Integrator Based Filters

Size: px
Start display at page:

Download "Integrator Based Filters"

Transcription

1 Integrator Based Filters Main building block for this category of filters integrator By using signal flowgraph techniques conventional filter topologies can be converted to integrator based type filters Next few pages: Signal flowgraph techniques st order integrator based filter nd order integrator based filter High order and high Q filters EECS 47 Lecture 3: Filters 5 H.K. Page 5 What is a Signal Flowgraph (SFG)? SFG Topological network representation consisting of nodes & branches used to convert one form of network to a more suitable form (e.g. passive LC filters to integrator based filters) Any network described by a set of linear differential equations can be expressed in SFG form. For a given network, many different SFGs exists. Choice of a particular SFG is based on practical considerations such as type of available components. ef: W.Heinlein & W. Holmes, Active Filters for Integrated Circuits, Prentice Hall, Chap. 8, 974. EECS 47 Lecture 3: Filters 5 H.K. Page 6

2 What is a Signal Flowgraph (SFG)? SFG nodes represent variables ( & I in our case), branches represent transfer functions (we will call these transfer functions branch multiplication factor BMF) To convert a network to its SFG form, KCL & KL is used to derive state space description: Example: Circuit Statespace SFG Iin description I in o Iin o I o L Io SL SL I o I in C Iin o SC I in SC EECS 47 Lecture 3: Filters 5 H.K. Page 7 Signal Flowgraph (SFG) ules Two parallel branches can be replaced by a single branch with overall BMF equal to sum of two BMFs b a ab A node with only one incoming branch & one outgoing branch can be replaced by a single branch with BMF equal to the product of the two BMFs a b a.b 3 An intermediate node can be multiplied by a factor (x). BMFs for incoming branches have to be multiplied by x and outgoing branches divided by x a b x.a b/x 3 x. 3 EECS 47 Lecture 3: Filters 5 H.K. Page 8

3 Signal Flowgraph (SFG) ules Simplifications can often be achieved by shifting or eliminating nodes i 4 a /b 3 i /b /b a 3 A selfloop branch with BMF y can be eliminated by multiplying the BMF of incoming branches by /(y) /b /b i /b a 3 i a/(/b) 3 EECS 47 Lecture 3: Filters 5 H.K. Page 9 Integrator Based Filters st Order LPF Start from C prototype Use KCL & KL to derive state space description: s I C I o C Use state space description to draw signal flowgraph (SFG) EECS 47 Lecture 3: Filters 5 H.K. Page

4 Integrator Based Filters First Order LPF KCL & KL to derive state space description: I C C I s I I o C Use state space description to draw signal flowgraph (SFG) I s s I C I SFG C C I EECS 47 Lecture 3: Filters 5 H.K. Page Normalize Since integrators the main building blocks require in & out signals in the voltage form (not current) Convert all currents to voltages by multiplying current nodes by a scaling resistance Corresponding BMFs should then be scaled accordingly o I s I o I I Ix x o I s I o I I o s o EECS 47 Lecture 3: Filters 5 H.K. Page

5 Normalize s s s I I I I EECS 47 Lecture 3: Filters 5 H.K. Page 3 Synthesis s τ s Consolidate two branches τ s, C τ s EECS 47 Lecture 3: Filters 5 H.K. Page 4

6 First Order Integrator Based Filter τ s H ( s) τ s EECS 47 Lecture 3: Filters 5 H.K. Page 5 OpampC SingleEnded Integrator C in o o dt, C τ C EECS 47 Lecture 3: Filters 5 H.K. Page 6

7 State space description: L C o IC C I IL L sl IC Iin I IL Integrator Based Filter nd Order LC Filter Integrator form I in I SFG C L L C I L C I C L sl Draw signal flowgraph (SFG) I I in I C I L EECS 47 Lecture 3: Filters 5 H.K. Page 3 Normalize Convert currents to voltages by multiplying all current nodes by the scaling resistance C L sl I x x sl I I in I C I L 3 EECS 47 Lecture 3: Filters 5 H.K. Page 3

8 Synthesis 3 sl τ sτ sτ τ C L EECS 47 Lecture 3: Filters 5 H.K. Page 33 Second Order Integrator Based Filter Filter Magnitude esponse BP Magnitude (db) 5 5 sτ sτ HP LP. Normalized Frequency [Hz] EECS 47 Lecture 3: Filters 5 H.K. Page 34

9 BP τs in ττ βτ s LP in ττ βτ s HP ττ s in ττ βτ s τ C τ L β ω ττ LC Q β Second Order Integrator Based Filter BP sτ sτ HP LP τ τ Frommatchingpointofviewdesirable: τ τ Q EECS 47 Lecture 3: Filters 5 H.K. Page 35 Second Order Bandpass Filter Noise n vo m Find transfer function of each noise source to the output Integrate contribution of all noise sources Here it is assumed that opamps are noise free (not usually the case!) vn vn 4KTdf H m(f) S(f)df i BP v n sτ sτ v n vo kt Q C α Typically, α increases as filter order increases Note the noise power is directly proportion to Q EECS 47 Lecture 3: Filters 5 H.K. Page 36

10 Second Order Integrator Based Filter Biquad By combining outputs can generate general biquad function: aττ s aτs a 3 ττ s βτs a a a3 BP jω splane sτ sτ σ HP LP EECS 47 Lecture 3: Filters 5 H.K. Page 37 Summary Integrator Based Monolithic Filters Signal flowgraph techniques utilized to convert LC networks to integrator based active filters Each reactive element (L& C) replaced by an integrator Fundamental noise limitation determined by integrating capacitor: For lowpass filter: Bandpass filter: vo vo kt α C kt α Q C where α is a function of filter order and topology EECS 47 Lecture 3: Filters 5 H.K. Page 38

11 Higher Order Filters How do we build higher order filters? Cascade of biquads and st order sections Each complex conjugate pole built with a biquad and real pole with st order section Easy to implement In the case of high order high Q filters highly sensitive to component variations Direct conversion of high order ladder type LC filters SFG techniques used to perform exact conversion of ladder type filters to integrator based filters More complicated conversion process Much less sensitive to component variations compared to cascade of biquads EECS 47 Lecture 3: Filters 5 H.K. Page 39 Higher Order Filters Cascade of Biquads Example: LPF filter for CDMA baseband receiver LPF with fpass 65 khz pass. db fstop 75 khz stop 45 db Assumption: Can compensate for phase distortion in the digital domain 7th order Elliptic Filter Implementation with Biquads Goal: Maximize dynamic range Pair poles and zeros highest Q poles with closest zeros is a good starting point, but not necessarily optimum Ordering: Lowest Q poles first is a good start EECS 47 Lecture 3: Filters 5 H.K. Page 4

12 Filter Frequency esponse Bode Diagram Phase (deg) Magnitude (db) kHz MHz Frequency [Hz] 3MHz Mag. (db). EECS 47 Lecture 3: Filters 5 H.K. Page 4 PoleZero Map Imag Axis X splane PoleZero Map.5.5 eal Axis x 7 Q pole f pole [khz] f zero [khz] EECS 47 Lecture 3: Filters 5 H.K. Page 4

13 Biquad esponse.5 LPF Biquad Biquad Biquad EECS 47 Lecture 3: Filters 5 H.K. Page 43 Biquad esponse Bode Magnitude Diagram Magnitude (db) 3 4 LPF Biquad Biquad 3 Biquad Frequency [Hz] EECS 47 Lecture 3: Filters 5 H.K. Page 44

14 Magnitude (db) Magnitude (db) khz Intermediate Outputs LPF Magnitude (db) Magnitude (db) LPF Biquad LPF Biquads,3 LPF Biquads,3,4 Biquads,, 3, & khz MHz 6 MHz khz khz MHz MHz Frequency [Hz] Frequency [Hz] EECS 47 Lecture 3: Filters 5 H.K. Page 45 Sensitivity Component variation in Biquad 4 (highest Q pole): Increase w p4 by % Decrease w z4 by %.db Magnitude (db) 3 3dB 4 5 khz 6kHz Frequency [Hz] MHz High Q poles High sensitivity in Biquad realizations EECS 47 Lecture 3: Filters 5 H.K. Page 46

15 High Q & High Order Filters Cascade of biquads Highly sensitive to component variations not suitable for implementation of high Q & high order filters Cascade of biquads only used in cases where required Q for all biquads <4 (e.g. filters for disk drives) LC ladder filters more appropriate for high Q & high order filters (next topic) Less sensitive to component variations EECS 47 Lecture 3: Filters 5 H.K. Page 47 Ladder Type Filters For simplicity, will start with all pole ladder type filters Convert to integrator based form Example shown Then will attend to high order ladder type filters incorporating zeros Implement the same 7 th order elliptic filter in the form of ladder type Find level of sensitivity to component variations Compare with cascade of biquads Convert to integrator based form utilizing SFG techniques Example shown EECS 47 Lecture 3: Filters 5 H.K. Page 48

16 LC Ladder Filters s C L C3 L4 C5 L Made of resistors, inductors, and capacitors Doubly terminated or singly terminated (with or w/o L ) Doubly terminated LC ladder filters Lowest sensitivity to component variations EECS 47 Lecture 3: Filters 5 H.K. Page 49 LC Ladder Filters s C L C3 L4 C5 L Design: CAD tools Matlab Spice Filter tables A. Zverev, Handbook of filter synthesis, Wiley, 967. A. B. Williams and F. J. Taylor, Electronic filter design, 3 rd edition, McGrawHill, 995. EECS 47 Lecture 3: Filters 5 H.K. Page 5

17 LC Ladder Filter Design Example Find values for L & C from Table: Normalized values: C Norm C5 Norm.68 C3 Norm. L Norm L4 Norm.68 Denormalization: Since w 3dB πxmhz L r /w 3dB 5.9 nh C r /(Xw 3dB ) 5.9 nf CC59.836nF, C33.83nF LL45.75nH From: Williams and Taylor, p..3 EECS 47 Lecture 3: Filters 5 H.K. Page 53 Magnitude esponse Simulation sohm L5.75nH C 9.836nF L45.75nH C3 3.83nF C nF LOhm 5 SPICE simulation esults 6 db passband attenuation due to double termination Magnitude (db) 3 4 3dB 5 3 Frequency [MHz] EECS 47 Lecture 3: Filters 5 H.K. Page 54

18 LC Ladder Filter Conversion to Integrator Based Active Filter s I L I3 L4 I 5 C C3 C5 I I4 I 6 I 7 L Use KCL & KL to derive equations: I,, 3 4 I I 4 6 4, 5 4 6, 6 o I, I I I 3, I s 3 sl 5 6 I 4 I 3 I 5, I 5, I 6 I 5 I 7, I7 sl4 L EECS 47 Lecture 3: Filters 5 H.K. Page 55 I s I LC Ladder Filter Signal Flowgraph I in,, 3 4 I 4 I,, o I, I I I 3, I3 s sl 5 6 I 4 I 3 I 5, I 5, I 6 I 5 I 7, I7 sl4 L sl 3 sl4 5 I3 I4 I 5 I 6 I 7 SFG EECS 47 Lecture 3: Filters 5 H.K. Page 56 o L

19 LC Ladder Filter Signal Flowgraph s I L I3 L4 I 5 C C3 C5 I I4 I 6 I 7 L I s I sl 3 sl4 5 o I3 I4 I 5 I 6 I 7 SFG L EECS 47 Lecture 3: Filters 5 H.K. Page 57 I s I LC Ladder Filter Normalize sl 3 sl4 5 o I 3 I4 I 5 I 6 I 7 L s sl 3 sl o 7 L EECS 47 Lecture 3: Filters 5 H.K. Page 58

20 s LC Ladder Filter Synthesize sl 3 sl o 7 L s sτ sτ sτ 3 sτ 4 sτ 5 L EECS 47 Lecture 3: Filters 5 H.K. Page 59 s LC Ladder Filter Integrator Based Implementation sτ sτ sτ 3 sτ 4 sτ 5 L L L4 C., C., C., C., C τ τ τ τ τ Building Block: C Integrator EECS 47 Lecture 3: Filters 5 H.K. Page 6

21 Negative esistors o o o EECS 47 Lecture 3: Filters 5 H.K. Page 6 Synthesize EECS 47 Lecture 3: Filters 5 H.K. Page 6

22 Frequency esponse EECS 47 Lecture 3: Filters 5 H.K. Page 63 Scale Node oltages Scale by factor s EECS 47 Lecture 3: Filters 5 H.K. Page 64

23 Noise Total noise:.4 µ rms (noiseless opamps) That s excellent, but the capacitors are very large (and the resistors small). Not possible to integrate. Suppose our application allows higher noise in the order of 4 µ rms EECS 47 Lecture 3: Filters 5 H.K. Page 65 Scale to Meet Noise Target Scale capacitors and resistors to meet noise objective s 4 Noise: 4 µ rms (noiseless opamps) EECS 47 Lecture 3: Filters 5 H.K. Page 66

24 Completed Design EECS 47 Lecture 3: Filters 5 H.K. Page 67 Sensitivity C made (arbitrarily) 5% (!) larger than its nominal value.5 db error at band edge 3.5 db error in stopband Looks like very low sensitivity EECS 47 Lecture 3: Filters 5 H.K. Page 68

25 Sensitivity C made (arbitrarily) 5% (!) larger than its nominal value.5 db error at band edge 3.5 db error in stopband Looks like very low sensitivity EECS 47 Lecture 4: Filters 5 H.K. Page 3 Differential 5 th Order Lowpass Filter Since each signal and its inverse readily available, eliminates the need for negative resistors! Differential design has the advantage of even order harmonic distortion and common mode spurious pickup automatically cancels Disadvantage: Double resistor and capacitor area! EECS 47 Lecture 4: Filters 5 H.K. Page 4

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Laboratory #5: RF Filter Design

Laboratory #5: RF Filter Design EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order low-pass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response NAPIER University School of Engineering Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response In R1 R2 C2 C1 + Opamp A - R1 R2 C2 C1 + Opamp B - Out

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

CHAPTER 8 ANALOG FILTERS

CHAPTER 8 ANALOG FILTERS ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER

More information

Active Filters. Motivation:

Active Filters. Motivation: Active Filters Motivation: Analyse filters Design low frequency filters without large capacitors Design filters without inductors Design electronically programmable filters Imperial College London EEE

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary

More information

Mutual Inductance and Transformers F3 3. r L = ω o

Mutual Inductance and Transformers F3 3. r L = ω o utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil

More information

Application Report SLOA024B

Application Report SLOA024B Application Report July 999 Revised September 2002 Mixed Signal Products SLOA024B IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,

More information

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

CHAPTER 6 Frequency Response, Bode Plots, and Resonance ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

More information

Using the Impedance Method

Using the Impedance Method Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

More information

Lecture 7 Circuit analysis via Laplace transform

Lecture 7 Circuit analysis via Laplace transform S. Boyd EE12 Lecture 7 Circuit analysis via Laplace transform analysis of general LRC circuits impedance and admittance descriptions natural and forced response circuit analysis with impedances natural

More information

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

More information

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6 Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

Digital Signal Processing IIR Filter Design via Impulse Invariance

Digital Signal Processing IIR Filter Design via Impulse Invariance Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

SECTION 5-5: FREQUENCY TRANSFORMATIONS

SECTION 5-5: FREQUENCY TRANSFORMATIONS ANALOG FILTERS FREQUENCY TRANSFORMATIONS SECTION 55: FREQUENCY TRANSFORMATIONS Until now, only filters using the lowpass configuration have been examined. In this section, transforming the lowpass prototype

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim This application note describes how to build a 5 th order low pass, high pass Butterworth filter for 10 khz

More information

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data. Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter

More information

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various

More information

Understanding Power Impedance Supply for Optimum Decoupling

Understanding Power Impedance Supply for Optimum Decoupling Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

More information

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements

More information

LAB 12: ACTIVE FILTERS

LAB 12: ACTIVE FILTERS A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op- amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequency-selecting circuit designed

More information

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3) Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function

More information

A Differential Op-Amp Circuit Collection

A Differential Op-Amp Circuit Collection Application Report SLOA0A April 00 A Differential OpAmp Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT All opamps are differential input devices. Designers are accustomed to

More information

EECS 247 Analog-Digital Interface Integrated Circuits 2006. Lecture 1: Introduction

EECS 247 Analog-Digital Interface Integrated Circuits 2006. Lecture 1: Introduction EECS 247 Analog-Digital Interface Integrated Circuits 26 Instructor: Haideh Khorramabadi UC Berkeley Department of Electrical Engineering and Computer Sciences Lecture 1: Introduction EECS 247 Lecture

More information

A Differential Op-Amp Circuit Collection

A Differential Op-Amp Circuit Collection Application Report SLOA0 July 00 Bruce Carter A Differential OpAmp Circuit Collection High Performance Linear Products ABSTRACT All opamps are differential input devices. Designers are accustomed to working

More information

First, we show how to use known design specifications to determine filter order and 3dB cut-off

First, we show how to use known design specifications to determine filter order and 3dB cut-off Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and

More information

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters - Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and Switched-Capacitor

More information

How To Calculate The Power Gain Of An Opamp

How To Calculate The Power Gain Of An Opamp A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Analog and Digital Filters Anthony Garvert November 13, 2015

Analog and Digital Filters Anthony Garvert November 13, 2015 Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range

More information

Experiment # (4) AM Demodulator

Experiment # (4) AM Demodulator Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment

More information

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill

More information

CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION. Virgil Leenerts WØINK 8 June 2008

CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION. Virgil Leenerts WØINK 8 June 2008 CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION Virgil Leenerts WØINK 8 June 28 The response of the audio voice band high pass filter is evaluated in conjunction with the rejection

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

30. Bode Plots. Introduction

30. Bode Plots. Introduction 0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

More information

ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR

ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR ELEN E48: Digital Signal Processing Topic 8: Filter Design: IIR. Filter Design Specifications 2. Analog Filter Design 3. Digital Filters from Analog Prototypes . Filter Design Specifications The filter

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

Network Analyzer Operation

Network Analyzer Operation Network Analyzer Operation 2004 ITTC Summer Lecture Series John Paden Purposes of a Network Analyzer Network analyzers are not about computer networks! Purposes of a Network Analyzer Measures S-parameters

More information

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

More information

Application of network analyzer in measuring the performance functions of power supply

Application of network analyzer in measuring the performance functions of power supply J Indian Inst Sci, July Aug 2006, 86, 315 325 Indian Institute of Science Application of network analyzer in measuring the performance functions of power supply B SWAMINATHAN* AND V RAMANARAYANAN Power

More information

Fully Differential CMOS Amplifier

Fully Differential CMOS Amplifier ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational

More information

Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter. Raghu Tumati Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

More information

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

More information

What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter

What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter Audio Filters What you will do Build a 3-band equalizer Low pass filter High pass filter Band pass filter Connect to a music source (mp3 player) Adjust the strength of low, high, and middle frequencies

More information

Wide Band Tunable Filter Design Implemented in CMOS

Wide Band Tunable Filter Design Implemented in CMOS Wide Band Tunable Filter Design Implemented in CMOS W. Matthew Anderson and Bogdan M. Wilamowski Electrical & Computer Engineering Dept. Auburn University, AL 36849 anderwm@auburn.edu, wilambm@auburn.edu

More information

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Literature Number SLOA088 Excerpted from Op Amps for Everyone Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Thomas Kugelstadt 16.1 Introduction

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

AN48. Application Note DESIGNNOTESFORA2-POLEFILTERWITH DIFFERENTIAL INPUT. by Steven Green. 1. Introduction AIN- AIN+ C2

AN48. Application Note DESIGNNOTESFORA2-POLEFILTERWITH DIFFERENTIAL INPUT. by Steven Green. 1. Introduction AIN- AIN+ C2 Application Note DESIGNNOTESFORA2-POLEFILTERWITH DIFFERENTIAL INPUT by Steven Green C5 AIN- R3 C2 AIN C2 R3 C5 Figure 1. 2-Pole Low-Pass Filter with Differential Input 1. Introduction Many of today s Digital-to-Analog

More information

Cancellation of Load-Regulation in Low Drop-Out Regulators

Cancellation of Load-Regulation in Low Drop-Out Regulators Cancellation of Load-Regulation in Low Drop-Out Regulators Rajeev K. Dokania, Student Member, IEE and Gabriel A. Rincόn-Mora, Senior Member, IEEE Georgia Tech Analog Consortium Georgia Institute of Technology

More information

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Σ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback:

Σ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback: Feedback Amplifiers: One and Two Pole cases Negative Feedback: Σ _ a f There must be 180 o phase shift somewhere in the loop. This is often provided by an inverting amplifier or by use of a differential

More information

Chapter 11 Current Programmed Control

Chapter 11 Current Programmed Control Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock

More information

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better

More information

isim ACTIVE FILTER DESIGNER NEW, VERY CAPABLE, MULTI-STAGE ACTIVE FILTER DESIGN TOOL

isim ACTIVE FILTER DESIGNER NEW, VERY CAPABLE, MULTI-STAGE ACTIVE FILTER DESIGN TOOL isim ACTIVE FILTER DESIGNER NEW, VERY CAPABLE, MULTI-STAGE ACTIVE FILTER DESIGN TOOL Michael Steffes Sr. Applications Manager 12/15/2010 SIMPLY SMARTER Introduction to the New Active Filter Designer Scope

More information

University of Rochester Department of Electrical and Computer Engineering ECE113 Lab. #7 Higher-order filter & amplifier designs March, 2012

University of Rochester Department of Electrical and Computer Engineering ECE113 Lab. #7 Higher-order filter & amplifier designs March, 2012 University of Rochester Department of Electrical and Computer Engineering ECE113 Lab. #7 Higherorder filter & amplifier designs March, 2012 Writeups, due one week after the lab is performed, should provide

More information

Equalization/Compensation of Transmission Media. Channel (copper or fiber)

Equalization/Compensation of Transmission Media. Channel (copper or fiber) Equalization/Compensation of Transmission Media Channel (copper or fiber) 1 Optical Receiver Block Diagram O E TIA LA EQ CDR DMUX -18 dbm 10 µa 10 mv p-p 400 mv p-p 2 Copper Cable Model Copper Cable 4-foot

More information

Digital Signal Processing Complete Bandpass Filter Design Example

Digital Signal Processing Complete Bandpass Filter Design Example Digital Signal Processing Complete Bandpass Filter Design Example D. Richard Brown III D. Richard Brown III 1 / 10 General Filter Design Procedure discrete-time filter specifications prewarp DT frequency

More information

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Introduction The purpose of this document is to illustrate the process for impedance matching of filters using the MSA software. For example,

More information

SUMMARY. Additional Digital/Software filters are included in Chart and filter the data after it has been sampled and recorded by the PowerLab.

SUMMARY. Additional Digital/Software filters are included in Chart and filter the data after it has been sampled and recorded by the PowerLab. This technique note was compiled by ADInstruments Pty Ltd. It includes figures and tables from S.S. Young (2001): Computerized data acquisition and analysis for the life sciences. For further information

More information

Audio Tone Control Using The TLC074 Operational Amplifier

Audio Tone Control Using The TLC074 Operational Amplifier Application Report SLOA42 - JANUARY Audio Tone Control Using The TLC74 Operational Amplifier Dee Harris Mixed-Signal Products ABSTRACT This application report describes the design and function of a stereo

More information

A Single-Supply Op-Amp Circuit Collection

A Single-Supply Op-Amp Circuit Collection Application Report SLOA058 November 2000 A SingleSupply OpAmp Circuit Collection Bruce Carter OpAmp Applications, High Performance Linear Products One of the biggest problems for designers of opamp circuitry

More information

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1. Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.

More information

EE247 Lecture 4. For simplicity, will start with all pole ladder type filters. Convert to integrator based form- example shown

EE247 Lecture 4. For simplicity, will start with all pole ladder type filters. Convert to integrator based form- example shown EE247 Lecture 4 Ldder type filters For simplicity, will strt with ll pole ldder type filters Convert to integrtor bsed form exmple shown Then will ttend to high order ldder type filters incorporting zeros

More information

Selected Filter Circuits Dr. Lynn Fuller

Selected Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035

More information

An Adjustable Audio Filter System for the Receiver - Part 1

An Adjustable Audio Filter System for the Receiver - Part 1 1 of 7 An Adjustable Audio Filter System for the Receiver - Part 1 The audio response is shaped as required using Switched Capacitor Filters Lloyd Butler VK5BR Front panel view of the original receiver

More information

6.101 Final Project Report Class G Audio Amplifier

6.101 Final Project Report Class G Audio Amplifier 6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

More information

Using the Texas Instruments Filter Design Database

Using the Texas Instruments Filter Design Database Application Report SLOA062 July, 2001 Bruce Carter Using the Texas Instruments Filter Design Database High Performance Linear Products ABSTRACT Texas Instruments applications personnel have decades of

More information

Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

More information

Chapter 6: From Digital-to-Analog and Back Again

Chapter 6: From Digital-to-Analog and Back Again Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to

More information

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction

More information

Power supply output voltages are dropping with each

Power supply output voltages are dropping with each DESIGNER S SERIES Second-Stage LC Filter Design First Inductor by Dr. Ray Ridley First Capacitor Power supply output voltages are dropping with each new generation of Integrated Circuits (ICs). Anticipated

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

How PLL Performances Affect Wireless Systems

How PLL Performances Affect Wireless Systems May 2010 Issue: Tutorial Phase Locked Loop Systems Design for Wireless Infrastructure Applications Use of linear models of phase noise analysis in a closed loop to predict the baseline performance of various

More information

Controller Design in Frequency Domain

Controller Design in Frequency Domain ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract

More information

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer

More information

EE 402 RECITATION #13 REPORT

EE 402 RECITATION #13 REPORT MIDDLE EAST TECHNICAL UNIVERSITY EE 402 RECITATION #13 REPORT LEAD-LAG COMPENSATOR DESIGN F. Kağan İPEK Utku KIRAN Ç. Berkan Şahin 5/16/2013 Contents INTRODUCTION... 3 MODELLING... 3 OBTAINING PTF of OPEN

More information

Chapter 4: Passive Analog Signal Processing

Chapter 4: Passive Analog Signal Processing hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted

More information

Switch Mode Power Supply Topologies

Switch Mode Power Supply Topologies Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.

More information

Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration

Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration NI K HEF NATIONAL INSTITUTE FOR NUCLEAR AND HIGH ENERGY PHYSICS Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration Find the most recent files and related files

More information

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

More information

Design of op amp sine wave oscillators

Design of op amp sine wave oscillators Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation

More information

A Basic Introduction to Filters Active Passive and Switched-Capacitor

A Basic Introduction to Filters Active Passive and Switched-Capacitor A Basic Introduction to Filters Active Passive and Switched-Capacitor 1 0 INTRODUCTION Filters of some sort are essential to the operation of most electronic circuits It is therefore in the interest of

More information

Understanding CIC Compensation Filters

Understanding CIC Compensation Filters Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response

More information

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works) Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

More information

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Design of an Auxiliary Power Distribution Network for an Electric Vehicle Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,

More information