MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Size: px
Start display at page:

Download "MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question."

Transcription

1 CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output is ) A) a clock signal. B) HIGH. C) LOW. D) cannot be determined 2) Waveforms A and B represent the inputs to an OR gate. During which time interval(s) will the 2) A) time intervals 2 and 3 B) never C) time interval 4 D) time intervals 3 and 5 3) When the indicator lamp of a logic probe glows brightly, it is detecting 3) A) a HIGH logic level. B) +2 V. C) V. D) a LOW logic level. 4) Which logic circuit is represented by the Boolean equation ABC = X? 4) A) Clock B) NAND C) Inverter D) AND 5) The Boolean equation for an OR gate is. 5) A) A/B = X B) A - B = X C) AB = X D) A + B = X 6) Which logic gate is described by the following truth table? 6) A) NOR B) AND C) NAND D) OR 7) Which truth table is correct for an inverter? 7) A) B) input output input output C) input output D) input output

2 8) Waveforms A and B represent the inputs to an AND gate. During which time interval will the 8) A) time interval B) time interval 3 C) time interval 4 D) time interval 5 9) If one input of a two-input NAND gate is tied to +Vcc, the NAND functions as 9) A) an OR gate. B) an inverter. C) a NOR gate. D) an AND gate. ) What will be the output of a three-input NOR gate whose inputs are a clock, a HIGH, and a LOW? ) A) LOW B) HIGH C) clock D) cannot be determined ) In order for an AND gate to be enabled ) A) both inputs should be HIGH. B) both inputs should be LOW. C) one input should be LOW. D) one input should be HIGH. 2) In order to produce a LOW output, an OR gate requires 2) A) any input to be HIGH. B) all inputs to be LOW. C) any input to be LOW. D) all inputs to be HIGH. 3) A gate output is supposed to be HIGH. A digital probe indicator lamp is off. This could be caused by A) a nonfunctional probe. B) improper gate input. C) a failed gate. D) all of the above 3) 4) The standard logic symbols that utilize squares with symbols in them are 4) A) IEEE/IEC. B) CMOS. C) ASCII. D) ANSI. 5) A three-input NAND gate will have a HIGH output whenever 5) A) one input is HIGH. B) any two inputs are HIGH. C) one input is LOW. D) three inputs are HIGH. 6) Which logic function can be implemented by connecting an inverter to the output of a NAND gate? A) NAND B) AND C) NOR D) OR 6) 7) The Boolean equation for an AND gate is. 7) A) AB = X B) A/B = X C) A + B = X D) A - B = X 8) If one input of an OR gate is HIGH while the other is a clock signal, the output is 8) A) LOW. B) a clock signal. C) HIGH. D) cannot be determined 2

3 9) Assume that a logic gate has four inputs. How many possible input combinations will be listed in its truth table? A) 6 B) 8 C) 2 D) 4 9) 2) Which logic function is represented by the equation ABCD = X? 2) A) OR B) clock C) inverter D) AND 2) Which logic circuit is represented by the Boolean equation A + B + C + D = X? 2) A) OR B) NAND C) Inverter D) NOR 22) Which output is correct for this NAND truth table? 22)???? A) B) C) D) 23) What will be the output of a three-input NAND gate whose inputs are a HIGH, a HIGH, and a clock? A) HIGH B) a clock signal C) an inverted clock signal D) LOW 23) 24) If input A of a NAND gate is connected to a clock and input B is HIGH, the normal output is 24) A) HIGH. B) a clock signal. C) LOW. D) an inverted clock signal. 25) If one input of an OR gate is considered to be an enable, it will enable the other input when it is 25) A) the opposite of the other input. B) HIGH. C) the same as the other input. D) LOW. 26) A three-input NOR gate will have a HIGH output whenever 26) A) three inputs are LOW. B) two inputs are LOW. C) one input is HIGH. D) three inputs are HIGH. 27) Which logic gate is described by the following truth table? 27) A) OR B) NOR C) NAND D) AND 3

4 28) Waveforms A and B represent the inputs to an OR gate. During which time interval will the output from the gate (X) be LOW? 28) A) time interval B) time interval 3 C) time interval 4 D) time interval 5 29) Which logic function is represented by the equation A + B = X? 29) A) OR B) clock C) AND D) switch 3) Which output is correct for this NOR truth table? 3)???? A) B) C) D) 3) Waveforms A and B represent the inputs to a NOR gate. During which time interval(s) will the 3) A) time interval 5 B) time interval 2 C) time intervals 2, 3, and 4 D) time intervals 2 and 3 32) If input A of a NAND gate is connected to a clock and input B is LOW, the normal output is 32) A) a clock signal. B) an inverted clock signal. C) HIGH. D) LOW. 4

5 33) Which set of outputs is correct for this AND truth table? 33)???? A) B) C) D) 34) The Boolean equation for a NOR function is. 34) A) X = A + B B) X = A + B C) X = A + B D) X = A + B 35) How many inverters are in a 4-pin DIP integrated circuit? 35) A) eight B) two C) six D) four 36) In term of digital logic, a one is usually represented by 36) A) +5 V. B) V. C) + V. D) +5 V. 37) How many two-input gates are in a single 4-pin DIP integrated circuit? 37) A) two B) eight C) four D) six 38) In order for an OR gate to be enabled 38) A) both inputs should be HIGH. B) one input should be LOW. C) one input should be HIGH. D) both inputs should be LOW. 39) Which logic function can be implemented by connecting an inverter to the output of an OR gate? 39) A) NOR B) inverter C) AND D) OR 4) To pass a clock signal through a three-input OR gate 4) A) the clock must be tied to two of the inputs. B) the other inputs do not matter. C) the other inputs must be HIGH. D) the other inputs must be LOW. 4) Which logic gate is described by the following truth table? 4) A) inverter B) OR C) AND D) cannot tell 5

6 42) If one input of an OR gate is LOW while the other is a clock signal, the output is 42) A) a clock signal. B) LOW. C) HIGH. D) cannot be determined 43) Waveforms A and B represent the inputs to a NAND gate. During which time interval(s) will the 43) A) time intervals 4 and 5 B) time interval 5 C) time interval 4 D) time intervals, 2 and 3 44) Waveforms A and B represent the inputs to an AND gate. During which time interval will the 44) A) time interval B) time interval 2 C) time interval 4 D) time interval 5 45) A NAND gate with one HIGH input and one LOW input 45) A) will not function. B) functions as an AND. C) will output a LOW. D) will output a HIGH. 46) Waveforms A and B represent the inputs to an OR gate. During which time intervals will the output from the gate (X) be LOW? 46) Wa A) time intervals and 4 B) time intervals and 2 C) time intervals and 3 D) It is never low. 47) If both inputs of an AND gate are normally HIGH but one of them momentarily dips LOW, the output will A) be LOW. B) momentarily dip LOW. C) go LOW and remain LOW. D) stay HIGH. 47) 48) If one input of an AND gate is HIGH while the other is a clock signal, the output is 48) A) a clock signal. B) HIGH. C) LOW. D) cannot be determined 6

7 49) If one input of an AND gate is considered to be an enable, it will enable the other input when it is 49) A) LOW. B) HIGH. C) opposite of the other input. D) the same as the other input. 5) Which set of outputs is correct for this OR truth table? 5)???? A) B) C) D) 5) Waveforms A and B represent the inputs to a NAND gate. During which time interval(s) will the 5) A) time intervals and 2 B) time intervals, 2, 4, and 5 C) time interval 5 D) time interval 3 52) The Boolean equation for a NAND function is 52) A) X = A + B B) X = AB C) X = A B D) X = AB 53) Which logic function can be implemented by connecting an inverter to the output of a NOR gate? 53) A) NOR B) AND C) NAND D) OR 54) If input A of a NOR gate is LOW and input B is HIGH, the output should be 54) A) unknown. B) HIGH. C) changing. D) LOW. 55) The purpose of a digital pulser is to a circuit. 55) A) provide digital pulses to B) graph the output of C) float an output of D) show the logic levels of 7

8 56) Waveforms A and B represent the inputs to a NAND gate. During which time interval(s) will the output from the gate (X) be LOW? 56) A) time intervals 2, 3, and 4 B) time interval 2 C) time intervals 2 and 3 D) never 57) Inversion is indicated by 57) A) a triangle on a gate output. B) a bar (line) over a Boolean equation. C) a bubble on a gate output. D) all of the above 58) Waveforms A and B represent the inputs to a NOR gate. During which time interval(s) will the 58) A) time intervals and 2 B) time interval 3 C) time intervals, 2, 3, and 4 D) time interval 5 59) If both of its inputs are connected to the same signal, a NOR gate functions as a(n) 59) A) NOR gate. B) OR gate. C) inverter. D) AND gate. 6) A NOR gate with one HIGH input and one LOW input 6) A) will output a HIGH. B) will output a LOW. C) will not function. D) functions as an AND. 6) What is the output of a two-input NAND gate whose inputs are LOW except for narrow HIGH pulses? A) HIGH B) LOW each time a pulse occurs C) HIGH except when both inputs have a pulse at the same time D) HIGH each time a pulse occurs 6) 62) If both inputs of an OR gate are normally HIGH but one of them momentarily dips LOW, the output will A) momentarily dip LOW. B) be LOW. C) go LOW and remain LOW. D) stay HIGH. 62) 63) In terms of digital logic, a HIGH voltage usually represents 63) A) a one. B) an illegal condition. C) a zero. D) an open. 8

9 64) The truth table for a three-input OR gate contains entries. 64) A) 6 B) 3 C) 8 D) 9 65) In order to produce a HIGH output, an AND gate requires 65) A) all inputs to be LOW. B) any input to be LOW. C) all inputs to be HIGH. D) any input to be HIGH. 66) Which logic function can be implemented by connecting an inverter to the output of an AND gate? 66) A) OR B) AND C) NOR D) NAND 67) The ground and power pins on a typical TTL 4-pin DIP are 67) A) pins and 8. B) pins and 4. C) pins 7 and 4. D) pins 7 and 8. 68) When the indicator lamp of a logic probe glows dimly, it is detecting 68) A) +5 V. B) an open circuit. C) V. D) a HIGH logic level. 69) In terms of digital logic, a LOW voltage usually represents 69) A) a one. B) an open. C) an illegal condition. D) a zero. 7) Waveforms A and B represent the inputs to a NOR gate. During which time intervals will the output from the gate (X) be LOW? 7) A) all time intervals B) time intervals 2, 3, and 4 C) never D) time intervals and 5 7) In terms of digital logic, a zero is usually represented by 7) A) -5 V. B) +2 V. C) V. D) - V. 72) How many three-input NOR gates are in a 4-pin DIP integrated circuit? 72) A) five B) three C) four D) two 73) Which logic function is represented by the equation AB = X? 73) A) adder B) AND C) OR D) clock 9

10 74) Waveforms A and B represent the inputs to an AND gate. During which time intervals will output from the gate (X) be LOW? 74) A) time intervals 2 and 3 B) time intervals and 3 C) time intervals and 4 D) time intervals and 2

11 Answer Key Testname: CHAP3Q ) C 2) D 3) A 4) B 5) D 6) C 7) D 8) D 9) B ) A ) D 2) B 3) D 4) A 5) C 6) B 7) A 8) C 9) A 2) D 2) D 22) D 23) C 24) D 25) D 26) A 27) B 28) B 29) A 3) D 3) A 32) C 33) C 34) C 35) C 36) A 37) C 38) B 39) A 4) D 4) B 42) A 43) A 44) B 45) D 46) D 47) B 48) A 49) B 5) D

12 Answer Key Testname: CHAP3Q 5) B 52) B 53) D 54) D 55) A 56) B 57) D 58) D 59) C 6) B 6) C 62) D 63) A 64) C 65) C 66) D 67) C 68) B 69) D 7) B 7) C 72) B 73) B 74) B 2

ENGI 241 Experiment 5 Basic Logic Gates

ENGI 241 Experiment 5 Basic Logic Gates ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is

More information

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

DEPARTMENT OF INFORMATION TECHNLOGY

DEPARTMENT OF INFORMATION TECHNLOGY DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

The enable pin needs to be high for data to be fed to the outputs Q and Q bar.

The enable pin needs to be high for data to be fed to the outputs Q and Q bar. of 7 -Type flip-flop (Toggle switch) The -type flip-flops are used in prescalar/divider circuits and frequency phase detectors. Figure shows how the flip-flop (latch) can be made using -input logic circuits

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

More information

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually

More information

Basic Logic Gates Richard E. Haskell

Basic Logic Gates Richard E. Haskell BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

More information

Digital Logic Elements, Clock, and Memory Elements

Digital Logic Elements, Clock, and Memory Elements Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set

More information

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1 United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

Figure 8-1 Four Possible Results of Adding Two Bits

Figure 8-1 Four Possible Results of Adding Two Bits CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find

More information

CS311 Lecture: Sequential Circuits

CS311 Lecture: Sequential Circuits CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

Lecture 5: Gate Logic Logic Optimization

Lecture 5: Gate Logic Logic Optimization Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates

EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates A. Objectives The objectives of this laboratory are to investigate: the operation of open-collector gates, including the

More information

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder.

earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder. The circuit created is an 8-bit adder. The 8-bit adder adds two 8-bit binary inputs and the result is produced in the output. In order to create a Full 8-bit adder, I could use eight Full -bit adders and

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012 Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

3.Basic Gate Combinations

3.Basic Gate Combinations 3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and

More information

Jianjian Song LogicWorks 4 Tutorials (5/15/03) Page 1 of 14

Jianjian Song LogicWorks 4 Tutorials (5/15/03) Page 1 of 14 LogicWorks 4 Tutorials Jianjian Song Department of Electrical and Computer Engineering Rose-Hulman Institute of Technology March 23 Table of Contents LogicWorks 4 Installation and update...2 2 Tutorial

More information

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

More information

Copyright Peter R. Rony 2009. All rights reserved.

Copyright Peter R. Rony 2009. All rights reserved. Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

Solutions to Bulb questions

Solutions to Bulb questions Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of

More information

Fig1-1 2-bit asynchronous counter

Fig1-1 2-bit asynchronous counter Digital electronics 1-Sequential circuit counters Such a group of flip- flops is a counter. The number of flip-flops used and the way in which they are connected determine the number of states and also

More information

Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Digital Fundamentals. Lab 8 Asynchronous Counter Applications Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.

Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block

More information

7. Latches and Flip-Flops

7. Latches and Flip-Flops Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Combinational Logic Design

Combinational Logic Design Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra

More information

Lab 1: Full Adder 0.0

Lab 1: Full Adder 0.0 Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify

More information

1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs

1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.

More information

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447). G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment

More information

Flip-Flops, Registers, Counters, and a Simple Processor

Flip-Flops, Registers, Counters, and a Simple Processor June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

More information

Fundamentals of Digital Electronics

Fundamentals of Digital Electronics Fundamentals of Digital Electronics by Professor Barry Paton Dalhousie University March 998 Edition Part Number 32948A- Fundamentals of Digital Electronics Copyright Copyright 998 by National Instruments

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

2.0 Chapter Overview. 2.1 Boolean Algebra

2.0 Chapter Overview. 2.1 Boolean Algebra Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

Description. Features. Applications

Description. Features. Applications Description The PT2249A / PT2250A Series are infra-red remote control receivers utilizing CMOS Technology. Remote Control System can be constructed together with the PT2248 remote control encoder. The

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS The SN54/74LS90 is a synchronous UP/DOWN BCD Decade (842) Counter and the SN54/74LS9 is a synchronous UP/DOWN Modulo-6

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 6.004 Computation Structures Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M A S S A C H U S E T T

More information

CMOS Binary Full Adder

CMOS Binary Full Adder CMOS Binary Full Adder A Survey of Possible Implementations Group : Eren Turgay Aaron Daniels Michael Bacelieri William Berry - - Table of Contents Key Terminology...- - Introduction...- 3 - Design Architectures...-

More information

Digital Controller for Pedestrian Crossing and Traffic Lights

Digital Controller for Pedestrian Crossing and Traffic Lights Project Objective: - To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on next-state techniques

More information

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits. 2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,

More information

Interfacing Analog to Digital Data Converters

Interfacing Analog to Digital Data Converters Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous

More information

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

CSE140: Components and Design Techniques for Digital Systems. Introduction. Prof. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Introduction. Prof. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Introduction Prof. Tajana Simunic Rosing Welcome to CSE 4! Instructor: Tajana Simunic Rosing Email: tajana@ucsd.edu; please put CSE4 in the subject

More information

Input, Process and Output

Input, Process and Output Intermediate 1 Physics Electronics Input, Process and Output Digital Logic Gates Intermediate 1 Physics Electronics Input, Process and Output 1 2 Input, Process and Output Electronic Systems When something

More information

Multiplexers and demultiplexers

Multiplexers and demultiplexers Multiplexers and demultiplexers This worksheet and all related files are licensed under the Creative Commons Attribution License, version.. To view a copy of this license, visit http://creativecommons.org/licenses/by/./,

More information

CSE140 Homework #7 - Solution

CSE140 Homework #7 - Solution CSE140 Spring2013 CSE140 Homework #7 - Solution You must SHOW ALL STEPS for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins

More information

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

More information

CMOS Power Consumption and C pd Calculation

CMOS Power Consumption and C pd Calculation CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or

More information

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251

Gates. J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, TX 77251 Gates J. Robert Jump Department of Electrical And Computer Engineering Rice University Houston, T 77251 1. The Evolution of Electronic Digital Devices...1 2. Logical Operations and the Behavior of Gates...2

More information

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

More information

CD4013BC Dual D-Type Flip-Flop

CD4013BC Dual D-Type Flip-Flop CD4013BC Dual D-Type Flip-Flop General Description The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors.

More information

EXPERIMENT 3: TTL AND CMOS CHARACTERISTICS

EXPERIMENT 3: TTL AND CMOS CHARACTERISTICS EXPERIMENT 3: TTL AND CMOS CHARACTERISTICS PURPOSE Logic gates are classified not only by their logical functions, but also by their logical families. In any implementation of a digital system, an understanding

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic

More information

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 06057-2905 (860) 489-8003 www.alta-engineering.com

More information

Mixed Logic A B A B. 1. Ignore all bubbles on logic gates and inverters. This means

Mixed Logic A B A B. 1. Ignore all bubbles on logic gates and inverters. This means Mixed Logic Introduction Mixed logic is a gate-level design methodology used in industry. It allows a digital logic circuit designer the functional description of the circuit from its physical implementation.

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

More information

ECE124 Digital Circuits and Systems Page 1

ECE124 Digital Circuits and Systems Page 1 ECE124 Digital Circuits and Systems Page 1 Chip level timing Have discussed some issues related to timing analysis. Talked briefly about longest combinational path for a combinational circuit. Talked briefly

More information

A-145 LFO. 1. Introduction. doepfer System A - 100 LFO A-145

A-145 LFO. 1. Introduction. doepfer System A - 100 LFO A-145 doepfer System A - 100 FO A-145 1. Introduction A-145 FO Module A-145 (FO) is a low frequency oscillator, which produces cyclical control voltages in a very wide range of frequencies. Five waveforms are

More information

DESCRIPTION FEATURES BLOCK DIAGRAM. PT2260 Remote Control Encoder

DESCRIPTION FEATURES BLOCK DIAGRAM. PT2260 Remote Control Encoder Remote Control Encoder DESCRIPTION PT2260 is a remote control encoder paired with either PT2270 or PT2272 utilizing CMOS Technology. It encodes data and address pins into a serial coded waveform suitable

More information

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits

More information

Interfacing To Alphanumeric Displays

Interfacing To Alphanumeric Displays Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1

More information

Advanced Logic Design Techniques in Asynchronous Sequential Circuit Synthesis

Advanced Logic Design Techniques in Asynchronous Sequential Circuit Synthesis Advanced Logic Design Techniques in Asynchronous Sequential Circuit Synthesis Charles R. Bond http://www.crbond.com c 1990 2013, All rights reserved. Contents I Synthesis Methods 4 1 Development of Methods

More information

Today s topics. Digital Computers. More on binary. Binary Digits (Bits)

Today s topics. Digital Computers. More on binary. Binary Digits (Bits) Today s topics! Binary Numbers! Brookshear.-.! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro

More information

Unit 3 Boolean Algebra (Continued)

Unit 3 Boolean Algebra (Continued) Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication

More information

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations GRADE 11A: Physics 5 Electronic devices UNIT 11AP.5 6 hours About this unit This unit is the fifth of seven units on physics for Grade 11 advanced. The unit is designed to guide your planning and teaching

More information