Two-level logic using NAND gates
|
|
|
- Amie Rich
- 9 years ago
- Views:
Transcription
1 CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place compensating inversion at inputs of OR gate OR gate with inverted inputs is a NND gate de Morgan s: + B = ( B) Two-level NND-NND network inverted inputs are not counted in a typical circuit, inversion is done once and signal distributed 2 1
2 Two-level logic using NND and NOR gates NND-NND and NOR-NOR networks de Morgan s law: ( + B) = B ( B) = + B written differently: + B = ( B ) ( B) = ( + B ) 3 Conversion between forms Introduce "bubbles - inversions conservation of inversions do not alter logic function B Z C D 4 2
3 Conversion between forms Example: map ND/OR network to NOR/NOR network B C D Z 5 Multiple-Output Circuits Many circuits have more than one output Can give each a separate circuit, or can share gates Ex: F = ab + c, G = ab + bc Option 1: Separate circuits Option 2: Shared gates 6 3
4 Multiple-Output Example: BCD to 7-Segment Converter a f b g e c d abcdefg = (a) a = w x y z + w x yz + w x yz + w xy z + w xyz + w xyz + wx y z + wx y z b = w x y z + w x y z + w x yz + w x yz + w xy z + w xyz + wx y z + wx y z (b) 7 Multi-level logic x = D F + E F + B D F + B E F + C D F + C E F + G reduced sum-of-products form already simplified 6 x 3-input ND gates + 1 x 7-input OR gate 25 wires (19 literals plus 6 internal wires) 8 4
5 Non-Ideal Gate Behavior Delay a F a F Time Real gates don t respond immediately to input changes Rise/fall time Delay Pulse width 9 Momentary changes in outputs Can be useful pulse shaping circuits Can be a problem incorrect circuit operation (glitches/hazards) Example: pulse shaping circuit = 0 delays matter B C D F D remains high for three gate delays after changes from low to high F is not always 0 pulse 3 gate-delays wide 10 5
6 Hazards Glitch unwanted pulse on the output Circuit with a potential for a glitch has a hazard Three types: Static-0 : output should be 0 but has a 1 glitch Static-1 : output should be 1 but has a 0 glitch Dynamic: transition 0->1 or 1->0 with a glitch 11 Eliminating Hazards Example F(,B,C,D)=Σm(1,3,5,7,8,9,12,13) Test two single bit input transitions: > > 0101 C Z C B D D 12 6
7 CSE140: Components and Design Techniques for Digital Systems Regular logic implementation Tajana Simunic Rosing 13 ND-OR-invert gates OI function: three stages of logic ND, OR, Invert multiple gates "packaged" as a single circuit block logical concept possible implementation B C D Z B C D Z ND OR Invert NND NND Invert 2x2 OI gate symbol & & + 3x2 OI gate symbol & &
8 Conversion to OI forms General procedure to place in OI form compute the complement of the function in sum-of-products form by grouping the 0s in the Karnaugh map Example: XOR implementation xor B = B + B 15 Programmable logic arrays Pre-fabricated building block of many ND/OR gates "personalized" by making/breaking connections among the gates programmable array block diagram for sum of products form inputs ND array product terms OR array outputs 16 8
9 Enabling concept Shared product terms among outputs 17 Before & after programming Two different technologies: fuse (normally connected, break unwanted ones) anti-fuse (normally disconnected, make wanted connections) B C B B'C C' B'C' Before F0 F1 F2 F3 fter 18 9
10 Programmable logic array example Multiple functions of, B, C F1 = B C F2 = + B + C F3 = ' B' C' F4 = ' + B' + C' F5 = xor B xor C F6 = xnor B xnor C B C F1F2F3F4F5F B C full decoder as for memory address bits stored in memory F1 F2 F3 F4 F5 F6 'B'C' 'B'C 'BC' 'BC B'C' B'C BC' BC 19 PLs and PLs Programmable logic array (PL) what we've seen so far unconstrained fully-general ND and OR arrays Programmable array logic (PL) constrained topology of the OR array innovation by Monolithic Memories faster and smaller OR plane a given column of the OR array has access to only a subset of the possible product terms 20 10
11 Example Map the following functions to the PL below: W = B + C + BC X = BC + B + B Y = BC + BC + B C B C W X Y 21 Read-only memories Two dimensional array of 1s and 0s entry (row) is called a "word" width of row = word-size index is called an "address" address is input selected word is output n word lines decoder i j word[i] = 0011 word[j] = 1010 internal organization 0 0 n-1 ddress bit lines (normally 1; set to 0 by a switch) 22 11
12 ROM structure Similar to a PL structure but with a fully decoded ND array completely flexible OR array (unlike PL) n address lines inputs decoder 2 n word lines memory array (2 n words by m bits) outputs m data lines 23 Regular logic structures for two-level logic ROM full ND plane, general OR plane cheap (high-volume component) can implement any function of n inputs medium speed PL programmable ND plane, fixed OR plane intermediate cost can implement functions limited by number of terms high speed (only one programmable plane that is much smaller than ROM's decoder) PL programmable ND and OR planes most expensive (most complex in design, need more sophisticated tools) can implement any function up to a product term limit slow (two programmable planes) 24 12
13 CSE140: Components and Design Techniques for Digital Systems Muxes and demuxes Tajana Simunic Rosing 25 Multiplexor (Mux) Mux routes one of its N data inputs to its one output, based on binary value of select inputs 4 input mux needs 2 select inputs to indicate which input to route through 8 input mux 3 select inputs N inputs log 2 (N) selects 26 13
14 Mux Internal Design 2 1 i0 d i1 2x1 mux i0 i d i0 i d 27 Muxes Commonly Together -- N-bit Mux a3 b3 a2 b2 a1 b1 a0 b0 2 1 i0 d i1 2 1 i0 d i1 2 1 i0 d i1 i0 2 1 d i1 B 4 4 I0 I1 4-bit 2x1 D 4 C Simplifying notation: 4 C is short for c3 c2 c1 c0 Ex: Two 4-bit inputs, (a3 a2 a1 a0), and B (b3 b2 b1 b0) 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between or B 28 14
15 Multiplexers/selectors (cont'd) 2:1 mux: Z = 'I 0 + I 1 4:1 mux: Z = 'B'I 0 + 'BI 1 + B'I 2 + BI 3 8:1 mux: Z = 'B'C'I 0 + 'B'CI 1 + 'BC'I 2 + 'BCI 3 + B'C'I 4 + B'CI 5 + BC'I 6 + BCI 7 In general: Z = Σ 2 n -1(m k I k ) I0 I1 2:1 mux Z k=0 in minterm shorthand form for a 2 n :1 Mux I0 I1 I2 I3 4:1 mux B Z I0 I1 I2 I3 I4 I5 I6 I7 8:1 mux B C Z 29 N-bit Mux Example Four possible display items Temperature (T), verage miles-per-gallon (), Instantaneous mpg (I), and Miles remaining (M) -- each is 8-bits wide Choose which to display using two inputs x and y Use 8-bit 4x1 mux 30 15
16 Multiplexers as general-purpose logic 2 n-1 :1 multiplexer can implement any function of n variables with n-1 variables used as control inputs and the data inputs tied to the last variable or its complement Example: F(,B,C) = m0 + m2 + m6 + m7 31 Demultiplexers/decoders Decoders/demultiplexers: general concept single data input, n control inputs, 2 n outputs control inputs (called selects (S)) represent binary index of output to which the input is connected data input usually called enable (G) 1:2 Decoder: O0 = G S O1 = G S 2:4 Decoder: O0 = G S1 S0 O1 = G S1 S0 O2 = G S1 S0 O3 = G S1 S0 3:8 Decoder: O0 = G S2 S1 S0 O1 = G S2 S1 S0 O2 = G S2 S1 S0 O3 = G S2 S1 S0 O4 = G S2 S1 S0 O5 = G S2 S1 S0 O6 = G S2 S1 S0 O7 = G S2 S1 S
17 Gate level implementation of demultiplexers 1:2 decoders 2:4 decoders 33 Demultiplexers as general-purpose logic n:2 n decoder can implement any function of n variables with the variables used as control inputs the enable inputs tied to 1 and the appropriate minterms summed to form the function :8 DEC S2 S1 S0 'B'C' 'B'C 'BC' 'BC B'C' B'C BC' BC demultiplexer generates appropriate minterm based on control signals (it "decodes" control signals) B C 34 17
18 Demultiplexers as general-purpose logic (cont d) F1 = 'BC'D + 'B'CD + BCD F2 = BC'D' + BC F3 = (' + B' + C' + D') Enable 4:16 DEC 0 'B'C'D' 1 'B'C'D 2 'B'CD' 3 'B'CD 4 'BC'D' 5 'BC'D 6 'BCD' 7 'BCD 8 B'C'D' 9 B'C'D 10 B'CD' 11 B'CD 12 BC'D' 13 BC'D 14 BCD' 15 BCD B CD 35 Mux and demux combination Uses in multi-point connections 0 1 B0 B1 Sa MUX MUX Sb multiple input sources B Sum Ss DEMUX multiple output destinations S0 S
19 Summary What we ve covered so far: Number representations Switches and CMOS transistor gates Boolean algebra SOP and POS Logic minimization using K-maps Two and multi-level implementation Timing and Hazards OI, PL, PL, ROM implementation Mux and Demux What comes next: LU design Sequential circuits 37 19
CSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Combinational circuits
Combinational circuits Combinational circuits are stateless The outputs are functions only of the inputs Inputs Combinational circuit Outputs 3 Thursday, September 2, 3 Enabler Circuit (High-level view)
Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards
Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation
Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated
Understanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
Combinational Logic Design
Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra
BOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1
United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.
Sistemas Digitais I LESI - 2º ano
Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes ([email protected]) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The
Boolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
Lecture 5: Gate Logic Logic Optimization
Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction
Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and
CSE140: Midterm 1 Solution and Rubric
CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
CSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps
CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.3-2.5) Standard Forms Product-of-Sums (PoS) Sum-of-Products (SoP) converting between Min-terms
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Multi-Level Gate Circuits NAND and NOR Gates Design of Two-Level Circuits Using NAND and NOR Gates
3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
DESIGN OF GATE NETWORKS
DESIGN OF GATE NETWORKS DESIGN OF TWO-LEVEL NETWORKS: and-or and or-and NETWORKS MINIMAL TWO-LEVEL NETWORKS KARNAUGH MAPS MINIMIZATION PROCEDURE AND TOOLS LIMITATIONS OF TWO-LEVEL NETWORKS DESIGN OF TWO-LEVEL
5 Combinatorial Components. 5.0 Full adder. Full subtractor
5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations - addition, subtraction, multiplication and division. logic operations - AND, OR,
COMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
Logic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
RAM & ROM Based Digital Design. ECE 152A Winter 2012
RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in
Simplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
Digital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit
Chapter 7 Memory and Programmable Logic
NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
NAND and NOR Implementation
University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals harles R. Kime ection 2 Fall 200 hapter 2 ombinational Logic ircuits Part 7 harles Kime & Thomas Kaminski NND and NOR Implementation
CH3 Boolean Algebra (cont d)
CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. Exclusive-OR and Equivalence operations
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
DEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453
Elementary Logic Gates
Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate
ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
Figure 8-1 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
Binary full adder. 2-bit ripple-carry adder. CSE 370 Spring 2006 Introduction to Digital Design Lecture 12: Adders
SE 370 Spring 2006 Introduction to Digital Design Lecture 12: dders Last Lecture Ls and Ls Today dders inary full 1-bit full omputes sum, carry-out arry-in allows cascaded s = xor xor = + + 32 ND2 11 ND2
Boolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra
2 Ver..4 George Boole was an English mathematician of XIX century can operate on logic (or Boolean) variables that can assume just 2 values: /, true/false, on/off, closed/open Usually value is associated
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
Karnaugh Maps (K-map) Alternate representation of a truth table
Karnaugh Maps (K-map) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization
Upon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking
SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks
UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
CSE140: Components and Design Techniques for Digital Systems
CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012
Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR
Combinational-Circuit Building Blocks
May 9, 24 :4 vra6857_ch6 Sheet number Page number 35 black chapter 6 Combinational-Circuit Building Blocks Chapter Objectives In this chapter you will learn about: Commonly used combinational subcircuits
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
Optimization and Comparison of 4-Stage Inverter, 2-i/p NAND Gate, 2-i/p NOR Gate Driving Standard Load By Using Logical Effort
Optimization and Comparison of -Stage, -i/p NND Gate, -i/p NOR Gate Driving Standard Load By Using Logical Effort Satyajit nand *, and P.K.Ghosh ** * Mody Institute of Technology & Science/ECE, Lakshmangarh,
Unit 3 Boolean Algebra (Continued)
Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication
Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course
Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University [email protected] Raghu Korrapati,
FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct
Lab 1: Study of Gates & Flip-flops
1.1 Aim Lab 1: Study of Gates & Flip-flops To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flip-flops. 1.2 Hardware Requirement a. Equipments -
COMPUTER SCIENCE. Paper 1 (THEORY)
COMPUTER SCIENCE Paper 1 (THEORY) (Three hours) Maximum Marks: 70 (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time) -----------------------------------------------------------------------------------------------------------------------
(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
Logic Reference Guide
Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).
G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment
Combinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010
Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic simplification Proving validity of an
A Course Material on DIGITAL PRINCIPLES AND SYSTEM DESIGN
A Course Material on By MS.G.MANJULA ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM 638 56 QUALITY CERTIFICATE This is to certify
CHAPTER 16 MEMORY CIRCUITS
CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only
C H A P T E R. Logic Circuits
C H A P T E R Logic Circuits Many important functions are naturally computed with straight-line programs, programs without loops or branches. Such computations are conveniently described with circuits,
ANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
Basic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
Operating Manual Ver.1.1
4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-
Adder.PPT(10/1/2009) 5.1. Lecture 13. Adder Circuits
Adder.T(//29) 5. Lecture 3 Adder ircuits Objectives Understand how to add both signed and unsigned numbers Appreciate how the delay of an adder circuit depends on the data values that are being added together
Designing Digital Circuits a modern approach. Jonathan Turner
Designing Digital Circuits a modern approach Jonathan Turner 2 Contents I First Half 5 1 Introduction to Designing Digital Circuits 7 1.1 Getting Started.......................... 7 1.2 Gates and Flip
2.0 Chapter Overview. 2.1 Boolean Algebra
Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital
[ 4 ] Logic Symbols and Truth Table
[ 4 ] Logic s and Truth Table 1. How to Read MIL-Type Logic s Table 1.1 shows the MIL-type logic symbols used for high-speed CMO ICs. This logic chart is based on MIL-TD-806. The clocked inverter and transmission
Introduction. The Quine-McCluskey Method Handout 5 January 21, 2016. CSEE E6861y Prof. Steven Nowick
CSEE E6861y Prof. Steven Nowick The Quine-McCluskey Method Handout 5 January 21, 2016 Introduction The Quine-McCluskey method is an exact algorithm which finds a minimum-cost sum-of-products implementation
Interfacing To Alphanumeric Displays
Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems
Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: [email protected]. Sequential Circuit
Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: [email protected] 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements
Logic gates. Chapter. 9.1 Logic gates. MIL symbols. Learning Summary. In this chapter you will learn about: Logic gates
Chapter 9 Logic gates Learning Summary In this chapter you will learn about: Logic gates Truth tables Logic circuits/networks In this chapter we will look at how logic gates are used and how truth tables
Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra
The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used
Let s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
Programming Logic controllers
Programming Logic controllers Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing,
COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR.
COURSE SYLLABUS COURSE NUMBER AND TITLE: CETT 1325- Digital Fundamentals COURSE (CATALOG) DESCRIPTION An entry level course in digital electronics covering number systems, binary mathematics, digital codes,
A N. O N Output/Input-output connection
Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash, EEPROM Static RAM (SRAM) Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM Generic pin configuration:
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Lecture 5: Logical Effort
Introduction to CMOS VLSI Design Lecture 5: Logical Effort David Harris Harvey Mudd College Spring 2004 Outline Introduction Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of
NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.
CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES [email protected] BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:
Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift
Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın
Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: [email protected] Grading 1st Midterm -
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
Digital Logic Elements, Clock, and Memory Elements
Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set
Introduction to Digital System Design
Introduction to Digital System Design Chapter 1 1 Outline 1. Why Digital? 2. Device Technologies 3. System Representation 4. Abstraction 5. Development Tasks 6. Development Flow Chapter 1 2 1. Why Digital
Lesson 12 Sequential Circuits: Flip-Flops
Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
