Lecture 8: Synchronous Digital Systems
|
|
|
- Morgan French
- 9 years ago
- Views:
Transcription
1 Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered flip-flop which we discussed earlier in the course. Its key property is that the output changes to the input value only on receit of a clock pulse. Depending on how we design the flip flop, the change may occur on either the rising clock edge or the falling clock edge. In a big circuit, there may be other clock signals as well but all will have to be synchronized to the system clock and any other clock signal must have a known relationship in time to the system clock. A sequential circuit is one that goes through a sequence of states. For example, we could use a sequential circuit to control a traffic light system, or a washing machine programmer. There are many examples of sequential circuits in the real world, and the most complext of them is the central processing unit of a digital computer. Our focus in this lecture and the next, is the design of synchronous sequential digital circuits. We will make use of a generic synchronous sequential system which is shown in the following block diagram: All flip-flops are connected to the same clock, and therefore all change at the same time. The state of the system is defined as the Q outputs of the flip flops, and is stable between the clock pulses. The state is therefore a binary number of the form Q 1 Q 2 Q 3..Q n. If there are n flip-flops then there are exactly 2 n possible states of the system. The state sequencing logic and output logic blocks are combinational circuits and their outputs are strictly functions of the inputs. Like all combinational logic circuits they suffer from transport delays, and may have spikes on the output in response to changing inputs. The behaviour of the system is defined by the transition of one state to another which occurs when a clock pulse is applied. As shown above, the output signals at any time depend only on the state of the system (defined by the flip-flop outputs). The next state depends on both the state and the input. We can indicate these in the functional forms: Q s (t n+1 ) = D s (t n ) The D type flip flop law D s (t n ) = F (I 1 (t n ), I 2 (t n ),..., Q 1 (t n ), Q 2 (t n ),...) State Sequencing Logic Q s (t n+1 ) = F (I 1 (t n ), I 2 (t n ),..., Q 1 (t n ), Q 2 (t n ),...) Out j (t n ) = G(Q 1 (t n ), Q 2 (t n ),...) Output Logic Since the collection of flip-flop outputs is defined as the state of the system, the third equation above is called the state transition equation. The state transition equation completely describes the behaviour of the system for all times if the state of the system is known at an initial time and the inputs are known for both initial and all later times. The output of the system is a direct (combinational) function of its state and does not influence the behaviour of the system, only its outputs. The advantage of the state transition description is that it has a convenient graphical representation: the state transition diagram (also called the finite state machine diagram). DOC112: Computer Hardware Lecture 8 1
2 Let us look at the example of a J-K Flip-Flop, which is a simple synchronous circuit. The functional behaviour of the J-K flip-flop is shown in the following table: The symbol and state transition diagram are:: J K Function Output Q s (t n+1 ) 0 0 No Change Q s (t n ) 0 1 Reset Set Toggle Q s(t n ) Although there appear to be two output variables (Q, Q ), there is only one state variable Q, which in this case is also one of the outputs. Since there is one state variable, there are two states, which can be conveniently labelled by the value of Q (i.e. binary 0 or binary 1). The labels of the two states appear in the two circles. The arrows represent the state transitions and for two inputs (JK) there are four different combinations of the input values for each state. In this case, each state transition occurs for two input combinations. For example, if the flip-flop is in state 0, either the inputs JK = 00 (leave the output unchanged) or JK = 01 (reset the output) will leave the circuit state 0. Similarly, either input combination 10 (set the output to 1) or 11 (toggle the output) will change the state to 1. Synchronous Binary Counters The binary counter is an example of a simple synchronous digital circuit. It has no inputs and no combinational output logic circuit. At each clock pulse the counter takes up a new state and thus goes through a specific count sequence. We shall design now a binary up-counter with two outputs which goes through the sequence: etc. The block diagram, structure and state transition diagram of a two-bit binary counter (built with two D-type flip-flops) is of the following form: We have to design the state sequencing logic which consists of the two combinational circuits labelled Circuit 1 and Circuit 2. The first step is to construct truth tables for the circuits. The inputs are made up of the current state, and the outputs will define the next state. These outputs form the D inputs to the flip flops. Inputs (t n ) Outputs (t n+1 ) Q 1 Q 2 D 1 D DOC112: Computer Hardware Lecture 8 2
3 For sequential systems designed with D-type flip-flops, this table is called (appropriately) the transition table. In general, both the flip-flop outputs at time t n and the circuit inputs at time t n make up the left column. The outputs are the D inputs to the flip-flops which will become their Q outputs at time t n+1. In the case of the binary up-counter we have no inputs: From the transition table the Karnaugh maps for the two circuits are constructed and the minimised Boolean expressions are found: D 1 (t n ) = Q 1 (t n+1 ) = Q 1 Q 2 + Q 2 Q 1 = Q 1 Q 2 and D 2 (t n ) = Q 1 (t n+1 ) = Q 2 where is the XOR operator. Since the outputs of Circuit 1 and Circuit 2 are connected to the D inputs of the flip-flops, the above results can be directly applied to the circuit because for a D-type flip-flop Q(t n+1 ) = D(t n ). Consequently, the finalised circuit is shown below: Design of a controlled 3-bit counter with don t care states We are given the following description of a synchronous sequential circuit to design: A three-bit binary counter has one control input, C. When C = 0 the counter counts up even numbers, i.e etc, or in binary: etc. When C = 1 the counter counts down odd numbers: etc, or in binary: etc. The counter may start in an undefined state (say, C = 1 and the counter output is 2 = 010). The sequence it goes through at start up is not important, but it must reach the 000 state from any starting state. Step 1: The finite state machine diagram is constructed from the wordy specification. For the moment we only include the transitions that are given in the specification. DOC112: Computer Hardware Lecture 8 3
4 Step 2: The transition table is produced by tracing through the finite state machine diagram. The don t care outputs X indicate that the state is not part of the counting defined sequence: C Q 1 Q 2 Q 3 D 1 D 2 D X X X X X X X X X X X X X X X X X X X X X Step 3: The entries in the transition table are copied into Karnaugh maps and the minimised Boolean equations are found for each D input. D1 = C Q1 Q2+C Q1 Q2 +C Q3 +C Q1 Q2 D2 = Q2 Q3 +Q1 Q2 D3 = C Q2+C Q3 +C Q1 Step 4: The true values for the don t cares can now be entered into the Karnaugh maps. Any don t care within a circle will be a 1 and any don t care outside all the circles will be a 0. Step 5: The correct transition table, without don t cares, can now be constructed from the three Karnaugh maps. The states are indicated by their equivalent digit. DOC112: Computer Hardware Lecture 8 4
5 C Q 1 Q 2 Q 3 D 1 D 2 D 3 S(t n ) S(t n+1 ) In order to see whether the counter will operate properly from every starting state and input value, the complete finite state machine diagram can be constructed from the table. For clarity it can be divided into two parts, one for the input C = 0 and one for C = 1. We see that the required specifications are satisfied because for either control input, the counter will eventually reach state 0 regardlesss of it s initial state. Step 6: the circuit can now be built. Here we will assume that any basic gate (AND, OR, NAND, NOR, XOR, XNOR, Inverter) can be used. From the Karnaugh maps we have: D 1 = C Q 1 Q 2 + C Q 1 Q 2 + C Q 1 Q 2 + C Q 3 = C Q 1 Q 2 + C (Q 1 Q 2 + Q 3 ) D 2 = Q 2 Q 3 + Q 1 Q 2 = Q 2 [Q 1 + Q 3 ] D 3 = C Q 1 + C Q 3 + C Q 2 = C (Q 1 + Q 2 + Q 3 ) = C ([Q 1 + Q 3 ] + Q 2) The square brackets indicate a term which appears in more than one Boolean expression. There are savings to be made by noting these expressions since only one set of gates needs to be used to implement them. The final circuit is: DOC112: Computer Hardware Lecture 8 5
6 DOC112: Computer Hardware Lecture 8 6
Module 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : [email protected] Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
Digital Logic Design Sequential circuits
Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: [email protected] Dr. Eng. Rania.Swief E-mail: [email protected] Dr. Eng. Ahmed H. Madian Registers An n-bit register
Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage
DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department
Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and
To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Asynchronous Counters. Asynchronous Counters
Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter
Lesson 12 Sequential Circuits: Flip-Flops
Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
Flip-Flops and Sequential Circuit Design
Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6
So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
CS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
CHAPTER 11 LATCHES AND FLIP-FLOPS
CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
Counters & Shift Registers Chapter 8 of R.P Jain
Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without
ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
Gray Code Generator and Decoder by Carsten Kristiansen Napier University. November 2004
Gray Code Generator and Decoder by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Design of a Gray Code Generator and
Digital Controller for Pedestrian Crossing and Traffic Lights
Project Objective: - To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on next-state techniques
CHAPTER 11: Flip Flops
CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach
Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012
Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR
DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.
DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
Counters are sequential circuits which "count" through a specific state sequence.
Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.
Memory Elements. Combinational logic cannot remember
Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
Engr354: Digital Logic Circuits
Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;
Flip-Flops, Registers, Counters, and a Simple Processor
June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number
Upon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann
Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users
Contents COUNTER. Unit III- Counters
COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
Design: a mod-8 Counter
Design: a mod-8 Counter A mod-8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7. So, the stored value follows
Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
Sequential Logic Design Principles.Latches and Flip-Flops
Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch
Chapter 8. Sequential Circuits for Registers and Counters
Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,
3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
7. Latches and Flip-Flops
Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1
Lecture-3 MEMORY: Development of Memory:
Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
DEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453
Theory of Logic Circuits. Laboratory manual. Exercise 3
Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
Asynchronous counters, except for the first block, work independently from a system clock.
Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can
Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop
ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.
ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures
ECE380 Digital Logic
ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during
Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0
ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.
Wiki Lab Book. This week is practice for wiki usage during the project.
Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice
Chapter 5. Sequential Logic
Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
Napier University. School of Engineering. Electronic Engineering A Module: SE42205 Digital Design
Napier University School of Engineering Digital Design Clock + U1 out 5V "1" "2" "4" JK-FF D JK-FF C JK-FF B U8 SN7408 signal U4 SN74107 U5 SN74107 U6 SN74107 U3 SN7408 U2 J Q J Q & J Q & K CQ K CQ K CQ
The components. E3: Digital electronics. Goals:
E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Chapter 9 Latches, Flip-Flops, and Timers
ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary
Let s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential
Lab 1: Study of Gates & Flip-flops
1.1 Aim Lab 1: Study of Gates & Flip-flops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flip-flops. 1.2 Hardware Requirement a. Equipments -
PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1
UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1 This work covers part of outcome 3 of the Edexcel standard module: Outcome 3 is the most demanding
Digital Logic Elements, Clock, and Memory Elements
Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set
Fig1-1 2-bit asynchronous counter
Digital electronics 1-Sequential circuit counters Such a group of flip- flops is a counter. The number of flip-flops used and the way in which they are connected determine the number of states and also
Combinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
[ 4 ] Logic Symbols and Truth Table
[ 4 ] Logic s and Truth Table 1. How to Read MIL-Type Logic s Table 1.1 shows the MIL-type logic symbols used for high-speed CMO ICs. This logic chart is based on MIL-TD-806. The clocked inverter and transmission
(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).
G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment
EXPERIMENT 8. Flip-Flops and Sequential Circuits
EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.
BOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift
Layout of Multiple Cells
Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed
Master/Slave Flip Flops
Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave
Systems I: Computer Organization and Architecture
Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store
SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks
UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES [email protected] BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
DM74LS169A Synchronous 4-Bit Up/Down Binary Counter
Synchronous 4-Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation
A New Paradigm for Synchronous State Machine Design in Verilog
A New Paradigm for Synchronous State Machine Design in Verilog Randy Nuss Copyright 1999 Idea Consulting Introduction Synchronous State Machines are one of the most common building blocks in modern digital
ENGI 241 Experiment 5 Basic Logic Gates
ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.
A Digital Timer Implementation using 7 Segment Displays
A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics
CSE140: Components and Design Techniques for Digital Systems
CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic
We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -
. (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)
1-800-831-4242
Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. DM74LS161A DM74LS163A Synchronous 4-Bit Binary Counters General Description
(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit
Digital Fundamentals. Lab 8 Asynchronous Counter Applications
Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:
DM54161 DM74161 DM74163 Synchronous 4-Bit Counters
DM54161 DM74161 DM74163 Synchronous 4-Bit Counters General Description These synchronous presettable counters feature an internal carry look-ahead for application in high-speed counting designs The 161
Digital Fundamentals
igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage
