Cascaded Counters. Page 1 BYU


 Karin Bates
 3 years ago
 Views:
Transcription
1 Cascaded Counters Page 1
2 ModN Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A modn counter has N states Counts from 0 to N1 then rolls over Requires log 2 N flip flops For example A 4bit binary counter is a mod16 counter A counter that counts from 09 is a mod10 counter Page 2
3 A Mod4 Counter A.K.A. 2bit counter CLR INC Q1 Q0 N1 N CLR INC CLR CLR INC CLR INC CLR INC CLR INC 01 CLR INC 10 CLR INC CLR INC Page 3
4 A Mod4 Counter With Rollover Signal CLR INC Q1 Q0 N1 N0 RO Mealy output CLR INC / RO CLR INC 11 CLR 00 CLR INC CLR INC CLR INC 01 The ROLL signal is used to tell other circuitry that the counter is rolling over to all 0 s. CLR INC 10 CLR INC CLR INC Page 4
5 Cascaded Counters Larger counters can be built by combining smaller counters together The rollover signal is used to communicate when the upper counters should roll over Two types of counters Asynchronous Synchronous Page 5
6 Cascaded Asynchronous Counter digit1 digit0 Sequence should be: But we get: roll1 1 2 Mod4 Counter 1 roll0 2 Mod4 Counter As a general rule. DO NOT tie the clock inputs on modules to anything but the clock! digit1 0 1 digit roll0 / 1 Page 6
7 Cascaded Asynchronous Counter digit1 digit roll1 Mod4 Counter 1 roll0 Mod4 Counter digit1 rements too early digit0 roll0 / 1 digit1 Page 7
8 Cascaded Asynchronous Counter The more stages we add to the counter, the bigger the discrepancy between asynchronous counters and what we expect Stage 1 Stage 2 Stage 3 Expected Async Expected Async Page 8
9 digit1 digit It is possible to modify the circuit to get the correct count sequence, but the roll signal must be glitch free! roll1 Mod4 Counter 1 roll0 Mod4 Counter The transition from the value 1 to 2 (01 2 to 10 2 ) makes it difficult, if not impossible to eliminate glitches. digit1 0 1 digit Possible hazard roll0 / 1 Page 9
10 Ripple Counters When you tie a rolloverlike signal to a clock on the next higher digit ripple counter A ripple counter is an asynchronous counter Transitions are not all synchronized to the clock Different flip flops change at different times Similar to gated clocks (seen earlier) Asynchronous circuits are an advanced topic Page 10
11 Another Common Ripple Counter Counts in normal binary: Q3 Q2 Q1 Q T Q Q 1 T Q Q 1 T Q Q 1 T Q Q CLK What s wrong with this design? Page 11
12 Timing Diagram Q0 Q1 Q2 Q0 changes in response to clock edge Only after Q0 changes does Q1 s FF get a clock Only after that does Q2 s FF get a clock Logic depending on Q3 has very little time to react before next clock edge Q3 Net effect is that all the FF s change at different times! Page 12
13 Asynchronous and Ripple Counters Because asynchronous and ripple counters are difficult to use correctly, they are avoided Do not use them in your designs! Violates globally synchronous design priple Always use synchronous counters Page 13
14 Synchronous Counters In a synchronous counter, all flip flops are clocked by the same clock signal They all change at the same time Synchronous counters can be cascaded to create larger counters that are also globally synchronous Page 14
15 A Mod4 Counter CLR INCQ1 Q0 N1 N0 RO IFL D Q D Q Count Value Terminal Count Roll Over Page 15
16 A Mod4 Counter CLR INCQ1 Q0 N1 N0 RO IFL D Q D Q Count Value Terminal Count We could make a mod4 counter from the block shown in red. Roll Over Page 16
17 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Page 17
18 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Count Value Terminal Count Rollover Page 18
19 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Assume that the second timer is already at the terminal count. Page 19
20 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Page 20
21 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Page 21
22 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Page 22
23 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Page 23
24 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV Page 24
25 Cascaded Counters digit0[1:0] digit1[1:0] digit2[1:0] CV CV CV It looks like the signal ripples from counter to counter. How is this different from the ripple counter examples? Page 25
26 Cascaded Synchronous Counter digit roll digit Page 26
27 Cascaded Synchronous Counter Notice that all signals are synchronized with the system clock roll0 roll1 Signals: digit0 digit1 digit2 Page 27
28 A Mod4 Counter With consolidated rollover logic Count Value IFL D Q Terminal Count D Q A good mod4 counter ludes the logic within the red block. Roll Over Page 28
29 A Mod4 Counter dout roll Page 29
30 Cascading two Mod4 Counters Count Sequence: digit1 digit roll1 roll Increment higher digit s counter when lower digit s counter is rolling over digit1 2 dout roll0 roll digit0 2 dout Page 30
31 Threedigit Mod4 Counter Can combine any counters that have a rollover signal to make larger counters Combine two 16bit counters to make a 32bit counter Combine three mod4 counters to make a threedigit mod4 counter digit2 digit1 digit roll1 roll dout roll1 roll dout roll0 roll dout Page 31
32 BCD Counter Combine to create nonbinary counters BCD counter digit2 digit1 digit roll1 dout MOD10 roll roll1 dout MOD10 roll roll0 dout MOD10 roll Page 32
33 Hybrid Counters Can combine different kinds of mod counters Combine an 8bit counter with a 16bit counter to create a 24bit counter Combine mod24 and mod60 counters to create a digital H:M:S clock Hours Minutes Seconds day dout MOD24 roll hour dout MOD60 roll min dout MOD60 roll sec Page 33
34 D Flip Flop with Asynchronous Clear and Clock Enable Clock Enable (a.k.a. Load) Clear (a.k.a. Reset) Page 34
35 Mod4 Counter D0 CLK CE CE CEO D1 Page 35
36 Cascaded Synchronous Counter Digit0 Digit1 CEO CLK Reset Digit0 CEO Digit1 Page 36
37 Library Counters Component libraries often have several cascadable counters available Can be cascaded to form desired width Xilinx Library Counters Page 37
38 Summary ModN counters are counters that count from 0 to N1 then roll over Adding rollover logic to counters allows us to cascade counters We can build large counters from smaller ones We can easily build nonbinary counters BCD counter HMS clock counter Always use synchronous counters instead of asynchronous counters Page 38
ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
More informationExperiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
More informationAsynchronous Counters. Asynchronous Counters
Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter
More informationModule 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech  3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
More informationTo design digital counter circuits using JKFlipFlop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JKFlipFlop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
More informationDIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department
Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and
More informationDigital Logic Design Sequential circuits
Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian Email: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief Email: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An nbit register
More informationChapter 8. Sequential Circuits for Registers and Counters
Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3 "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters TFF Basic Counting element State
More informationASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
More informationCounters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4bit ripplethrough decade counter with a decimal readout display. Such a counter
More informationDesign Example: Counters. Design Example: Counters. 3Bit Binary Counter. 3Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
More informationDIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.
DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting
More informationWEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
More informationDigital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.
More informationCounters & Shift Registers Chapter 8 of R.P Jain
Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of ModuloN ripple counter, UpDown counter, design of synchronous counters with and without
More informationMemory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
More informationA New Paradigm for Synchronous State Machine Design in Verilog
A New Paradigm for Synchronous State Machine Design in Verilog Randy Nuss Copyright 1999 Idea Consulting Introduction Synchronous State Machines are one of the most common building blocks in modern digital
More informationCounters are sequential circuits which "count" through a specific state sequence.
Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:
More informationDigital Fundamentals
Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence
More informationRegisters & Counters
Objectives This section deals with some simple and useful sequential circuits. Its objectives are to: Introduce registers as multibit storage devices. Introduce counters by adding logic to registers implementing
More informationWiki Lab Book. This week is practice for wiki usage during the project.
Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice
More informationCombinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate Kmaps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
More informationMaster/Slave Flip Flops
Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave
More informationDIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,
More informationContents COUNTER. Unit III Counters
COUNTER Contents COUNTER...1 Frequency Division...2 Divideby2 Counter... 3 Toggle FlipFlop...3 Frequency Division using Toggle Flipflops...5 Truth Table for a 3bit Asynchronous Up Counter...6 Modulo
More informationEE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
More informationA Lesson on Digital Clocks, One Shots and Counters
A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates PowerOn Reset Circuits One Shots Counters
More informationA Lesson on Digital Clocks, One Shots and Counters
A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates PowerOn Reset Circuits One Shots Counters
More informationNTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
More informationChapter 9 Latches, FlipFlops, and Timers
ETEC 23 Programmable Logic Devices Chapter 9 Latches, FlipFlops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary
More informationDigital Fundamentals. Lab 8 Asynchronous Counter Applications
Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:
More informationEC313  VHDL State Machine Example
EC313  VHDL State Machine Example One of the best ways to learn how to code is seeing a working example. Below is an example of a Roulette Table Wheel. Essentially Roulette is a game that selects a random
More informationEXPERIMENT 8. FlipFlops and Sequential Circuits
EXPERIMENT 8. FlipFlops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flipflops and counters.
More informationDecimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
More informationFlipFlops and Sequential Circuit Design. ECE 152A Winter 2012
FlipFlops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 FlipFlops, Registers, Counters and a Simple Processor 7.5 T FlipFlop 7.5. Configurable FlipFlops 7.6
More informationFlipFlops and Sequential Circuit Design
FlipFlops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 FlipFlops, Registers, Counters and a Simple Processor 7.5 T FlipFlop 7.5. Configurable FlipFlops 7.6
More informationCHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
More informationAsynchronous counters, except for the first block, work independently from a system clock.
Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flipflops, they can be asynchronous or synchronous and they can
More informationLecture3 MEMORY: Development of Memory:
Lecture3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
More informationChapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann
Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7 Registers and Load Enable 72 Register Transfers 73 Register Transfer Operations 74 A Note for VHDL and Verilog Users
More informationCounters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0
ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flipflop values themselves, serves as the output. The output value increases by one on each clock cycle.
More informationLecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
More informationDM74LS169A Synchronous 4Bit Up/Down Binary Counter
Synchronous 4Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry lookahead for cascading in highspeed counting applications. Synchronous operation
More informationCHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS
CHAPTER IX1 CHAPTER IX CHAPTER IX COUNTERS, SHIFT, AN ROTATE REGISTERS REA PAGES 249275 FROM MANO AN KIME CHAPTER IX2 INTROUCTION INTROUCTION Like combinational building blocks, we can also develop
More informationPROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics
PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit  FSM A Sequential circuit contains: Storage
More informationIntroduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems
Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH
More informationDIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift
More informationIE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
More information1.1 The 7493 consists of 4 flipflops with JK inputs unconnected. In a TTL chip, unconnected inputs
CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.
More informationENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.
ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures
More informationDigital Fundamentals
igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage
More informationPROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics
PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit A Sequential circuit contains: Storage elements:
More informationSystems I: Computer Organization and Architecture
Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flipflops. Each flipflop stores one bit of data; n flipflops are required to store
More informationTakeHome Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
TakeHome Exercise Assume you want the counter below to count mod6 backward. That is, it would count 0543210, etc. Assume it is reset on startup, and design the wiring to make the counter count
More informationDM54161 DM74161 DM74163 Synchronous 4Bit Counters
DM54161 DM74161 DM74163 Synchronous 4Bit Counters General Description These synchronous presettable counters feature an internal carry lookahead for application in highspeed counting designs The 161
More informationSEQUENTIAL CIRCUITS. Block diagram. Flip Flop. SR Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
More informationOperating Manual Ver.1.1
4 Bit Binary Ripple Counter (UpDown Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94101, Electronic Complex Pardesipura, Indore 452010, India Tel : 91731 2570301/02, 4211100 Fax: 91731
More informationLecture 7: Clocking of VLSI Systems
Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 TwoPhase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10  Clocking Note: The analysis
More informationLesson 12 Sequential Circuits: FlipFlops
Lesson 12 Sequential Circuits: FlipFlops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
More informationFinite State Machine Design and VHDL Coding Techniques
Finite State Machine Design and VHDL Coding Techniques Iuliana CHIUCHISAN, Alin Dan POTORAC, Adrian GRAUR "Stefan cel Mare" University of Suceava str.universitatii nr.13, RO720229 Suceava iulia@eed.usv.ro,
More informationNOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual InLine Package.
PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4BIT BINARY UP/DOWN COUNTERS The SN54/74LS90 is a synchronous UP/DOWN BCD Decade (842) Counter and the SN54/74LS9 is a synchronous UP/DOWN Modulo6
More informationManchester EncoderDecoder for Xilinx CPLDs
Application Note: CoolRunner CPLDs R XAPP339 (v.3) October, 22 Manchester EncoderDecoder for Xilinx CPLDs Summary This application note provides a functional description of VHDL and Verilog source code
More informationModeling Registers and Counters
Lab Workbook Introduction When several flipflops are grouped together, with a common clock, to hold related information the resulting circuit is called a register. Just like flipflops, registers may
More information18008314242
Distributed by: www.jameco.com 18008314242 The content and copyrights of the attached material are the property of its owner. DM74LS161A DM74LS163A Synchronous 4Bit Binary Counters General Description
More informationLab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation
Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before
More information74LS193 Synchronous 4Bit Binary Counter with Dual Clock
74LS193 Synchronous 4Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4bit binary counter. Synchronous operation is provided by having all flipflops
More informationFig11 2bit asynchronous counter
Digital electronics 1Sequential circuit counters Such a group of flip flops is a counter. The number of flipflops used and the way in which they are connected determine the number of states and also
More informationMore Verilog. 8bit Register with Synchronous Reset. Shift Register Example. Nbit Register with Asynchronous Reset.
More Verilog 8bit Register with Synchronous Reset module reg8 (reset, CLK, D, Q); input reset; input [7:0] D; output [7:0] Q; reg [7:0] Q; if (reset) Q = 0; else Q = D; module // reg8 Verilog  1 Verilog
More informationTiming Methodologies (cont d) Registers. Typical timing specifications. Synchronous System Model. Short Paths. System Clock Frequency
Registers Timing Methodologies (cont d) Sample data using clock Hold data between clock cycles Computation (and delay) occurs between registers efinition of terms setup time: minimum time before the clocking
More informationDigital Controller for Pedestrian Crossing and Traffic Lights
Project Objective:  To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on nextstate techniques
More informationSequential Logic: Clocks, Registers, etc.
ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design
More informationLatch Timing Parameters. Flipflop Timing Parameters. Typical Clock System. Clocking Overhead
Clock  key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where
More informationLAB #4 Sequential Logic, Latches, FlipFlops, Shift Registers, and Counters
LAB #4 Sequential Logic, Latches, FlipFlops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flipflop 2. Use of actual flipflops to help you understand sequential
More informationDM9368 7Segment Decoder/Driver/Latch with Constant Current Source Outputs
DM9368 7Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7segment decoder driver incorporating input latches and constant current output circuits
More informationBINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
More informationCpE358/CS381. Switching Theory and Logical Design. Class 10
CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer 24 Copyright 24373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic
More informationHighStability Time Adjustment with RealTime Clock Module
HighStability Time Adjustment with RealTime Clock Module An explanation of an Epson realtime clock module with subsecond time adjustment function [Preface] In recent years, it has become simple to
More informationCS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flipflops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
More information54LS169 DM54LS169A DM74LS169A Synchronous 4Bit Up Down Binary Counter
54LS169 DM54LS169A DM74LS169A Synchronous 4Bit Up Down Binary Counter General Description This synchronous presettable counter features an internal carry lookahead for cascading in highspeed counting
More informationSequential Logic Design Principles.Latches and FlipFlops
Sequential Logic Design Principles.Latches and FlipFlops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and FlipFlops SR Latch
More informationINTEGRATED CIRCUITS. For a complete data sheet, please also download:
INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic
More informationObsolete Product(s)  Obsolete Product(s)
SYNCHRONOUS PROGRAMMABLE 4BIT BINARY COUNTER WITH ASYNCHRONOUS CLEAR INTERNAL LOOKAHEAD FOR FAST COUNTING CARRY OUTPUT FOR CASCADING SYNCHRONOUSLY PROGRAMMABLE LOWPOWER TTL COMPATIBILITY STANDARDIZED
More informationCOMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
More informationModeling Latches and Flipflops
Lab Workbook Introduction Sequential circuits are digital circuits in which the output depends not only on the present input (like combinatorial circuits), but also on the past sequence of inputs. In effect,
More informationChapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
More informationLab 1: Study of Gates & Flipflops
1.1 Aim Lab 1: Study of Gates & Flipflops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flipflops. 1.2 Hardware Requirement a. Equipments 
More informationDM74LS193 Synchronous 4Bit Binary Counter with Dual Clock
September 1986 Revised March 2000 DM74LS193 Synchronous 4Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4bit binary counter. Synchronous operation
More informationDM74LS191 Synchronous 4Bit Up/Down Counter with Mode Control
August 1986 Revised February 1999 DM74LS191 Synchronous 4Bit Up/Down Counter with Mode Control General Description The DM74LS191 circuit is a synchronous, reversible, up/ down counter. Synchronous operation
More informationHaving read this workbook you should be able to: recognise the arrangement of NAND gates used to form an SR flipflop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an SR flipflop. describe how such a flipflop can be SET and RESET. describe the disadvantage
More information6BIT UNIVERSAL UP/DOWN COUNTER
6BIT UNIVERSAL UP/DOWN COUNTER FEATURES DESCRIPTION 550MHz count frequency Extended 100E VEE range of 4.2V to 5.5V Lookaheadcarry input and output Fully synchronous up and down counting Asynchronous
More informationECE380 Digital Logic
ECE38 igital Logic FlipFlops, Registers and Counters: FlipFlops r.. J. Jackson Lecture 25 Flipflops The gated latch circuits presented are level sensitive and can change states more than once during
More informationThe components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7segment display. 2 st. IC
More information(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
More information54191 DM54191 DM74191 Synchronous Up Down 4Bit Binary Counter with Mode Control
54191 DM54191 DM74191 Synchronous Up Down 4Bit Binary Counter with Mode Control General Description This circuit is a synchronous reversible up down counter The 191 is a 4bit binary counter Synchronous
More informationTraffic Light Controller. Digital Systems Design. Dr. Ted Shaneyfelt
Traffic Light Controller Digital Systems Design Dr. Ted Shaneyfelt December 3, 2008 Table of Contents I. Introduction 3 A. Problem Statement 3 B. Illustration 3 C. State Machine 3 II. Procedure 4 A. State
More informationDesign Verification & Testing Design for Testability and Scan
Overview esign for testability (FT) makes it possible to: Assure the detection of all faults in a circuit Reduce the cost and time associated with test development Reduce the execution time of performing
More informationEngr354: Digital Logic Circuits
Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flipflops;
More informationModeling Sequential Elements with Verilog. Prof. ChienNan Liu TEL: 034227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit
Modeling Sequential Elements with Verilog Prof. ChienNan Liu TEL: 034227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 41 Sequential Circuit Outputs are functions of inputs and present states of storage elements
More informationFinite State Machine. RTL Hardware Design by P. Chu. Chapter 10 1
Finite State Machine Chapter 10 1 Outline 1. Overview 2. FSM representation 3. Timing and performance of an FSM 4. Moore machine versus Mealy machine 5. VHDL description of FSMs 6. State assignment 7.
More informationFlipFlops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 FlipFlops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
More information