CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
|
|
|
- Jodie Clarissa Caldwell
- 9 years ago
- Views:
Transcription
1 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
2 Outline Multi-Level Gate Circuits NAND and NOR Gates Design of Two-Level Circuits Using NAND and NOR Gates
3 Multi-Level Gate Circuits (1/3) The maximum number of gates cascaded in series between a circuit input and the output is referred to as the number of levels of gates. sum-of-products: two levels product-of-sums: two levels Inverters are not counted.
4 Multi-Level Gate Circuits (2/3)
5 Multi-Level Gate Circuits (3/3) When the input of a gate is changed, there is a finite time before the output changes. The number of gates which can be cascaded is limited by gate delays. When several gates are cascaded, the gate delay may become excessive and slow down the operation of the digital system.
6 NAND and NOR Gates (1/5) NAND gate F(ABC)=(ABC) =A +B +C NOR gate F(ABC)=(A+B+C) =A B C Any logic function can be implemented using only NAND or NOR gates.
7 NAND and NOR Gates (2/5) If we can use NAND or NOR gates to implement AND, OR, and inverter, then we can prove that any logic function can be expressed using only NAND or NOR gates. A set of logic operations is said to be functionally complete if any Boolean function can be expressed in terms of this set of operations. The set AND, OR, and NOT is obviously functionally complete.
8 NAND and NOR Gates (3/5) X =X nand X AB=(A nand B) nand (A nand B) A+B=(A nand A) nand (B nand B)
9 NAND and NOR Gates (4/5) Actually, as long as we could show NAND can express OR and NOT (AND and NOT), we can show NAND is functionally complete. XY=(X +Y ) X+Y=(X Y )
10 NAND and NOR Gates (5/5) Can you prove that NOR is functionally complete?
11 Design of Two-Level Circuits Using NAND and NOR Gates (1/7) The conversion from circuits composed of AND and OR gates to circuits composed of NAND or NOR gates is carried out by using F=(F ) and then applying DeMorgan s laws: (X 1 +X 2 + +X n ) =X 1 X 2 X n (X 1 X 2 X n ) = X 1 +X 2 + +X n
12 Design of Two-Level Circuits Using NAND and NOR Gates (2/7) F=A+BC +B CD =[(A+BC +B CD) ] (F ) =[A (BC ) (B CD) ] NAND-NAND =[A (B +C)(B+C +D )] OR-NAND =A+(B +C) +(B+C +D ) NOR-OR We started with the minimum sum-of-products expression.
13 Design of Two-Level Circuits Using NAND and NOR Gates (3/7) Procedure for designing a minimum two-level NAND-NAND circuit Find a minimum sum-of-products expression for F: Karnaugh maps, Quinne-McCluskey and Petrick methods Draw the corresponding two-level AND-OR circuit Replace all gates with NAND gates leaving the gate interconnections unchanged. If the output gate has any single literals as inputs, complement these literals.
14 Design of Two-Level Circuits Using NAND and NOR Gates (4/7)
15 Design of Two-Level Circuits Using NAND and NOR Gates (5/7) F=(A+B+C)(A+B +C )(A+C +D) ={[(A+B+C)(A+B +C )(A+C +D)] } (F ) =[(A+B+C) +(A+B +C ) +(A+C +D) ] NOR-NOR =(A B C +A BC+A CD) AND-NOR =(A B C ) (A BC) (A CD) NAND-AND We started with the minimum product-of-sums expression.
16 Design of Two-Level Circuits Using NAND and NOR Gates (6/7) Procedure for designing a minimum twolevel NOR-NOR circuit Find a minimum product-of-sums expression for F Draw the corresponding two-level OR-AND for F Replace all gates with NOR gates leaving the gate interconnections unchanged. If the output gate has any single literals as inputs, complement these literals.
17 Design of Two-Level Circuits Using NAND and NOR Gates (7/7)
18 Design of Two-Level, Multiple- Output Circuits (1/10) Given a logic function, we can simplify it using some methods. But if we need to design a circuit to implement several functions, it may not be enough to simplify each function separately. Example: F1(A,B,C,D)=sum[m(11,12,13,14,15)] F2(A,B,C,D)=sum[m(3,7,11,12,13,15)] F3(A,B,C,D)=sum[m(3,7,12,13,14,15)]
19 Design of Two-Level, Multiple- Output Circuits (2/10) F1=AB+ACD F2=ABC +CD F3=A CD+AB
20 Design of Two-Level, Multiple-Output Circuits (3/10)
21 Design of Two-Level, Multiple- Output Circuits (4/10)
22 Design of Two-Level, Multiple- Output Circuits (5/10) Determination of Essential Prime Implicants for Multiple-Output Realization Some of the prime implicants essential to an individual function may not be essential to the multiple-output realization.
23 Design of Two-Level, Multiple- Output Circuits (6/10) bd ab' F1 F2 F3 ab and bd are essential to F1, but not to the multipleoutput system.
24 Design of Two-Level, Multiple- Output Circuits (7/10) Determination of Essential Prime Implicants for Multiple-Output Realization Some of the prime implicants essential to an individual function may not be essential to the multiple-output realization. When checking 1 s for essential prime implicants, we only check those 1 s which do not appear on the other function maps.
25 Design of Two-Level, Multiple- Output Circuits (8/10)
26 Design of Two-Level, Multiple- Output Circuits (9/10) This 1 appears on both maps. When checking 1 s for essential prime implicants, we only check those 1 s which do not appear on the other function maps.
27 Design of Two-Level, Multiple- Output Circuits (10/10) In this picture, no minterm only appears in one Karnaugh map. How to find essential prime implicants for a multi-output system is not discussed in the textbook.
Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
Boolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
DESIGN OF GATE NETWORKS
DESIGN OF GATE NETWORKS DESIGN OF TWO-LEVEL NETWORKS: and-or and or-and NETWORKS MINIMAL TWO-LEVEL NETWORKS KARNAUGH MAPS MINIMIZATION PROCEDURE AND TOOLS LIMITATIONS OF TWO-LEVEL NETWORKS DESIGN OF TWO-LEVEL
Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra
The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used
BOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1
United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.
CSE140: Midterm 1 Solution and Rubric
CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms
CSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps
CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.3-2.5) Standard Forms Product-of-Sums (PoS) Sum-of-Products (SoP) converting between Min-terms
Two-level logic using NAND gates
CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop
NAND and NOR Implementation
University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals harles R. Kime ection 2 Fall 200 hapter 2 ombinational Logic ircuits Part 7 harles Kime & Thomas Kaminski NND and NOR Implementation
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
CSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010
Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic simplification Proving validity of an
Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation
Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated
Introduction. The Quine-McCluskey Method Handout 5 January 21, 2016. CSEE E6861y Prof. Steven Nowick
CSEE E6861y Prof. Steven Nowick The Quine-McCluskey Method Handout 5 January 21, 2016 Introduction The Quine-McCluskey method is an exact algorithm which finds a minimum-cost sum-of-products implementation
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking
Lecture 5: Gate Logic Logic Optimization
Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
ENGI 241 Experiment 5 Basic Logic Gates
ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.
Elementary Logic Gates
Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate
CH3 Boolean Algebra (cont d)
CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. Exclusive-OR and Equivalence operations
2.0 Chapter Overview. 2.1 Boolean Algebra
Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital
Online EFFECTIVE AS OF JANUARY 2013
2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
Simplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
Logic Reference Guide
Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time
Basic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The Input-Control/Output-Display
Digital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
Unit 3 Boolean Algebra (Continued)
Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication
Logic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
CSE140 Homework #7 - Solution
CSE140 Spring2013 CSE140 Homework #7 - Solution You must SHOW ALL STEPS for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting
Combinational Logic Design
Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6-3-1-1 and Excess-3? Data Representation (1/2) Each numbering
ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit
Chapter 7 Memory and Programmable Logic
NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1
Testing & Verification of Digital Circuits ECE/CS 5745/6745. Hardware Verification using Symbolic Computation
Testing & Verification of Digital Circuits ECE/CS 5745/6745 Hardware Verification using Symbolic Computation Instructor: Priyank Kalla ([email protected]) 3 Credits Mon, Wed, 1:25-2:45pm, WEB L105 Office
Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
www.mohandesyar.com SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D.
27 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This publication is protected by opyright and written permission should be obtained or likewise. For information regarding permission(s),
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output
Switching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
Boolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra
2 Ver..4 George Boole was an English mathematician of XIX century can operate on logic (or Boolean) variables that can assume just 2 values: /, true/false, on/off, closed/open Usually value is associated
Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction
Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
Computer Engineering 290. Digital Design: I. Lecture Notes Summer 2002
Computer Engineering 290 Digital Design: I Lecture Notes Summer 2002 W.D. Little Dept. of Electrical and Computer Engineering University of Victoria 1 Preface These lecture notes complement the material
NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.
CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache
A Course Material on DIGITAL PRINCIPLES AND SYSTEM DESIGN
A Course Material on By MS.G.MANJULA ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM 638 56 QUALITY CERTIFICATE This is to certify
ANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
Understanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
Karnaugh Maps (K-map) Alternate representation of a truth table
Karnaugh Maps (K-map) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization
3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
Theory of Logic Circuits. Laboratory manual. Exercise 3
Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices
Chapter 1. Computation theory
Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.
Chapter 5. Rational Expressions
5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where
Introduction to Digital Logic with Laboratory Exercises
Introduction to Digital Logic with Laboratory Exercises Introduction to Digital Logic with Laboratory Exercises James Feher Copyright 29 James Feher Editor-In-Chief: James Feher Associate Editor: Marisa
Switching and Finite Automata Theory
Switching and Finite Automata Theory Understand the structure, behavior, and limitations of logic machines with this thoroughly updated third edition. New topics include: CMOS gates logic synthesis logic
C H A P T E R. Logic Circuits
C H A P T E R Logic Circuits Many important functions are naturally computed with straight-line programs, programs without loops or branches. Such computations are conveniently described with circuits,
EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,
CSE140: Components and Design Techniques for Digital Systems
CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic
DEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453
1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
Scilab Textbook Companion for Digital Electronics: An Introduction To Theory And Practice by W. H. Gothmann 1
Scilab Textbook Companion for Digital Electronics: An Introduction To Theory And Practice by W. H. Gothmann 1 Created by Aritra Ray B.Tech Electronics Engineering NIT-DURGAPUR College Teacher Prof. Sabyasachi
Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards
Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic
Sum-of-Products and Product-of-Sums expressions
Sum-of-Products and Product-of-Sums expressions This worksheet and all related files are licensed under the reative ommons ttribution License, version.. To view a copy of this license, visit http://creativecommons.org/licenses/by/./,
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
Cooperative Learning in a Digital Logic Course
Introduction Cooperative Learning in a Digital Logic Course Russell L. Pimmel http://www.foundationcoalition.org Active and cooperative learning (ACL) techniques have proved to be effective in a wide assortment
NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6
E.T.S.E.T.B. MSc in ICT FINAL EXAM VLSI Digital Design Spring Course 2005-2006 June 6, 2006 Score publication date: June 19, 2006 Exam review request deadline: June 22, 2006 Academic consultancy: June
Digital Systems. Syllabus 8/18/2010 1
Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,
Digital Controller for Pedestrian Crossing and Traffic Lights
Project Objective: - To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on next-state techniques
LOGICOS SERIE 4000. Precios sujetos a variación. Ref. Part # Descripción Precio Foto Ref. Quad 2-Input NOR Buffered B Series Gate / PDIP-14
LOGICOS SERIE 4000 Precios sujetos a variación Ref. Part # Descripción Precio Foto Ref. A-6-1 CD4001 Quad 2-Input NOR Buffered B Series Gate / PDIP-14 $ 290 A-6-2 CD4001BCM Quad 2-Input NOR Buffered B
Digital Fundamentals. Lab 8 Asynchronous Counter Applications
Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:
DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department
Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and
BEGINNING ALGEBRA ACKNOWLEDMENTS
BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science
Using Logic to Design Computer Components
CHAPTER 13 Using Logic to Design Computer Components Parallel and sequential operation In this chapter we shall see that the propositional logic studied in the previous chapter can be used to design digital
Adder.PPT(10/1/2009) 5.1. Lecture 13. Adder Circuits
Adder.T(//29) 5. Lecture 3 Adder ircuits Objectives Understand how to add both signed and unsigned numbers Appreciate how the delay of an adder circuit depends on the data values that are being added together
6 Commutators and the derived series. [x,y] = xyx 1 y 1.
6 Commutators and the derived series Definition. Let G be a group, and let x,y G. The commutator of x and y is [x,y] = xyx 1 y 1. Note that [x,y] = e if and only if xy = yx (since x 1 y 1 = (yx) 1 ). Proposition
CSE140: Components and Design Techniques for Digital Systems. Introduction. Prof. Tajana Simunic Rosing
CSE4: Components and Design Techniques for Digital Systems Introduction Prof. Tajana Simunic Rosing Welcome to CSE 4! Instructor: Tajana Simunic Rosing Email: [email protected]; please put CSE4 in the subject
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs
Intermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
Gate Delay Model. Estimating Delays. Effort Delay. Gate Delay. Computing Logical Effort. Logical Effort
Estimating Delays Would be nice to have a back of the envelope method for sizing gates for speed Logical Effort Book by Sutherland, Sproull, Harris Chapter 1 is on our web page Also Chapter 4 in our textbook
Decomposition of Finite State Machines for Area, Delay Minimization
Decomposition of Finite State Machines for Area, Delay Minimization Rupesh S. Shelar, Madhav P. Desai, H. Narayanan Department of Electrical Engineering, Indian Institute of Technology, Bombay Mumbai 400
Set-Reset (SR) Latch
et-eset () Latch Asynchronous Level sensitive cross-coupled Nor gates active high inputs (only one can be active) + + Function 0 0 0 1 0 1 eset 1 0 1 0 et 1 1 0-? 0-? Indeterminate cross-coupled Nand gates
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
Combinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
Automata Designs for Data Encryption with AES using the Micron Automata Processor
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 1 Automata Designs for Data Encryption with AES using the Micron Automata Processor Angkul Kongmunvattana School
Binary full adder. 2-bit ripple-carry adder. CSE 370 Spring 2006 Introduction to Digital Design Lecture 12: Adders
SE 370 Spring 2006 Introduction to Digital Design Lecture 12: dders Last Lecture Ls and Ls Today dders inary full 1-bit full omputes sum, carry-out arry-in allows cascaded s = xor xor = + + 32 ND2 11 ND2
Multilevel Sequential Logic Circuit Design
International Journal of Electronics and Electrical Engineering Vol., No. 4, December, 4 Multilevel Sequential Logic Circuit Design vni Morgül FSM Vakıf University, iomedical Eng. Dept, Istanbul, Turkey
2 : two cube. 5 : five cube. 10 : ten cube.
Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES VI Instructor: Line #: 52920 Yasuyuki Kachi 6 Cubes February 2 Mon, 2015 We can similarly define the notion of cubes/cubing Like we did last time, 3 2
