio 1 L. Dilillo 1 P. Girard 1 A. Todri 1 A. Virazel 1 N. Badereddine 2 1 LIRMM - Université Montpellier II / CNRS 161, rue
Innovative improvement of fundamental metrics including power dissipation and efficiency of the ALU system
Innovative improvement of fundamental metrics including power dissipation and efficiency of the ALU system Joseph LaBauve Department of Electrical and Computer Engineering University of Central Florida
Verification & Design Techniques Used in a Graduate Level VHDL Course
Verification & Design Techniques Used in a Graduate Level VHDL Course Prof. Swati Agrawal, BE, MS (SUNY, Buffalo, NY USA) 1 Associate Professor, Department of Electronics & Telecommunication, Bhilai Institute
Course Requirements & Evaluation Methods
Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:
A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online
A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online Dr. Brock J. LaMeres Assistant Professor Electrical & Computer Engineering Dept Montana
CHARGE pumps are the circuits that used to generate dc
INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JUNE 2011 27 A Charge Pump Circuit by using Voltage-Doubler as Clock Scheme Wen Chang Huang, Jin Chang Cheng,
Design of Energy Efficient Low Power Full Adder using Supply Voltage Gating
Design of Energy Efficient Low Power Full Adder using Supply Voltage Gating S.Nandhini 1, T.G.Dhaarani 2, P.Kokila 3, P.Premkumar 4 Assistant Professor, Dept. of ECE, Nandha Engineering College, Erode,
Course Semester Language of Code InstructionDegree College Department Major/Elective Credit Course Type Evaluation College of System.
Course Semester of Code InstructionDegree College Department Major/Elective Credit Course Type Evaluation System Spring English CSE2003 Undergraduate Algorithms Spring English CSE3002 Undergraduate Algorithms
The Emerging Trends in Electrical and Computer Engineering
18-200 Fall 2006 The Emerging Trends in Electrical and Computer Engineering Hosting instructor: Prof. Jimmy Zhu; Time: Thursdays 3:30-4:20pm; Location: DH 2210 Date Lecturer Lecture Contents L01 08/31
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 Freshman Year ENG 1003 Composition I 3 ENG 1013 Composition II 3 ENGR 1402 Concepts of Engineering 2 PHYS 2034 University Physics
Digital VLSI Systems Design Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras.
Digital VLSI Systems Design Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 1 Introduction to VLSI Design Hello Everyone. In this lecture, we are
NEW YORK CITY COLLEGE OF TECHNOLOGY/CUNY Computer Systems Technology Department
NEW YORK CITY COLLEGE OF TECHNOLOGY/CUNY Computer Systems Technology Department COURSE: CST1201 Programming Fundamentals (2 class hours, 2 lab hours, 3 credits) Course Description: This course is an intensive
Chapter 2 Heterogeneous Multicore Architecture
Chapter 2 Heterogeneous Multicore Architecture 2.1 Architecture Model In order to satisfy the high-performance and low-power requirements for advanced embedded systems with greater fl exibility, it is
S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India
Power reduction on clock-tree using Energy recovery and clock gating technique S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Abstract Power consumption of
Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1
ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05
Two-Phase Clocking Scheme for Low-Power and High- Speed VLSI
International Journal of Advances in Engineering Science and Technology 225 www.sestindia.org/volume-ijaest/ and www.ijaestonline.com ISSN: 2319-1120 Two-Phase Clocking Scheme for Low-Power and High- Speed
Lesson 7: SYSTEM-ON. SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY. Chapter-1L07: "Embedded Systems - ", Raj Kamal, Publs.: McGraw-Hill Education
Lesson 7: SYSTEM-ON ON-CHIP (SoC( SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY 1 VLSI chip Integration of high-level components Possess gate-level sophistication in circuits above that of the counter,
Floating Point Fused Add-Subtract and Fused Dot-Product Units
Floating Point Fused Add-Subtract and Fused Dot-Product Units S. Kishor [1], S. P. Prakash [2] PG Scholar (VLSI DESIGN), Department of ECE Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu,
Latch Timing Parameters. Flip-flop Timing Parameters. Typical Clock System. Clocking Overhead
Clock - key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where
Designing a System-on-Chip (SoC) with an ARM Cortex -M Processor
Designing a System-on-Chip (SoC) with an ARM Cortex -M Processor A Starter Guide Joseph Yiu November 2014 version 1.02 27 Nov 2014 1 - Background Since the ARM Cortex -M0 Processor was released a few years
ELEC 5260/6260/6266 Embedded Computing Systems
ELEC 5260/6260/6266 Embedded Computing Systems Spring 2016 Victor P. Nelson Text: Computers as Components, 3 rd Edition Prof. Marilyn Wolf (Georgia Tech) Course Topics Embedded system design & modeling
ECE 5745 Complex Digital ASIC Design, Spring 2016. Course Syllabus
1. Course Information School of Electrical and Computer Engineering Cornell University revision: 2016-01-28-10-32 Prereqs Instructor Admin. Assistant Graduate TA ECE 4750 Computer Architecture Prof. Christopher
HIGH SPEED AREA EFFICIENT 1-BIT HYBRID FULL ADDER
HIGH SPEED AREA EFFICIENT 1-BIT HYBRID FULL ADDER Sachin Kumar *1, Aman Kumar #2, Puneet Bansal #3 * Department of Electronic Science, Kurukshetra University, Kurukshetra, Haryana, India # University Institute
Embedded Systems Engineering Certificate Program
Engineering Programs Embedded Systems Engineering Certificate Program Accelerate Your Career extension.uci.edu/embedded University of California, Irvine Extension s professional certificate and specialized
Lecture 7: Clocking of VLSI Systems
Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis
Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview
Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview Prof. Charles Zukowski ([email protected]) Interim Chair, September 3, 2015 MS Requirements: Overview (see bulletin for
High Speed and Efficient 4-Tap FIR Filter Design Using Modified ETA and Multipliers
High Speed and Efficient 4-Tap FIR Filter Design Using Modified ETA and Multipliers Mehta Shantanu Sheetal #1, Vigneswaran T. #2 # School of Electronics Engineering, VIT University Chennai, Tamil Nadu,
True Single Phase Clocking Flip-Flop Design using Multi Threshold CMOS Technique
True Single Phase Clocking Flip-Flop Design using Multi Threshold CMOS Technique Priyanka Sharma ME (ECE) Student NITTTR Chandigarh Rajesh Mehra Associate Professor Department of ECE NITTTR Chandigarh
«A 32-bit DSP Ultra Low Power accelerator»
«A 32-bit DSP Ultra Low Power accelerator» E. Beigné [email protected] CEA LETI MINATEC, Grenoble, France www.cea.fr Low power SOC challenges : Energy Efficiency Fine-Grain AVFS solutions FDSOI technology
EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 16 Timing and Clock Issues
EE 459/500 HDL Based Digital Design with Programmable Logic Lecture 16 Timing and Clock Issues 1 Overview Sequential system timing requirements Impact of clock skew on timing Impact of clock jitter on
SILA Sistema Integrato di Laboratori per l Ambiente LNM. NANOELECTRONICS AND MICROSYSTEMS LABORATORY Coordinator: Prof. Giuseppe Cocorullo
SILA Sistema Integrato di Laboratori per l Ambiente *+ LNM NANOELECTRONICS AND MICROSYSTEMS LABORATORY Coordinator: Prof. Giuseppe Cocorullo 0 The Nanoelectronics and Microsystems Laboratory (NML) was
Lecture Overview. Object-Oriented Software Engineering: Using UML, Patterns, Java, and Software Development Processes. Prof. Dr.
COM 401 Software Engineering Lecture Overview Object-Oriented Software Engineering: Using UML, Patterns, Java, and Software Development Processes Prof. Dr. Halûk Gümüşkaya [email protected]
School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg ELEN3024 Communication Fundamentals
School Information of Electrical and Engineering School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg ELEN3024 Communication Fundamentals Course Brief and Outline:
Nanocomputer & Architecture
Nanocomputer & Architecture Yingjie Wei Western Michigan University Department of Computer Science CS 603 - Dr. Elise dedonckor Febrary 4 th, 2004 Nanocomputer Architecture Contents Overview of Nanotechnology
Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: -
Module name: Digital Electronics and Programmable Devices Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6 Faculty of: Computer Science, Electronics and Telecommunications Field of study: Electronics
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course
A high Speed 8 Transistor Full Adder Design using Novel 3 Transistor XOR Gates
A high Speed 8 Transistor Full Adder Design using Novel 3 Transistor XOR Gates Shubhajit Roy Chowdhury, Aritra Banerjee, Aniruddha Roy, Hiranmay Saha Abstract The paper proposes the novel design of a 3T
Alpha CPU and Clock Design Evolution
Alpha CPU and Clock Design Evolution This lecture uses two papers that discuss the evolution of the Alpha CPU and clocking strategy over three CPU generations Gronowski, Paul E., et.al., High Performance
A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem
A Novel Low Power, High Speed 4 Transistor CMOS Full Adder Cell with 5% Improvement in Threshold Loss Problem T. Vigneswaran, B. Mukundhan, and P. Subbarami Reddy Abstract Full adders are important components
A First Course in Digital Design Using VHDL and Programmable Logic
A First Course in Digital Design Using VHDL and Programmable Logic Shawki Areibi Abstract Present industry practice has created a high demand for systems designers with knowledge and experience in using
High Speed Gate Level Synchronous Full Adder Designs
High Speed Gate Level Synchronous Full Adder Designs PADMANABHAN BALASUBRAMANIAN and NIKOS E. MASTORAKIS School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UNITED
