Digital Controller for Pedestrian Crossing and Traffic Lights
|
|
|
- Sybil Fitzgerald
- 9 years ago
- Views:
Transcription
1 Project Objective: - To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on next-state techniques using D-type flip-flops and multiplexers Specification: - 1) The lights will show red to pedestrians and green to traffic in the idle state ) When the pedestrian wishes to use the crossing he/she presses a button, the traffic lights turn amber and the pedestrian lights remain red 3) After four seconds, the traffic lights turn from amber to red, and the pedestrian lights remain red 4) After two seconds, the traffic lights remain red, while the pedestrian lights turn green and a buzzer is sounded 5) After eight seconds, the pedestrian lights turn from green to amber and to buzzer changes pitch 6) After four seconds the pedestrian lights change from amber to red, the buzzer becomes silent, and at this stage, the traffic lights still remain red 7) After a further two seconds, the system is returned to the idle state once again, having the traffic lights green and the pedestrian lights red Parts used for project: - uite a number of parts had to be used for this project; each traffic light and pedestrian light needs a 16 to 1 multiplexer The counter logic needs 4 multiplexers and 4 D-type flip-flops The clear (or reset) function for this controller also needs a multiplexer Due to the fact that the multiplexers used are 16 to 1 multiplexers, every output from each multiplexer needs to go through an inverter since 7415 s invert their output The switching circuit also needs a D-type flip-flop and a +5 DC power supply and due to the inflexibility of Pspice, two switches had to be introduced into the switching circuit one to turn on at a certain time and one to turn off shortly after that interval Below shows the response expected for the controller (P = switch) if the switch was pressed after 45 seconds, the buzzers are excluded from this and will be explained at the end of this report Expected Responses for each Output (excluding Buzzers) Figure 1: Page - 1 -
2 Initial Flowchart for Pedestrian / Traffic Lights Controller State (Idle) Traffic:Amber Ped: Red Switch = 1? State 1 Traffic: Amber Pedestrian: Red State Pedestrian: Red State 3 Ped: Green BUZZER / State 4 Ped: Amber BUZZER / 1 State 5 Pedestrian: Red BUZZER OFF Page - -
3 This flowchart is the ideal flowchart for the sequence needed, but due to the limitations of being only allowed to use a limited amount of components a revised flowchart had to be introduced A number of parameters had to be considered: 1) Only a simple clock pulse can be used, therefore more states had to be introduced to accommodate time delays (by repeating functions for a set number of clock pulses) ) Another additional state had to be introduced to reset the counter logic back to (and also to reset the switch to ) after all traffic light states have been executed 3) The simple clock pulse is set to give a positive edge triggered after every seconds so as to half the number of states needed for this operation 4) When the switch is pressed, the state one will not be activated until the next positive edge is triggered from the clock pulse, this delay could vary from a microsecond up to nearly two seconds 5) The buzzer cannot be simulated in Pspice so only the input for the buzzer can be simulated, this clearly shows when the buzzer is activated and at what level 6) Once the switch is activated, the switch is permanently switched on until the switch s D-type flip-flop is reset; no matter how many times the switch is pressed and depressed With all these limitations and specifications in mind the revised flowchart for this controller was constructed Page - 3 -
4 Revised Flowchart for Pedestrian / Traffic Lights Controller State (Idle) Traffic:Amber Ped: Red Switch = 1? State 1- Traffic: Amber Pedestrian: Red State 3 Pedestrian: Red State 4-7 Ped: Green BUZZER / State 8-9 Ped: Amber BUZZER / 1 State 11 Reset State 1 Pedestrian: Red BUZZER OFF Now that the flowchart has been constructed, the truth table can be drawn up Page - 4 -
5 Clk State Present State Next State Traffic Pedestrian Swi Reset Buzzer 3 D 3 D D 1 D G A R G A R (P) P X X X X 1 ½ X 1 ½ X 1 ½ X 1 ½ X X X X 4 Unused States: X X X X From this truth table, maps were obtained for each counter multiplexer, each traffic light, each pedestrian light, and for reset () (1) (1) () (1) (1) () (1) (1) () 1 (1) (1) 3 Page - 5 -
6 () (1) (1) () 1 1 (1) (1) () (1) (1) () P 1 (1) (1) Karnaugh Maps For Controller () (1) (1) () 1 (1) 3 3 (1) 3 3 () (1) (1) () (1) (1) () (1) (1) () 1 1 (1) 3 3 (1) 3 3 () (1) (1) () (1) 3 3 (1) Page - 6 -
7 () (1) (1) () 1 (1) (1) () (1) (1) () (1) (1) () (1) (1) () (1) (1) Page - 7 -
8 Method of Transforming Karnaugh Maps into Multiplexers Transforming the truth table to actual logic is simplified using Karnaugh Maps and by setting each input of the multiplexer to the same value of the corresponding number on the Karnaugh map Also the multiplexers are set the active high The inputs of each multiplexer correspond to the outputs of the counter logic D-types In this example, D3 from the counter logic is used 3 1 () (1) (1) 1 () Karnagh Map for D3 (1) (1) Minterm Key 1 1 Figure : D3 multiplexer () (1) (1) () (1) (1) This method was used for each multiplexer in the controller Page - 8 -
9 Now that all the Karnaugh Maps and the truth tables are written up all that has to be done is the simulation of the actual controller First of all the counter logic had to be designed: Figure 3: Counter Logic Schematic Figure 4: Inverting Multiplexer Outputs and Reset Logic Page - 9 -
10 The counter logic above uses logic hi s and logic low s to represent s and 1 s The multiplexers are set to active high to give normal operation and the d-type flip-flops are pre-set to +5 volts The multiplexer s outputs must be inverted since the device inverts the output Below shows the counter output response Note that the counter is reset at seconds For the moment assume that P = 1 (since we are only analysing counter logic) and that the clock is a simple pulse Figure 5: Counter Logic Response Now that the counter logic is operational, the traffic light logic is constructed Figure 6: Traffic light logic schematic As with before, the multiplexer output is inverted and the multiplexers are set to active high These multiplexers are set in accordance with the maps for each output The value for P is set equal to hi for this response since the switch is not considered yet Page - 1 -
11 Figure 7: Traffic light logic response The traffic lights start with the initial condition of having the traffic lights green and the pedestrian lights red, and on the first positive edge of the clock pulse state one is initiated The logic is initiated step by step by the counter input to each of the multiplexers ( n ) Next the actual switch to enable to activation of the sequence is designed A de-bouncing switch is constructed using a d-type flip flop This flip flop is made high as soon as the switch is pressed and stays high until it is reset, no matter if the switch is pressed repeatedly or not The switch is simulated by switches in Pspice, one switch is open until 45 seconds and the other switch is closed until 46 seconds, therefore simulating a switched being pressed at 45 seconds and being held for 1 second Also included in the diagram below is the clock pulse logic, which is fed to the counter d-type, flip-flops Figure 8: Switch and Clock Logic The switch works well, but it should be noted that the counter logic will not change immediately when the d-type flip flop is set high, but until the next positive edge from the Page
12 clock pulse is generated, this is demonstrated below Also shown below is that the counter logic is only activated when the switch is pressed, and is in state at all other times Figure 9: Finally, the buzzers have to be accounted for aswell Counter Logic Response Figure 1: Buzzer Logic The power for the buzzers was simply taken from the inputs of each of the pedestrian traffic lights that are active when the buzzers are on For example, the buzzer is sounded at just under 15 volts when the pedestrian green light is on, when the buzzer is sounded at just over 3 volts the amber pedestrian light is on, this buzzer is pitched differently so as to alert the pedestrians to the change in colour of lights and to urge them to get off the street Page - 1 -
13 Figure 11: Buzzer Response Complete Traffic / Pedestrian Light Control System Conclusion: This controller works very well and efficiently The only problem from the design of the controller is that the controller doesn t immediately start the cycle when the switch is closed, but initiates it at the first positive edge pulse from the clock Apart from this discrepancy, the rest of the circuit works efficiently and safely The safety aspect of this controller is essential as it deals with people s safety crossing the road There are eleven set states in this controller, but due to the extra possible states provided by the multiplexers, the extra states should be defined so as to make the pedestrians safe in the event of the controller going out of order and entering an unused state So in this controller the unused states are set to make all lights (pedestrian & traffic) red, and the counter logic should return the unused state back to state How this controller could be improved The specification for this controller makes no restrictions on the type of multiplexer used, but practically, for the construction of the actual controller the multiplexer used should have as little inputs as possible so as to avoid problems with the making of the controller Below describes how to reduce multiplexer type from 16 to 1, to an 8 to 1 multiplexer Page
14 Traffic Amber 1 1 Reduced Traffic Amber Unused States: The reduced multiplexer above is for the Traffic Amber Logic, this reduction can be done for each of the traffic and pedestrian multiplexers, but not for the counter logic which have to be left as 16 to 1 multiplexers and are used because changes from to 1 in for the two states covered by it s reduction and Also, the least significant select input ( for the inverse of these values ) had to be left out due to the halving of the possible states for the multiplexer, but this does not affect the operation of the controller Page
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
CHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
Flip-Flops and Sequential Circuit Design
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
Lesson 12 Sequential Circuits: Flip-Flops
Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage
Asynchronous Counters. Asynchronous Counters
Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter
Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012
Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR
Traffic Light Controller. Digital Systems Design. Dr. Ted Shaneyfelt
Traffic Light Controller Digital Systems Design Dr. Ted Shaneyfelt December 3, 2008 Table of Contents I. Introduction 3 A. Problem Statement 3 B. Illustration 3 C. State Machine 3 II. Procedure 4 A. State
To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
CHAPTER 11 LATCHES AND FLIP-FLOPS
CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
CS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department
Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and
Module 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : [email protected] Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
Digital Logic Design Sequential circuits
Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: [email protected] Dr. Eng. Rania.Swief E-mail: [email protected] Dr. Eng. Ahmed H. Madian Registers An n-bit register
Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.
ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
Wiki Lab Book. This week is practice for wiki usage during the project.
Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
PURDUE UNIVERSITY NORTH CENTRAL
ECET 109/159 PURDUE UNIVERSITY NORTH CENTRAL Electrical and Computer Engineering Technology Department All Semesters ECET Lab Report Format and Guidelines I. Introduction. Part of being technically educated
Chapter 9 Latches, Flip-Flops, and Timers
ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary
SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.
Contents COUNTER. Unit III- Counters
COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo
The 104 Duke_ACC Machine
The 104 Duke_ACC Machine The goal of the next two lessons is to design and simulate a simple accumulator-based processor. The specifications for this processor and some of the QuartusII design components
WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
Counters & Shift Registers Chapter 8 of R.P Jain
Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without
Engr354: Digital Logic Circuits
Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;
Lecture-3 MEMORY: Development of Memory:
Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,
Combinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
Chapter 8. Sequential Circuits for Registers and Counters
Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential
Memory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation
Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before
EXPERIMENT 8. Flip-Flops and Sequential Circuits
EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.
Fig 3. PLC Relay Output
1. Function of a PLC PLC Basics A PLC is a microprocessor-based controller with multiple inputs and outputs. It uses a programmable memory to store instructions and carry out functions to control machines
DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.
DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting
Fig1-1 2-bit asynchronous counter
Digital electronics 1-Sequential circuit counters Such a group of flip- flops is a counter. The number of flip-flops used and the way in which they are connected determine the number of states and also
Master/Slave Flip Flops
Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop
Asynchronous counters, except for the first block, work independently from a system clock.
Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1
Chapter 5. Sequential Logic
Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends
DM7474 Dual Positive-Edge-Triggered D-Type Flip-Flops with Preset, Clear and Complementary Outputs
DM7474 Dual Positive-Edge-Triggered D-Type Flip-Flops with Preset, Clear and Complementary Outputs General Description This device contains two independent positive-edge-triggered D-type flip-flops with
BUILD YOUR OWN RC SWITCH (Issue 3)
PART ONE SINGLE ELECTRONIC RC SWITCH Fancy switching the lights using your radio, then here is a circuit you may consider building. It only uses one IC and seven other components for a single switch and
Cascaded Counters. Page 1 BYU
Cascaded Counters Page 1 Mod-N Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A mod-n counter has N states Counts from 0 to N-1 then rolls
Copyright Peter R. Rony 2009. All rights reserved.
Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
The components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC
ECE380 Digital Logic
ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during
State Machines in VHDL
State Machines in VHDL Implementing state machines in VHDL is fun and easy provided you stick to some fairly well established forms. These styles for state machine coding given here is not intended to
Design: a mod-8 Counter
Design: a mod-8 Counter A mod-8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7. So, the stored value follows
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME
The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift
TRILOGI 5.3 PLC Ladder Diagram Programmer and Simulator. A tutorial prepared for IE 575 by Dr. T.C. Chang. Use On-Line Help
TRILOGI 5.3 PLC Ladder Diagram Programmer and Simulator A tutorial prepared for IE 575 by Dr. T.C. Chang 1 Use On-Line Help Use on-line help for program editing and TBasic function definitions. 2 Open
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES [email protected] BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann
Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users
Operating Manual Ver.1.1
4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-
Digital Logic Elements, Clock, and Memory Elements
Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set
SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks
UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very
Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
DM74LS169A Synchronous 4-Bit Up/Down Binary Counter
Synchronous 4-Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation
Electronics Merit Badge Class 3. 1/30/2014 Electronics Merit Badge Class 3 1
Electronics Merit Badge Class 3 1/30/2014 Electronics Merit Badge Class 3 1 Decimal Base 10 In base 10, there are 10 unique digits (0-9). When writing large numbers (more that 1 digit), each column represents
GLOLAB Two Wire Stepper Motor Positioner
Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The Input-Control/Output-Display
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
[ 4 ] Logic Symbols and Truth Table
[ 4 ] Logic s and Truth Table 1. How to Read MIL-Type Logic s Table 1.1 shows the MIL-type logic symbols used for high-speed CMO ICs. This logic chart is based on MIL-TD-806. The clocked inverter and transmission
BOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
Systems I: Computer Organization and Architecture
Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store
DEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453
Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts)
Dr. Greg Tumbush, [email protected] Lab #5: Design Example: Keypad Scanner and Encoder - Part 1 (120 pts) Objective The objective of lab assignments 5 through 9 are to systematically design and implement
BLOCK OCCUPANCY DETECTOR WITH SEMAPHORE OPERATION BOD1/DAP4-BR
BLOCK OCCUPANCY DETECTOR WITH SEMAPHORE OPERATION BOD1/DAP4-BR This Block Occupancy Detector recognises the current drawn by moving trains within a block, and can operate a number of built-in programs
2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.
2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,
NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.
PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS The SN54/74LS90 is a synchronous UP/DOWN BCD Decade (842) Counter and the SN54/74LS9 is a synchronous UP/DOWN Modulo-6
Programming Timers CHAPTER 4-1 GOALS AND OBJECTIVES 4-2 MECHANICAL TIMING RELAYS
CHAPTER 4 4-1 GOALS AND OBJECTIVES There are two principal goals of this chapter. The first goal is to provide the student with information on the operation and functions of hardware timers both mechanical
Sequential Logic: Clocks, Registers, etc.
ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design
7. Latches and Flip-Flops
Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The
HAM841K ALARM CONTROL PANEL FOR COMMERCIAL AND RESIDENTIAL SECURITY SYSTEMS
ALARM CONTROL PANEL FOR COMMERCIAL AND RESIDENTIAL SECURITY SYSTEMS USER MANUAL USER MANUAL ALARM CONTROL PANEL FOR COMMERCIAL AND RESIDENTIAL SECURITY SYSTEMS INTRODUCTION The (HA-841K) is a complete
8-ch RAID0 Design by using SATA Host IP Manual Rev1.0 9-Jun-15
8-ch RAID0 Design by using SATA Host IP Manual Rev1.0 9-Jun-15 1 Overview RAID0 system uses multiple storages to extend total storage capacity and increase write/read performance to be N times. Assumed
Karnaugh Maps (K-map) Alternate representation of a truth table
Karnaugh Maps (K-map) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization
Flip-Flops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
Set-Reset (SR) Latch
et-eset () Latch Asynchronous Level sensitive cross-coupled Nor gates active high inputs (only one can be active) + + Function 0 0 0 1 0 1 eset 1 0 1 0 et 1 1 0-? 0-? Indeterminate cross-coupled Nand gates
Layout of Multiple Cells
Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed
