# Let s put together a Manual Processor

Size: px
Start display at page:

## Transcription

1 Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1

2 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce a result. Processors can be operated in different ways for example as: A central processor unit (CPU) A peripheral of another computer Array Processor Graphics Processor (GPU) A manually programmed processor Stand alone calculator We will now design a manual (or externally programmed) processor. Hardware Lecture 14 Slide 2

3 The Block Diagram of a Processor Both the data and the instructions will be binary numbers. The processing will be a sequence of one or more steps controlled by a clock. The result will be a binary number. Hardware Lecture 14 Slide 3

4 An 8 bit processor architecture We will base our design on the von Neumann architecture (1945) which subdivided the components of a processor into arithmetic units and registers, and had a common input stream for data and instructions. We will carry out processing on 8 bit bytes (similar to the processors of the 1970 s). Hardware Lecture 14 Slide 4

5 The Actions of a Simple Processor As an example we will find the average of two numbers. Result = (A+B)/2 Because of our choice of architecture all numbers must be represented in 8 bits. Thus the sum A+B must be less than 256. We will see later on how to extend the processing to cope with larger numbers. Hardware Lecture 14 Slide 5

6 The Actions of a Simple Processor The following steps are carried out: 1. The first number is set up on the input lines and stored in a register (A) 2. The second number is set up on the input lines and stored in a register (B) 3. The arithmetic circuits are set up to add register A to register B. 4. The resulting sum of A and B is transferred back into register A. 5. The shifting circuits are set up to shift the contents of register A one bit to the right. 6. The result is loaded onto an output register (Res). The processor is a sequential digital circuit Hardware Lecture 14 Slide 6

7 Designing a Processor From the example we see that we need a number of different components to make our processor: Registers: Registers to store the input data (A) & (B) A register to store the result (Res) A one bit register to store the carry (C)(if any) A register to store the instruction (IR) Arithmetic Circuits: An 8 bit adder An 8 bit shifter Hardware Lecture 14 Slide 7

8 The data path diagram The example also suggests that the registers and arithmetic units must be connected in a specific way. A simple data path diagram might be: Hardware Lecture 14 Slide 8

9 The data path diagram Note the following about the data path diagram: There is no information about when the data transfers occur. The diagram shows only the possible paths where data can be transferred. The arithmetic and shift operations are done by combinational circuits without more registers. The function of the arithmetic circuits are controlled by the bits in the instruction register. The processor is unable to execute further operations on the results register. Hardware Lecture 14 Slide 9

10 The Arithmetic-Logic Unit (ALU) We now design one important component of the central processor unit - the ALU - which carries out arithmetic or logic operations on its two inputs A and B. We will design a 4-bit unit that can be used as a building block to construct ALUs of any precision. The select lines (S2, S1, S0) determine the function of A and B that appears on the output. Hardware Lecture 14 Slide 10

11 The ALU functions The selection bits determine which out of 8 possible functions is used. Selection Function B-A 010 A-B 011 A plus B 100 A XOR B 101 A OR B 110 A AND B When Cin = 1 three operations change: 011: Res = A plus B plus 1 010: Res = A - B : Res = B - A - 1 Hardware Lecture 14 Slide 11

12 Designing the ALU An arithmetic logic unit is a simple combinatorial circuit that can be built from components that we have already designed. To provide the arithmetic functions we use adders and subtractors. Hardware Lecture 14 Slide 12

13 Designing the ALU The logic functions are provided by simple gates. We need a multiplexer for each bit of the ALU to make the function selection. Hardware Lecture 14 Slide 13

14 Designing the ALU To finish the job we need one more multiplexer to provide the carry out. Hardware Lecture 14 Slide 14

15 Extending the ALU to 8 bits We can now follow the functional approach and extend our ALU to 8 bits Similarly we can scale it up to 32 bits or larger as the need arises. Hardware Lecture 14 Slide 15

16 Organising the Carry We can use a 2-to-1 multiplexer to allow two different carry input bits. The Carry in may be set to 1 or to the previous Carry out. The carry may be set to zero by setting the register C to zero. Thus the full range of arithmetic operations can be used. Hardware Lecture 14 Slide 16

17 Problem Why set the carry this way? Wouldn t it be simpler to connect the multiplexer inputs to 1 & 0 rather than using register C? Hardware Lecture 14 Slide 17

18 The Shifter Earlier in the course we discussed a specialised register, called the shift register, which could shift its contents let or right depending on a multiplexer selection. We could incorporate such a shift register in our design, but instead we will make use of a simpler shifter which does not store the result. We can achieve all the functionality we need by using multiplexers, and avoid the need for complex clocking arrangements. Hardware Lecture 14 Slide 18

19 A four function Shifter Our first shifter design will have four functions determined by two selection bits and will have a data length of eight bits. Hardware Lecture 14 Slide 19

20 The Shifter Functions The basic shifter will perform four operations depending on its two control inputs. These are: 00 Hold 01 Arithmetic shift left (with carry in) 10 Arithmetic shift right 11 Rotate right It is implemented simply using one multiplexer per bit. Hardware Lecture 14 Slide 20

21 Arithmetic Shifts Arithmetic Left Shift Arithmetic Right Shift Rotate Right Hardware Lecture 14 Slide 21

22 The four function shifter circuit 00 (A) 01 (B) 10 (C) 11 (D) Hold Arithmetic Shift Left Arithmetic Shift Right Rotate Right Hardware Lecture 14 Slide 22

23 Adding more functions to the Shifter There are many other different possible shifts that programmers may want to use. One example is: Logical Shift Right: This could be done by using first an ALU operation (Data AND ) followed by a rotate right, but that would involve more processing steps and therefore be slow. Hardware Lecture 14 Slide 23

24 The eight function shifter A variety of useful shifts are defined in this table. F[2] F[1] F[0] Shift Carry Function unchanged left rotate left left 0 arithmetic left shift left Cin left shift with carry right rotate right right 0 logical right shift right Input[7] arithmetic right shift right Cin shift right with carry Hardware Lecture 14 Slide 24

25 The circuit of the eight function shifter It is a trivial matter to design a similar shifter of any precision. Hardware Lecture 14 Slide 25

26 The Data Path Diagram Again We now can put more detail onto the data path diagram: Note that we have not used the Cin input to the shifter in this processor. It will be connected to logic-0. Hardware Lecture 14 Slide 26

### (Refer Slide Time: 00:01:16 min)

Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

### Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

### CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions

CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How

### Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s)

Addressing The problem Objectives:- When & Where do we encounter Data? The concept of addressing data' in computations The implications for our machine design(s) Introducing the stack-machine concept Slide

### A s we saw in Chapter 4, a CPU contains three main sections: the register section,

6 CPU Design A s we saw in Chapter 4, a CPU contains three main sections: the register section, the arithmetic/logic unit (ALU), and the control unit. These sections work together to perform the sequences

### Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

### Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

### Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Lecture 9 - Register Transfer and Microoperations Microoperations Digital systems are modular in nature, with modules containing registers, decoders, arithmetic

### 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

### 5 Combinatorial Components. 5.0 Full adder. Full subtractor

5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations - addition, subtraction, multiplication and division. logic operations - AND, OR,

### CPU Organisation and Operation

CPU Organisation and Operation The Fetch-Execute Cycle The operation of the CPU 1 is usually described in terms of the Fetch-Execute cycle. 2 Fetch-Execute Cycle Fetch the Instruction Increment the Program

### NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.

CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache

### Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

### Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

### Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually

### Understanding Logic Design

Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1

### Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

### what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

### CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

### A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

### 150127-Microprocessor & Assembly Language

Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an

### MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

### Computer Organization. and Instruction Execution. August 22

Computer Organization and Instruction Execution August 22 CSC201 Section 002 Fall, 2000 The Main Parts of a Computer CSC201 Section Copyright 2000, Douglas Reeves 2 I/O and Storage Devices (lots of devices,

### CSE140 Homework #7 - Solution

CSE140 Spring2013 CSE140 Homework #7 - Solution You must SHOW ALL STEPS for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting

### COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

### Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

### Sistemas Digitais I LESI - 2º ano

Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The

### earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder.

The circuit created is an 8-bit adder. The 8-bit adder adds two 8-bit binary inputs and the result is produced in the output. In order to create a Full 8-bit adder, I could use eight Full -bit adders and

### MULTIPLE CHOICE FREE RESPONSE QUESTIONS

MULTIPLE CHOICE FREE RESPONSE QUESTIONS World ORT Union I n p u t d e v i c e s Where would you find the letters QUERTY? A. Mouse B. Keyboard C.Numeric Keypad How did the computer mouse get its name? A.

### CS 61C: Great Ideas in Computer Architecture Finite State Machines. Machine Interpreta4on

CS 61C: Great Ideas in Computer Architecture Finite State Machines Instructors: Krste Asanovic & Vladimir Stojanovic hbp://inst.eecs.berkeley.edu/~cs61c/sp15 1 Levels of RepresentaKon/ InterpretaKon High

### Central Processing Unit

Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing

### MICROPROCESSOR AND MICROCOMPUTER BASICS

Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

### Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

### Computer organization

Computer organization Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs

### Lecture N -1- PHYS 3330. Microcontrollers

Lecture N -1- PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers

### Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

### Chapter 01: Introduction. Lesson 02 Evolution of Computers Part 2 First generation Computers

Chapter 01: Introduction Lesson 02 Evolution of Computers Part 2 First generation Computers Objective Understand how electronic computers evolved during the first generation of computers First Generation

### Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Review Computers in mid 50 s Hardware was expensive

### Two's Complement Adder/Subtractor Lab L03

Two's Complement Adder/Subtractor Lab L03 Introduction Computers are usually designed to perform indirect subtraction instead of direct subtraction. Adding -B to A is equivalent to subtracting B from A,

### Memory Elements. Combinational logic cannot remember

Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

### CSCI 4717 Computer Architecture. Function. Data Storage. Data Processing. Data movement to a peripheral. Data Movement

CSCI 4717/5717 Computer Architecture Topic: Functional View & History Reading: Sections 1.2, 2.1, & 2.3 Function All computer functions are comprised of four basic operations: Data processing Data storage

### DEPARTMENT OF INFORMATION TECHNLOGY

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

### Decimal Number (base 10) Binary Number (base 2)

LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

### Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas

Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count

### Flip-Flops, Registers, Counters, and a Simple Processor

June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

### LSN 2 Computer Processors

LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

### Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

### Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design

Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards eddie.edwards@imperial.ac.uk At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components

### The components. E3: Digital electronics. Goals:

E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

### Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann

Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users

### Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY

### Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

### CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

### An Effective Deterministic BIST Scheme for Shifter/Accumulator Pairs in Datapaths

An Effective Deterministic BIST Scheme for Shifter/Accumulator Pairs in Datapaths N. KRANITIS M. PSARAKIS D. GIZOPOULOS 2 A. PASCHALIS 3 Y. ZORIAN 4 Institute of Informatics & Telecommunications, NCSR

### Systems I: Computer Organization and Architecture

Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store

### 3.Basic Gate Combinations

3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and

### The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization

The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization David Sullins, Dr. Hardy Pottinger, Dr. Daryl Beetner University of Missouri Rolla Session I.

### Section 1.4 Place Value Systems of Numeration in Other Bases

Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason

### DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED

DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift

### Counters and Decoders

Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

### (Refer Slide Time: 02:39)

Computer Architecture Prof. Anshul Kumar Department of Computer Science and Engineering, Indian Institute of Technology, Delhi Lecture - 1 Introduction Welcome to this course on computer architecture.

### Lab 1: Full Adder 0.0

Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify

INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

### Chapter 5 Instructor's Manual

The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction

### Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

### COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

### CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks

### 1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12

C5 Solutions 1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 To Compute 0 0 = 00000000 To Compute 1 Step 1. Convert 1 to binary 00000001 Step 2. Flip the bits 11111110

### İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

### EE360: Digital Design I Course Syllabus

: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential

### Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components

### SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands

SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands Ben Bruidegom, benb@science.uva.nl AMSTEL Instituut Universiteit van Amsterdam Kruislaan 404 NL-1098 SM Amsterdam

### Building a computer. Electronic Numerical Integrator and Computer (ENIAC)

Building a computer Electronic Numerical Integrator and Computer (ENIAC) CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Layers of abstrac

### EC 362 Problem Set #2

EC 362 Problem Set #2 1) Using Single Precision IEEE 754, what is FF28 0000? 2) Suppose the fraction enhanced of a processor is 40% and the speedup of the enhancement was tenfold. What is the overall speedup?

### Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming

### Module 3: Floyd, Digital Fundamental

Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

### INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:

### Copyright 2012 Pearson Education, Inc. Chapter 1 INTRODUCTION TO COMPUTING AND ENGINEERING PROBLEM SOLVING

Chapter 1 INTRODUCTION TO COMPUTING AND ENGINEERING PROBLEM SOLVING Outline Objectives 1. Historical Perspective 2. Recent Engineering Achievements 3. Computing Systems 4. Data Representation and Storage

### Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Lecture : Microprogrammed Control Microprogramming The control unit is responsible for initiating the sequence of microoperations that comprise instructions.

### An Introduction to the ARM 7 Architecture

An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new

### AC 2007-2027: A PROCESSOR DESIGN PROJECT FOR A FIRST COURSE IN COMPUTER ORGANIZATION

AC 2007-2027: A PROCESSOR DESIGN PROJECT FOR A FIRST COURSE IN COMPUTER ORGANIZATION Michael Black, American University Manoj Franklin, University of Maryland-College Park American Society for Engineering

### Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite

### 2.0 Chapter Overview. 2.1 Boolean Algebra

Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital

### TYPES OF COMPUTERS AND THEIR PARTS MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS 1. What is a computer? a. A programmable electronic device that processes data via instructions to output information for future use. b. Raw facts and figures that has no meaning

### EE482: Advanced Computer Organization Lecture #11 Processor Architecture Stanford University Wednesday, 31 May 2000. ILP Execution

EE482: Advanced Computer Organization Lecture #11 Processor Architecture Stanford University Wednesday, 31 May 2000 Lecture #11: Wednesday, 3 May 2000 Lecturer: Ben Serebrin Scribe: Dean Liu ILP Execution

### PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

### BASIC COMPUTER ORGANIZATION AND DESIGN

1 BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

### KS3 Computing Group 1 Programme of Study 2015 2016 2 hours per week

1 07/09/15 2 14/09/15 3 21/09/15 4 28/09/15 Communication and Networks esafety Obtains content from the World Wide Web using a web browser. Understands the importance of communicating safely and respectfully

### Central Processing Unit (CPU)

Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

### Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture

### exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking

### COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

### l C-Programming l A real computer language l Data Representation l Everything goes down to bits and bytes l Machine representation Language

198:211 Computer Architecture Topics: Processor Design Where are we now? C-Programming A real computer language Data Representation Everything goes down to bits and bytes Machine representation Language

### Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

### ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path

ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path Project Summary This project involves the schematic and layout design of an 8-bit microprocessor data

### Counters are sequential circuits which "count" through a specific state sequence.

Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage: