Introduction to Digital System Design
|
|
|
- Madlyn Lawson
- 9 years ago
- Views:
Transcription
1 Introduction to Digital System Design Chapter 1 1
2 Outline 1. Why Digital? 2. Device Technologies 3. System Representation 4. Abstraction 5. Development Tasks 6. Development Flow Chapter 1 2
3 1. Why Digital Chapter 1 3
4 Advantages Advantage of digital devices Reproducibility of information Flexibility and functionality: easier to store, transmit and manipulate information Economy: cheaper device and easier to design Moore s law Transistor geometry Chips double its density (number of transistor) in every 18 months Devices become smaller, faster and cheaper Now a chip consists of hundreds of million gates And we can have a wireless-pda-mp3-playercamera-gps-cell-phone gadget very soon Chapter 1 4
5 Applications of digital systems Digitization has spread to a wide range of applications, including information (computers), telecommunications, control systems etc. Digital circuitry replaces many analog systems: Audio recording: from tape to music CD to MP3 (MPEG Layer 3) player Image processing: from silver-halide film to digital camera Telephone switching networks Control of mechanical system: e.g., flight-by-wire Chapter 1 5
6 e.g, digital circuit in a wireless communication system transmitter info A / D Data compression Data encryption Error correction coding Modulation digital implementation info D / A Data decryption Error correction de-coding Data decompression Demodulation digital implementation receiver Chapter 1 6
7 e.g, digital circuit in a control system A / D Controller D / A actu ator Plant Sen sor output set point digital implementation Chapter 1 7
8 How to implement a digital system No two applications are identical and every one needs certain amount of customization Basic methods for customization General-purpose hardware with custom software General purpose processor: e.g., performance-oriented processor (e.g., Pentium), cost-oriented processor (e.g., PIC micro-controller) Special purpose processor: with architecture to perform a specific set of functions: e.g., DSP processor (to do multiplication-addition), network processor (to do buffering and routing), graphic engine (to do 3D rendering) Chapter 1 8
9 Custom hardware Custom software on a custom processor (known as hardware-software co-design) Trade-off between Programmability, Coverage, Cost, Performance, and Power consumption A complex application contains many different tasks and use more than one customization methods Chapter 1 9
10 2. Device Technologies Chapter 1 10
11 Fabrication of an IC Transistors and connection are made from many layers (typical 10 to 15 in CMOS) built on top of one another Each layer has a special pattern defined by a mask One important aspect of an IC is the length of a smallest transistor that can be fabricated It is measured in micron (μm, 10-6 meter) E.g., we may say an IC is built with 0.50 μm process The process continues to improve, as witnessed by Moore s law The state-of-art process approaches less than a fraction of 0.1 μm (known as deep sub-micron) Chapter 1 11
12 Classification of device technologies Where customization is done: In a fab (fabrication facility): ASIC (Application Specific IC) In the field : non-asic Classification: Full-custom ASIC Standard cell ASIC Gate array ASIC Complex field programmable logic device Simple field programmable logic device Off-the-shelf SSI (Small Scaled IC)/MSI (Medium Scaled IC) components Chapter 1 12
13 Full-custom ASIC All aspects (e.g., size of a transistor) of a circuit are tailored for a particular application. Circuit fully optimized Design extremely complex and involved Only feasible for small components Masks needed for all layers Chapter 1 13
14 Standard-Cell ASIC Circuit made of a set of pre-defined logic, known as standard cells E.g., basic logic gates, 1-bit adder, D FF etc Layout of a cell is pre-determined, but layout of the complete circuit is customized Masks needed for all layers Chapter 1 14
15 Gate array ASIC Circuit is built from an array of a single type of cell (known as base cell) Base cells are pre-arranged and placed in fixed positions, aligned as one- or twodimensional array More sophisticated components (macro cells) can be constructed from base cells Masks needed only for metal layers (connection wires) Chapter 1 15
16 Complex Field Programmable Device Device consists of an array of generic logic cells and general interconnect structure Logic cells and interconnect can be programmed by utilizing semiconductor fuses or switches Customization is done in the filed Two categories: CPLD (Complex Programmable Logic Device) FPGA (Field Programmable Gate Array) No custom mask needed Chapter 1 16
17 Simple Field Programmable Device Programmable device with simple internal structure E.g., PROM (Programmable Read Only Memory) PAL (Programmable Array Logic) No custom mask needed Replaced by CPLD/FPGA Chapter 1 17
18 SSI/MSI components Small parts with fixed, limited functionality E.g., 7400 TTL series (more than 100 parts) Resource (e.g., power, board area, manufacturing cost etc.) is consumed by package but not silicon No longer a viable option Chapter 1 18
19 Three viable technologies Standard Cell ASIC Gate Array ASIC FPGA/CPLD Chapter 1 19
20 Comparison of technology Area (Size): silicon real-estate Standard cell is the smallest since the cells and interconnect are customized FPGA is the largest Overhead for programmability Capacity cannot be completely utilized Speed (Performance) Time required to perform a task Power Cost Chapter 1 20
21 Cost Types of cost: NRE (Non-Recurrent Engineering) cost: one-time, per-design cost Part cost: per-unit cost Time-to-market cost loss of revenue Standard cell: high NRE, small part cost and large lead time FPGA: low NRE, large part cost and small lead time Chapter 1 21
22 Graph of per-unit cost Chapter 1 22
23 Summary of technology Trade-off between optimal use of hardware resource and design effort/cost No single best technology Chapter 1 23
24 3. System Representation (View) Chapter 1 24
25 View: different perspectives of a system Behavioral view: Describe functionalities and i/o behavior Treat the system as a black box Structural view: Describe the internal implementation (components and interconnections) Essentially block diagram Physical view: Add more info to structural view: component size, component locations, routing wires E.g., layout of a print circuit board Chapter 1 25
26 e.g., structural and physical view Chapter 1 26
27 4. Abstraction Chapter 1 27
28 How to manage complexity for a chip with 10 million transistors? Abstraction: simplified model of a system show the selected features Ignore associated detail E.g., timing of an inverter Chapter 1 28
29 Level of abstractions Transistor level Gate level Register transfer (RT) level Processor level Characteristics of each level Basic building blocks Signal representation Time representation Behavioral representation Physical representation. Chapter 1 29
30 Summary Chapter 1 30
31 RT level RT (Register Transfer) is a misleading term Should use module-level Two meanings: Loosely: represent the module level Formally: a design methodology in which the system operation is described by how the data is manipulated and moved among registers Chapter 1 31
32 View and abstraction are two independent aspects. Combined in a Y- chart Chapter 1 32
33 5. Development Tasks Chapter 1 33
34 Developing a digital system is a refining and validating process Main tasks: Synthesis Physical design Verification Testing Chapter 1 34
35 Synthesis A refinement process that realizes a description with components from the lower abstraction level. The resulting description is a structural view in the lower abstraction level Type of synthesis: High-level synthesis RT level synthesis Gate level synthesis Technology mapping Chapter 1 35
36 Physical Design Placement and routing Refining from structural view to physical view Derive lay out of a netlist Circuit extraction: Determine the wire resistance of capacitance Others Derivation of power grid and clock distribution network, assurance of signal integrity etc. Chapter 1 36
37 Verification Check whether a design meets the specification and performance goals. Concern the correctness of the initial design and the refinement processes Two aspects Functionality Performance (timing) Chapter 1 37
38 Method of Verification Simulation spot check: cannot verify the absence of errors Can be computation inensive Timing analysis Just check delay Formal verification apply formal math techniques determine its property E.g, equivalence checking Hardware emulation Chapter 1 38
39 Testing Testing is the process of detecting physical defects of a die or a package occurred at the time of manufacturing Testing and verification are different tasks. Difficult for large circuit Need to add auxiliary testing circuit in design E.g., built-in self test (BIST), scan chain etc. Chapter 1 39
40 Limitation of EDA software EDA (Electronic Design Automation) EDA software can automate some tasks Can software replace human hardware designer? (e.g., C-program to chip) Synthesis software should be treated as a tool to perform transformation and local optimization cannot alter the original architecture or convert a poor design into a good one Chapter 1 40
41 Development Flow Chapter 1 41
42 Medium design targeting FPGA Circuit up to 50,000 gates data file Synthesis Physical Design Verification RTL description process 1 1 testbench synthesis 3 simulation 2 netlist delay file placement & routing 54 simulation 4 configuration file delay file device programming 7 simulation/ timing analysis 6 FPGA chip 8 Chapter 1 42
43 Additional tasks Large design targeting FPGA Design partition More verification Large design targeting ASIC Thorough verification Testing Physical design Chapter 1 43
44 Goal of this course Goal: Systematically develop efficient, portable RT level designs that can be easily integrated into a larger system Design for efficiency Design for large Large module, large system, overall development process Design for portability Device independent, software dependent, design reuse Chapter 1 44
7a. System-on-chip design and prototyping platforms
7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit
Agenda. Michele Taliercio, Il circuito Integrato, Novembre 2001
Agenda Introduzione Il mercato Dal circuito integrato al System on a Chip (SoC) La progettazione di un SoC La tecnologia Una fabbrica di circuiti integrati 28 How to handle complexity G The engineering
9/14/2011 14.9.2011 8:38
Algorithms and Implementation Platforms for Wireless Communications TLT-9706/ TKT-9636 (Seminar Course) BASICS OF FIELD PROGRAMMABLE GATE ARRAYS Waqar Hussain [email protected] Department of Computer
VLSI Design Verification and Testing
VLSI Design Verification and Testing Instructor Chintan Patel (Contact using email: [email protected]). Text Michael L. Bushnell and Vishwani D. Agrawal, Essentials of Electronic Testing, for Digital,
What is a System on a Chip?
What is a System on a Chip? Integration of a complete system, that until recently consisted of multiple ICs, onto a single IC. CPU PCI DSP SRAM ROM MPEG SoC DRAM System Chips Why? Characteristics: Complex
System-on. on-chip Design Flow. Prof. Jouni Tomberg Tampere University of Technology Institute of Digital and Computer Systems. jouni.tomberg@tut.
System-on on-chip Design Flow Prof. Jouni Tomberg Tampere University of Technology Institute of Digital and Computer Systems [email protected] 26.03.2003 Jouni Tomberg / TUT 1 SoC - How and with whom?
Architectures and Platforms
Hardware/Software Codesign Arch&Platf. - 1 Architectures and Platforms 1. Architecture Selection: The Basic Trade-Offs 2. General Purpose vs. Application-Specific Processors 3. Processor Specialisation
Design Verification and Test of Digital VLSI Circuits NPTEL Video Course. Module-VII Lecture-I Introduction to Digital VLSI Testing
Design Verification and Test of Digital VLSI Circuits NPTEL Video Course Module-VII Lecture-I Introduction to Digital VLSI Testing VLSI Design, Verification and Test Flow Customer's Requirements Specifications
Contents. System Development Models and Methods. Design Abstraction and Views. Synthesis. Control/Data-Flow Models. System Synthesis Models
System Development Models and Methods Dipl.-Inf. Mirko Caspar Version: 10.02.L.r-1.0-100929 Contents HW/SW Codesign Process Design Abstraction and Views Synthesis Control/Data-Flow Models System Synthesis
Digital Systems Design! Lecture 1 - Introduction!!
ECE 3401! Digital Systems Design! Lecture 1 - Introduction!! Course Basics Classes: Tu/Th 11-12:15, ITE 127 Instructor Mohammad Tehranipoor Office hours: T 1-2pm, or upon appointments @ ITE 441 Email:
design Synopsys and LANcity
Synopsys and LANcity LANcity Adopts Design Reuse with DesignWare to Bring Low-Cost, High-Speed Cable TV Modem to Consumer Market What does it take to redesign a commercial product for a highly-competitive
ELEC 5260/6260/6266 Embedded Computing Systems
ELEC 5260/6260/6266 Embedded Computing Systems Spring 2016 Victor P. Nelson Text: Computers as Components, 3 rd Edition Prof. Marilyn Wolf (Georgia Tech) Course Topics Embedded system design & modeling
Testing of Digital System-on- Chip (SoC)
Testing of Digital System-on- Chip (SoC) 1 Outline of the Talk Introduction to system-on-chip (SoC) design Approaches to SoC design SoC test requirements and challenges Core test wrapper P1500 core test
Digital Integrated Circuit (IC) Layout and Design
Digital Integrated Circuit (IC) Layout and Design! EE 134 Winter 05 " Lecture Tu & Thurs. 9:40 11am ENGR2 142 " 2 Lab sections M 2:10pm 5pm ENGR2 128 F 11:10am 2pm ENGR2 128 " NO LAB THIS WEEK " FIRST
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Lesson 7: SYSTEM-ON. SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY. Chapter-1L07: "Embedded Systems - ", Raj Kamal, Publs.: McGraw-Hill Education
Lesson 7: SYSTEM-ON ON-CHIP (SoC( SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY 1 VLSI chip Integration of high-level components Possess gate-level sophistication in circuits above that of the counter,
Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic
Aims and Objectives E 3.05 Digital System Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: [email protected] How to go
EEM870 Embedded System and Experiment Lecture 1: SoC Design Overview
EEM870 Embedded System and Experiment Lecture 1: SoC Design Overview Wen-Yen Lin, Ph.D. Department of Electrical Engineering Chang Gung University Email: [email protected] Feb. 2013 Course Overview
Implementation Details
LEON3-FT Processor System Scan-I/F FT FT Add-on Add-on 2 2 kbyte kbyte I- I- Cache Cache Scan Scan Test Test UART UART 0 0 UART UART 1 1 Serial 0 Serial 1 EJTAG LEON_3FT LEON_3FT Core Core 8 Reg. Windows
ECE 410: VLSI Design Course Introduction
ECE 410: VLSI Design Course Introduction Professor Andrew Mason Michigan State University Spring 2008 ECE 410, Prof. A. Mason Lecture Notes Page i.1 Age of electronics microcontrollers, DSPs, and other
RAM & ROM Based Digital Design. ECE 152A Winter 2012
RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in
ESP-CV Custom Design Formal Equivalence Checking Based on Symbolic Simulation
Datasheet -CV Custom Design Formal Equivalence Checking Based on Symbolic Simulation Overview -CV is an equivalence checker for full custom designs. It enables efficient comparison of a reference design
Introduction to System-on-Chip
Introduction to System-on-Chip COE838: Systems-on-Chip Design http://www.ee.ryerson.ca/~courses/coe838/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University
INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE
INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:
International Journal of Electronics and Computer Science Engineering 1482
International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant
what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
IL2225 Physical Design
IL2225 Physical Design Nasim Farahini [email protected] Outline Physical Implementation Styles ASIC physical design Flow Floor and Power planning Placement Clock Tree Synthesis Routing Timing Analysis Verification
Codesign: The World Of Practice
Codesign: The World Of Practice D. Sreenivasa Rao Senior Manager, System Level Integration Group Analog Devices Inc. May 2007 Analog Devices Inc. ADI is focused on high-end signal processing chips and
EEC 119B Spring 2014 Final Project: System-On-Chip Module
EEC 119B Spring 2014 Final Project: System-On-Chip Module Dept. of Electrical and Computer Engineering University of California, Davis Issued: March 14, 2014 Subject to Revision Final Report Due: June
Testing & Verification of Digital Circuits ECE/CS 5745/6745. Hardware Verification using Symbolic Computation
Testing & Verification of Digital Circuits ECE/CS 5745/6745 Hardware Verification using Symbolic Computation Instructor: Priyank Kalla ([email protected]) 3 Credits Mon, Wed, 1:25-2:45pm, WEB L105 Office
EMBEDDED SYSTEM BASICS AND APPLICATION
EMBEDDED SYSTEM BASICS AND APPLICATION TOPICS TO BE DISCUSSED System Embedded System Components Classifications Processors Other Hardware Software Applications 2 INTRODUCTION What is a system? A system
Space product assurance
ECSS-Q-ST-60-02C Space product assurance ASIC and FPGA development ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands Foreword This Standard is one of the series of
An Open Architecture through Nanocomputing
2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore An Open Architecture through Nanocomputing Joby Joseph1and A.
State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop
Photos placed in horizontal position with even amount of white space between photos and header State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop Michael Holmes Manager, Mixed Signal ASIC/SoC
Digital VLSI Systems Design Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras.
Digital VLSI Systems Design Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 1 Introduction to VLSI Design Hello Everyone. In this lecture, we are
Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX
White Paper Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX April 2010 Cy Hay Product Manager, Synopsys Introduction The most important trend
System-on-Chip Design with Virtual Components
FEATURE ARTICLE Thomas Anderson System-on-Chip Design with Virtual Components Here in the Recycling Age, designing for reuse may sound like a great idea. But with increasing requirements and chip sizes,
GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8
GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 06057-2905 (860) 489-8003 www.alta-engineering.com
ESE566 REPORT3. Design Methodologies for Core-based System-on-Chip HUA TANG OVIDIU CARNU
ESE566 REPORT3 Design Methodologies for Core-based System-on-Chip HUA TANG OVIDIU CARNU Nov 19th, 2002 ABSTRACT: In this report, we discuss several recent published papers on design methodologies of core-based
Chapter 7 Memory and Programmable Logic
NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array
Design Cycle for Microprocessors
Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types
on-chip and Embedded Software Perspectives and Needs
Systems-on on-chip and Embedded Software - Perspectives and Needs Miguel Santana Central R&D, STMicroelectronics STMicroelectronics Outline Current trends for SoCs Consequences and challenges Needs: Tackling
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
Introduction to Programmable Logic Devices. John Coughlan RAL Technology Department Detector & Electronics Division
Introduction to Programmable Logic Devices John Coughlan RAL Technology Department Detector & Electronics Division PPD Lectures Programmable Logic is Key Underlying Technology. First-Level and High-Level
Lecture 5: Gate Logic Logic Optimization
Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim
Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: [email protected]. Sequential Circuit
Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: [email protected] 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements
Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design
Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design Department of Electrical and Computer Engineering Overview The VLSI Design program is part of two tracks in the department:
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,
Reconfigurable Architecture Requirements for Co-Designed Virtual Machines
Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Kenneth B. Kent University of New Brunswick Faculty of Computer Science Fredericton, New Brunswick, Canada [email protected] Micaela Serra
Design Compiler Graphical Create a Better Starting Point for Faster Physical Implementation
Datasheet Create a Better Starting Point for Faster Physical Implementation Overview Continuing the trend of delivering innovative synthesis technology, Design Compiler Graphical delivers superior quality
Architectural Level Power Consumption of Network on Chip. Presenter: YUAN Zheng
Architectural Level Power Consumption of Network Presenter: YUAN Zheng Why Architectural Low Power Design? High-speed and large volume communication among different parts on a chip Problem: Power consumption
University of Texas at Dallas. Department of Electrical Engineering. EEDG 6306 - Application Specific Integrated Circuit Design
University of Texas at Dallas Department of Electrical Engineering EEDG 6306 - Application Specific Integrated Circuit Design Synopsys Tools Tutorial By Zhaori Bi Minghua Li Fall 2014 Table of Contents
Hardware and Software
Hardware and Software 1 Hardware and Software: A complete design Hardware and software support each other Sometimes it is necessary to shift functions from software to hardware or the other way around
Multiplexers Two Types + Verilog
Multiplexers Two Types + Verilog ENEE 245: Digital Circuits and ystems Laboratory Lab 7 Objectives The objectives of this laboratory are the following: To become familiar with continuous ments and procedural
Digital Circuit Design
Test and Diagnosis of of ICs Fault coverage (%) 95 9 85 8 75 7 65 97.92 SSL 4,246 Shawn Blanton Professor Department of ECE Center for Silicon System Implementation CMU Laboratory for Integrated Systems
BUILD VERSUS BUY. Understanding the Total Cost of Embedded Design. www.ni.com/buildvsbuy
BUILD VERSUS BUY Understanding the Total Cost of Embedded Design Table of Contents I. Introduction II. The Build Approach: Custom Design a. Hardware Design b. Software Design c. Manufacturing d. System
What will I learn as an Electrical Engineering student?
What will I learn as an Electrical Engineering student? Department of Electrical and Computer Engineering Tu5s School of Engineering Trying to decide on a major? Most college course descrip>ons are full
How To Design A Chip Layout
Spezielle Anwendungen des VLSI Entwurfs Applied VLSI design (IEF170) Course and contest Intermediate meeting 3 Prof. Dirk Timmermann, Claas Cornelius, Hagen Sämrow, Andreas Tockhorn, Philipp Gorski, Martin
Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com
Best Practises for LabVIEW FPGA Design Flow 1 Agenda Overall Application Design Flow Host, Real-Time and FPGA LabVIEW FPGA Architecture Development FPGA Design Flow Common FPGA Architectures Testing and
Design of a High Speed Communications Link Using Field Programmable Gate Arrays
Customer-Authored Application Note AC103 Design of a High Speed Communications Link Using Field Programmable Gate Arrays Amy Lovelace, Technical Staff Engineer Alcatel Network Systems Introduction A communication
Designing a System-on-Chip (SoC) with an ARM Cortex -M Processor
Designing a System-on-Chip (SoC) with an ARM Cortex -M Processor A Starter Guide Joseph Yiu November 2014 version 1.02 27 Nov 2014 1 - Background Since the ARM Cortex -M0 Processor was released a few years
W a d i a D i g i t a l
Wadia Decoding Computer Overview A Definition What is a Decoding Computer? The Wadia Decoding Computer is a small form factor digital-to-analog converter with digital pre-amplifier capabilities. It is
Chapter 8 Memory Units
Chapter 8 Memory Units Contents: I. Introduction Basic units of Measurement II. RAM,ROM,PROM,EPROM Storage versus Memory III. Auxiliary Storage Devices-Magnetic Tape, Hard Disk, Floppy Disk IV.Optical
JTAG Applications. Product Life-Cycle Support. Software Debug. Integration & Test. Figure 1. Product Life Cycle Support
JTAG Applications While it is obvious that JTAG based testing can be used in the production phase of a product, new developments and applications of the IEEE-1149.1 standard have enabled the use of JTAG
ARM Microprocessor and ARM-Based Microcontrollers
ARM Microprocessor and ARM-Based Microcontrollers Nguatem William 24th May 2006 A Microcontroller-Based Embedded System Roadmap 1 Introduction ARM ARM Basics 2 ARM Extensions Thumb Jazelle NEON & DSP Enhancement
Rapid System Prototyping with FPGAs
Rapid System Prototyping with FPGAs By R.C. Coferand Benjamin F. Harding AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Newnes is an imprint of
Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary
Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at
A Mixed-Signal System-on-Chip Audio Decoder Design for Education
A Mixed-Signal System-on-Chip Audio Decoder Design for Education R. Koenig, A. Thomas, M. Kuehnle, J. Becker, E.Crocoll, M. Siegel @itiv.uni-karlsruhe.de @ims.uni-karlsruhe.de
FPGA Prototyping Primer
FPGA Prototyping Primer S2C Inc. 1735 Technology Drive, Suite 620 San Jose, CA 95110, USA Tel: +1 408 213 8818 Fax: +1 408 213 8821 www.s2cinc.com What is FPGA prototyping? FPGA prototyping is the methodology
Implementing a Digital Answering Machine with a High-Speed 8-Bit Microcontroller
Implementing a Digital Answering Machine with a High-Speed 8-Bit Microcontroller Zafar Ullah Senior Application Engineer Scenix Semiconductor Inc. Leo Petropoulos Application Manager Invox TEchnology 1.0
Introduction to VLSI Testing
Introduction to VLSI Testing 李 昆 忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan, R.O.C. Introduction to VLSI Testing.1 Problems to Think A 32 bit adder A
From Concept to Production in Secure Voice Communications
From Concept to Production in Secure Voice Communications Earl E. Swartzlander, Jr. Electrical and Computer Engineering Department University of Texas at Austin Austin, TX 78712 Abstract In the 1970s secure
Test Driven Development of Embedded Systems Using Existing Software Test Infrastructure
Test Driven Development of Embedded Systems Using Existing Software Test Infrastructure Micah Dowty University of Colorado at Boulder [email protected] March 26, 2004 Abstract Traditional software development
CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. XIX - Automation and Control in Electronic Industries - Popovic D.
AUTOMATION AND CONTROL IN ELECTRONIC INDUSTRIES University of Bremen, Germany Keywords: design automation, computer-aided design, rapid prototyping, semiconductors production, process monitoring and control,
Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards
Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic
SDR Architecture. Introduction. Figure 1.1 SDR Forum High Level Functional Model. Contributed by Lee Pucker, Spectrum Signal Processing
SDR Architecture Contributed by Lee Pucker, Spectrum Signal Processing Introduction Software defined radio (SDR) is an enabling technology, applicable across a wide range of areas within the wireless industry,
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
Figure 1 FPGA Growth and Usage Trends
White Paper Avoiding PCB Design Mistakes in FPGA-Based Systems System design using FPGAs is significantly different from the regular ASIC and processor based system design. In this white paper, we will
StarRC Custom: Next-Generation Modeling and Extraction Solution for Custom IC Designs
White Paper StarRC Custom: Next-Generation Modeling and Extraction Solution for Custom IC Designs May 2010 Krishnakumar Sundaresan Principal Engineer and CAE Manager, Synopsys Inc Executive Summary IC
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING Course Title VLSI DESIGN Course Code 57035 Regulation R09 COURSE DESCRIPTION Course Structure
Memory. The memory types currently in common usage are:
ory ory is the third key component of a microprocessor-based system (besides the CPU and I/O devices). More specifically, the primary storage directly addressed by the CPU is referred to as main memory
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path
ECE410 Design Project Spring 2008 Design and Characterization of a CMOS 8-bit Microprocessor Data Path Project Summary This project involves the schematic and layout design of an 8-bit microprocessor data
Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah
(DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] NIOS II 1 1 What is Nios II? Altera s Second Generation
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING
TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV February 28, 2005 Research Objective Objective: Electronic design automation
Hardware Trojans Detection Methods Julien FRANCQ
DEFENDING WORLD SECURITY Hardware Trojans Detection Methods Julien FRANCQ 2013, December the 12th Outline c 2013 CASSIDIAN CYBERSECURITY - All rights reserved TRUDEVICE 2013, December the 12th Page 2 /
Wireless In-Ear Audio Monitor
University of Nebraska - Lincoln Computer Engineering Senior Design Project Wireless In-Ear Audio Monitor Team Stonehenge: Erin Bartholomew Paul Bauer Nate Lowry Sabina Manandhar May 4, 2010 Contents 1
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.
COMPUTER SCIENCE AND ENGINEERING - Microprocessor Systems - Mitchell Aaron Thornton
MICROPROCESSOR SYSTEMS Mitchell Aaron Thornton, Department of Electrical and Computer Engineering, Mississippi State University, PO Box 9571, Mississippi State, MS, 39762-9571, United States. Keywords:
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications Harris Z. Zebrowitz Lockheed Martin Advanced Technology Laboratories 1 Federal Street Camden, NJ 08102
FPGAs in Next Generation Wireless Networks
FPGAs in Next Generation Wireless Networks March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 FPGAs in Next Generation
Computer Engineering as a Discipline
Computing Curriculum Computer Engineering Curriculum Report Chapter 2 Computer Engineering as a Discipline T his chapter presents some of the characteristics that distinguish computer engineering from
10-/100-Mbps Ethernet Media Access Controller (MAC) Core
10-/100-Mbps Ethernet Media Access Controller (MAC) Core Preliminary Product Brief December 1998 Description The Ethernet Media Access Controller (MAC) core is a high-performance core with a low gate count,
White Paper: Pervasive Power: Integrated Energy Storage for POL Delivery
Pervasive Power: Integrated Energy Storage for POL Delivery Pervasive Power Overview This paper introduces several new concepts for micro-power electronic system design. These concepts are based on the
