NAND and NOR Implementation
|
|
|
- Meredith Mason
- 9 years ago
- Views:
Transcription
1 University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals harles R. Kime ection 2 Fall 200 hapter 2 ombinational Logic ircuits Part 7 harles Kime & Thomas Kaminski NND and NOR Implementation We found that we could implement general oolean equations with these three primitives: ND OR NOT In this section we will find that either of two gates, the NND gate or the NOR gate can be used to implement arbitrary logic functions. We use the Positive Logic onvention (where all signals are active high) and a small circle to on a symbol to represent NOT or invert. hapter 2-Part 7 2
2 NND Gates The basic positive logic NND gate is denoted by the following symbol: ND-Invert (NND) X NND comes from NOT ND, I. e., the ND function with a NOT applied. We call this symbol for a NND gate an ND-Invert. The small circle represents the invert function. If we apply DeMorgan's Law we get: X = X + + F(X,, ) = X hapter 2-Part 7 3 NND Gates (ont.) pplying DeMorgan's Law gives: Invert-OR (NND) X We call this symbol for a NND gate the Invert - OR since all inputs are inverted, followed by the OR function. oth symbols represent the NND gate - it is sometimes more logically descriptive to use one form over the other. NND gate with one input degenerates to an inverter. F (X,, ) = X + + hapter 2-Part 7 4 2
3 NND Function Implementation NND gates can implement a simplified um-of- Products form. onstructing two level NND-NND gate circuit: D The first level is two 2-input NND gates using ND- Invert. The second level is one 2-input NND gate using Invert-OR. Using the NND relationship, we have: G(,,, D) = D = + D = + D G(,,, D) = + D hapter 2-Part 7 5 NND Implementation (ont.) In the implementation, note that the bubbles are on opposite ends of the same line. Thus, they can be combined and deleted: D G(,,,D) This form of the implementation is the um-of-products form. hapter 2-Part 7 6 3
4 NND Implementation (ont.) In the implementation, the bubbles are on opposite ends of the same line. y X = X, they can be combined and deleted: D G(,,,D) sum-of-products (OP) form results To implement an equation like: F(,,) = +, the NND for degenerates to a NOT since there is only one input hapter 2-Part 7 7 Degenerate ND Term The degenerate NND becomes an inverter: To implement the complement of F using NND gates, add an inverter to the output: F(,,) F'(,,) hapter 2-Part 7 8 4
5 NND-NND Example w Implement: y z F(w,x,y,z) F (w, x, y, z) = y z + w x + x y + w z x w y z F (w,x,y,z) x hapter 2-Part 7 9 ummary: Two-Level NND ircuits Find minimum literal OP form for F and F elect OP form with smallest literal count onvert selected form to NND circuit using ND-invert (inverters for single literal ND terms) and invert-or symbols If OP form for F used, add inverter to circuit output. hapter 2-Part 7 0 5
6 NOR Gates The basic positive logic NOR gate (Not-OR) is denoted by the following symbol: OR-Invert (NOR) X F (X,,) = X+ + This is called the OR-Invert, since it is logically an OR function followed by an invert. y DeMorgan's Law we have the following Invert-ND symbol for a NOR gate: Invert-ND X single-input NOR gate is an inverter, too. hapter 2-Part 7 NOR Gates The basic positive logic NOR gate is denoted by the following symbol: OR-Invert (NOR) X NOR comes from NOT OR, I. e., the OR function with a NOT applied. We call this symbol for a NOR gate an OR-Invert. The small circle represents the invert function. If we apply DeMorgan's Law we get: X + + = X F (X,,) = X+ + hapter 2-Part 7 2 6
7 NOR Gates (ont.) pplying DeMorgan's Law gives: Invert-ND (NOR) X We call this symbol for a NOR gate the Invert- ND since all inputs are inverted, followed by the ND function. oth symbols represent the NOR gate - it is sometimes more logically descriptive to use one form over the other. NOR gate with one input degenerates to an inverter. F (X,, ) = X hapter 2-Part 7 3 NOR Function Implementation NND gates can implement a simplified um-of- Products form. onstructing two-level NOR-NOR circuit: D The first level is two 2-input NOR gates using OR- Invert. The second level is one 2-input NOR gate using Invert-ND. Using the NOR relationship, we have: G (,,, D) = ( + ) + (+ D) = ( + ) (+ D) = ( + ) (+ D) ( + )( ) G (,,,D) = + D hapter 2-Part 7 4 7
8 Useful Transformations From Involution (i.e. (')' = ) and DeMorgan's Law, we get the following useful equivalences: ( ) = (( )')' ('+')' (+) = ((+)')' (' ')' ( )' ('+') (+)' (' ') These simple transformations can be used to manipulate a two level network. hapter 2-Part 7 5 Graphical Transformations The relations from the previous slide lead to the following transformations: ( ) = (( )')' (+) = ((+)')' ( )' (+)' ('+')' (' ')' ('+') (' ') Recall that two bubbles in series can be removed from the circuit hapter 2-Part 7 6 8
9 General Two-level Implementations We need to consider whether the form of a two-level implementation is to be:. OP (ND-OR) or 2. PO (OR-ND). omplemented output functions (i.e. ND-NOR or OR- NND) can be handled by complementing the function. Given a function F expressed as a Karnaugh Map, we can use the same general procedures we have used before to minimize the function and express it in OP or PO form. hapter 2-Part 7 7 General Implementations (ont.) Given a two level implementation desired, use the previous transfromations to get it into one of the below forms. Then follow the steps to transform the function to the desired form: For Type: Use: ND-OR ircle 's in the K-Map and minimize (OP Form) (lso use for NND-NND) ND-NOR ircle 0's in the K-Map and minimize (OP complemented) OR-ND (PO Form) OR-NND (PO complemented) ircle 0's in the K-Map and minimize OP. Use DeMorgan's to transform to PO. (lso use for NOR-NOR) ircle 's in the K-Map and minimize OP. Use DeMorgan's to transform to PO. hapter 2-Part 7 8 9
10 Implementation Example 0 Implement the function in NOR-OR. 0 0 We can remove the "Inverter" and replace it with the complement of the input variable hapter 2-Part 7 9 Implementation Example 2 0 Implement the function in ND-NOR. 0 0 hapter 2-Part
11 Multi-level NND Implementations dd inverters in two-level implementation into the cost picture ttempt to combine inverters to reduce the term count ttempt to reduce literal + term count by factoring expression into POOP or OPO hapter 2-Part 7 2 Multi-level NND Example F = inputs and 8 gates* = = ( + + ) + ( + + ) 7 inputs and 4 gates F * ounting inverters (NOT) as input and gate hapter 2-Part 7 22
12 Multilevel NND Example 2 F = + D + + D hapter 2-Part
Elementary Logic Gates
Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Multi-Level Gate Circuits NAND and NOR Gates Design of Two-Level Circuits Using NAND and NOR Gates
BOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
Two-level logic using NAND gates
CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place
Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation
Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated
Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction
Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
CSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps
CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.3-2.5) Standard Forms Product-of-Sums (PoS) Sum-of-Products (SoP) converting between Min-terms
Karnaugh Maps (K-map) Alternate representation of a truth table
Karnaugh Maps (K-map) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization
Basic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
Binary full adder. 2-bit ripple-carry adder. CSE 370 Spring 2006 Introduction to Digital Design Lecture 12: Adders
SE 370 Spring 2006 Introduction to Digital Design Lecture 12: dders Last Lecture Ls and Ls Today dders inary full 1-bit full omputes sum, carry-out arry-in allows cascaded s = xor xor = + + 32 ND2 11 ND2
6. BOOLEAN LOGIC DESIGN
6. OOLEN LOGI DESIGN 89 Topics: oolean algebra onverting between oolean algebra and logic gates and ladder logic Logic examples Objectives: e able to simplify designs with oolean algebra 6. INTRODUTION
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
Sum-of-Products and Product-of-Sums expressions
Sum-of-Products and Product-of-Sums expressions This worksheet and all related files are licensed under the reative ommons ttribution License, version.. To view a copy of this license, visit http://creativecommons.org/licenses/by/./,
ENGI 241 Experiment 5 Basic Logic Gates
ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.
Digital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
CSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram
SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous
Lecture 5: Gate Logic Logic Optimization
Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim
DESIGN OF GATE NETWORKS
DESIGN OF GATE NETWORKS DESIGN OF TWO-LEVEL NETWORKS: and-or and or-and NETWORKS MINIMAL TWO-LEVEL NETWORKS KARNAUGH MAPS MINIMIZATION PROCEDURE AND TOOLS LIMITATIONS OF TWO-LEVEL NETWORKS DESIGN OF TWO-LEVEL
Adder.PPT(10/1/2009) 5.1. Lecture 13. Adder Circuits
Adder.T(//29) 5. Lecture 3 Adder ircuits Objectives Understand how to add both signed and unsigned numbers Appreciate how the delay of an adder circuit depends on the data values that are being added together
Mixed Logic A B A B. 1. Ignore all bubbles on logic gates and inverters. This means
Mixed Logic Introduction Mixed logic is a gate-level design methodology used in industry. It allows a digital logic circuit designer the functional description of the circuit from its physical implementation.
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra
The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used
Digital Logic Elements, Clock, and Memory Elements
Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
CSE140: Midterm 1 Solution and Rubric
CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms
ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit
Counters are sequential circuits which "count" through a specific state sequence.
Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:
Lesson 12 Sequential Circuits: Flip-Flops
Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability
Logic gates. Chapter. 9.1 Logic gates. MIL symbols. Learning Summary. In this chapter you will learn about: Logic gates
Chapter 9 Logic gates Learning Summary In this chapter you will learn about: Logic gates Truth tables Logic circuits/networks In this chapter we will look at how logic gates are used and how truth tables
Simplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
A Course Material on DIGITAL PRINCIPLES AND SYSTEM DESIGN
A Course Material on By MS.G.MANJULA ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM 638 56 QUALITY CERTIFICATE This is to certify
Understanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
Ladder and Functional Block Programming
CHPTER 11 Ladder and Functional lock Programming W. olton This (and the following) chapter comes from the book Programmable Logic Controllers by W. olton, ISN: 9780750681124. The first edition of the book
CSE140: Components and Design Techniques for Digital Systems
CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic
United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1
United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.
www.mohandesyar.com SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D.
27 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This publication is protected by opyright and written permission should be obtained or likewise. For information regarding permission(s),
Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits
Module 4 : Propagation Delays in MOS Lecture 22 : Logical Effort Calculation of few Basic Logic Circuits Objectives In this lecture you will learn the following Introduction Logical Effort of an Inverter
(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
Upon completion of unit 1.1, students will be able to
Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal
Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course
Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University [email protected] Raghu Korrapati,
Logic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
Theory of Logic Circuits. Laboratory manual. Exercise 3
Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices
Boolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.
Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking
Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
Design: a mod-8 Counter
Design: a mod-8 Counter A mod-8 counter stores a integer value, and increments that value (say) on each clock tick, and wraps around to 0 if the previous stored value was 7. So, the stored value follows
30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
Figure 8-1 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute
DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)
IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES [email protected] BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines
FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. The Binary Adder
FORDHAM UNIVERITY CIC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. cience pring, 2011 1 Introduction The Binar Adder The binar adder circuit is an important building
C H A P T E R. Logic Circuits
C H A P T E R Logic Circuits Many important functions are naturally computed with straight-line programs, programs without loops or branches. Such computations are conveniently described with circuits,
To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.
8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital
Chapter 10 Advanced CMOS Circuits
Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in
Combinational Logic Design
Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra
Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
Sistemas Digitais I LESI - 2º ano
Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes ([email protected]) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The
So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
Switching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.
CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache
Module 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : [email protected] Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
Class XII (Theory) C++
Class XII (Theory) C++ Duration: 3 hours Total Marks: 70 Unit No. Unit Name Marks 1. OBJECT ORIENTED PROGRAMMING IN C++ 30 2. DATA STRUCTURE 14 3. DATABASE MANAGEMENT SYSTEM AND SQL 8 4. BOOLEAN ALGEBRA
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
2.0 Chapter Overview. 2.1 Boolean Algebra
Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital
South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected
At 14:05 April 16, 2011 At 13:55 April 16, 2011 At 14:20 April 16, 2011 ND ND 3.6E-01 ND ND 3.6E-01 1.3E-01 9.1E-02 5.0E-01 ND 3.7E-02 4.5E-01 ND ND 2.2E-02 ND 3.3E-02 4.5E-01 At 11:37 April 17, 2011 At
Fundamentals of Microelectronics
Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
Multilevel Sequential Logic Circuit Design
International Journal of Electronics and Electrical Engineering Vol., No. 4, December, 4 Multilevel Sequential Logic Circuit Design vni Morgül FSM Vakıf University, iomedical Eng. Dept, Istanbul, Turkey
Lecture-3 MEMORY: Development of Memory:
Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,
7. Latches and Flip-Flops
Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The
[ 4 ] Logic Symbols and Truth Table
[ 4 ] Logic s and Truth Table 1. How to Read MIL-Type Logic s Table 1.1 shows the MIL-type logic symbols used for high-speed CMO ICs. This logic chart is based on MIL-TD-806. The clocked inverter and transmission
plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.
Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design
PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits
Logic Reference Guide
Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time
earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder.
The circuit created is an 8-bit adder. The 8-bit adder adds two 8-bit binary inputs and the result is produced in the output. In order to create a Full 8-bit adder, I could use eight Full -bit adders and
ECE380 Digital Logic
ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during
Sequential Logic Design Principles.Latches and Flip-Flops
Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
Let s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
Traffic Light Controller. Digital Systems Design. Dr. Ted Shaneyfelt
Traffic Light Controller Digital Systems Design Dr. Ted Shaneyfelt December 3, 2008 Table of Contents I. Introduction 3 A. Problem Statement 3 B. Illustration 3 C. State Machine 3 II. Procedure 4 A. State
Advanced Logic Design Techniques in Asynchronous Sequential Circuit Synthesis
Advanced Logic Design Techniques in Asynchronous Sequential Circuit Synthesis Charles R. Bond http://www.crbond.com c 1990 2013, All rights reserved. Contents I Synthesis Methods 4 1 Development of Methods
