CHAPTER 6 Frequency Response, Bode Plots, and Resonance


 Violet Brown
 4 years ago
 Views:
Transcription
1 ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal components using the filter s transfer function.
2 3. Use circuit analysis to determine the transfer functions of simple circuits. 4. Draw firstorder lowpass or highpass filter circuits and sketch their transfer functions. 5. Understand decibels, logarithmic frequency scales, and Bode plots. ELECTRICAL
3 6. Draw the Bode plots for transfer functions of firstorder filters. ELECTRICAL
4
5 Fourier Analysis All realworld signals are sums of sinusoidal components having various frequencies, amplitudes, and phases. ELECTRICAL
6
7
8 Filters Filters process the sinusoid components of an input signal differently depending of the frequency of each component. Often, the goal of the filter is to retain the components in certain frequency ranges and to reject components in other ranges. ELECTRICAL
9
10 Transfer Functions The transfer function H(f ) of the twoport filter is defined to be the ratio of the phasor output voltage to the phasor input voltage as a function of frequency: H ( f ) = V V out in ELECTRICAL
11 H ( f ) = V V out in The magnitude of the transfer function shows how the amplitude of each frequency component is affected by the filter. Similarly, the phase of the transfer function shows how the phase of each frequency component is affected by the filter. ELECTRICAL
12
13 Determining the output of a filter for an input with multiple components: 1. Determine the frequency and phasor representation for each input component. 2. Determine the (complex) value of the transfer function for each component. ELECTRICAL
14 3. Obtain the phasor for each output component by multiplying the phasor for each input component by the corresponding transferfunction value. 4. Convert the phasors for the output components into time functions of various frequencies. Add these time functions to produce the output. ELECTRICAL
15 Linear circuits behave as if they: ELECTRICAL 1. Separate the input signal into components having various frequencies. 2. Alter the amplitude and phase of each component depending on its frequency. 3. Add the altered components to produce the output signal.
16
17
18
19
20 FIRSTORDER LOWPASS FILTERS 1 f = B 2πRC H ( f ) = ( f ) 2 f B H ( f ) 1 = 1 + j ( f ) f B H ( f ) = arctan f B f ELECTRICAL
21 H ( f ) = ( f ) 2 f B ELECTRICAL
22
23
24
25
26 DECIBELS, THE CASCADE CONNECTION, AND LOGARITHMIC FREQUENCY SCALES H ( f ) log H ( f ) db = 20 ELECTRICAL
27
28
29
30 Cascaded TwoPort Networks H( f ) = H ( f ) H ( f ) 1 2 ( f ) H ( f ) H ( f ) db 1 db 2 db H = + ELECTRICAL
31
32 Logarithmic Frequency Scales On a logarithmic scale, the variable is multiplied by a given factor for equal increments of length along the axis. ELECTRICAL
33 A decade is a range of frequencies for which the ratio of the highest frequency to the lowest is 10. ELECTRICAL number of decades = log An octave is a twotoone change in frequency. f f 2 1 ( f f ) f log () number of octaves = log 2 = f log 2 1
34
35 BODE PLOTS A Bode plot shows the magnitude of a network function in decibels versus frequency using a logarithmic scale for frequency. H ( f ) 1 = 1 + j ( f ) f B ELECTRICAL H ( f ) = 10log db 1 + f f B 2
36
37 1. A horizontal line at zero for f < f B / A sloping line from zero phase at f B /10 to 90 at 10f B. 3. A horizontal line at 90 for f > 10f B. ELECTRICAL
38
39
40
41 FIRSTORDER HIGHPASS FILTERS H ( f ) = V V out in = 1 j + ( f f ) B j( f f ) B 1 f = B 2πRC ELECTRICAL
42
43
44
45
46 SERIES RESONANCE Resonance is a phenomenon that can be observed in mechanical systems and electrical circuits. ELECTRICAL
47 f 0 = 2π 1 LC 1 Q = s 2πf CR 0 2πf L Q = 0 s R Z s ( ) f f f = R 1 + jq 0 s f f 0 ELECTRICAL
48
49
50 Series Resonant Circuit as a Bandpass Filter V V R s = 1 + jq s 1 ( f f f f ) 0 0 ELECTRICAL
51
52 B = f f H L f f + H 0 B 2 f B = 0 Q s f L f 0 B 2 ELECTRICAL
53
54
55
56 PARALLEL RESONANCE Z p = 1 j2πfc j 1 2πfL ( ) + ( ) 1 R f 0 = 2π 1 LC R = Q f CR 2πf L p = 2π 0 Q p 0 Z p = R 1 + jq p ( f f f f ) 0 0 ELECTRICAL
57
58
59
60 Ideal Filters ELECTRICAL
61
62
63 SecondOrder Lowpass Filter H ( f ) = V V out in = ( f s 0 f ) ( f f f f ) jq 1 + jq s 0 0 ELECTRICAL
64
65
66
67
68
69
70
71 DIGITAL SIGNAL PROCESSING ELECTRICAL
72
73 Conversion of Signals from Analog to Digital Form If a signal contains no components with frequencies higher than f H, the signal can be exactly reconstructed from its samples, provided that the sampling rate f s is selected to be more than twice f H. ELECTRICAL
74
75
76 Digital Lowpass Filter y () n = ay( n 1) + ( 1 a)() x n a τ T = 1 + τ T ELECTRICAL
77
78
79
80
81
Engineering Sciences 22 Systems Summer 2004
Engineering Sciences 22 Systems Summer 24 BODE PLOTS A Bode plot is a standard format for plotting frequency response of LTI systems. Becoming familiar with this format is useful because: 1. It is a standard
More informationCIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steadystate behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
More informationLAB 12: ACTIVE FILTERS
A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequencyselecting circuit designed
More information30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
More informationLaboratory #5: RF Filter Design
EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order lowpass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations
More informationLab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
More informationSDOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS
SDOMAIN ANAYSIS: POES, ZEROS, AND BODE POTS The main objectiveis to find amplifier voltage gain as a transfer function of the complex frequency s. In this sdomain analysis a capacitance С is replaced
More informationUsing the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
More informationBode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson
Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary
More informationUNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics
More informationChapter 10. RC Circuits ISU EE. C.Y. Lee
Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine
More informationFrequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
More informationAnalog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.
Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter
More informationchapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
More informationFrequency response. Chapter 1. 1.1 Introduction
Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred
More information6.025J Medical Device Design Lecture 3: AnalogtoDigital Conversion Prof. Joel L. Dawson
Let s go back briefly to lecture 1, and look at where ADC s and DAC s fit into our overall picture. I m going in a little extra detail now since this is our eighth lecture on electronics and we are more
More informationUnderstanding Dynamic Range in Acceleration Measurement Systems. February 2013 By: Bruce Lent
in Acceleration Measurement Systems February 2013 By: Bruce Lent Topics to discuss Definition of dynamic range The effective range Making full use of the high level Using filters to improve dynamic range
More informationPIEZO FILTERS INTRODUCTION
For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on
More informationUnit2: Resistor/CapacitorFilters
Unit2: Resistor/CapacitorFilters Physics335 Student October 3, 27 Physics 335Section Professor J. Hobbs Partner: Physics335 Student2 Abstract Basic RCfilters were constructed and properties such as
More informationLecturer: James Grimbleby URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk
AC Circuit Analysis Module: SEEA5 Systems and Circuits Lecturer: UL: http://www.personal.rdg.ac.uk/~stsgrimb/ email:.b.grimbleby reading.ac.uk Number of Lectures: ecommended text book: David Irwin and
More informationExperiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage
More informationLM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters  Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A
LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters  Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and SwitchedCapacitor
More informationAnalog and Digital Filters Anthony Garvert November 13, 2015
Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range
More informationFILTERS  IN RADIO COMMUNICATIONS
Reading 32 Ron Bertrand VK2DQ http://www.radioelectronicschool.com FILTERS  IN RADIO COMMUNICATIONS RADIO SIGNALS In radio communications we talk a lot about radio signals. A radio signal is a very broad
More informationLecture 16: Noise and Filters
Lecture 16: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat
More informationAnalog Signal Conditioning
Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084
More informationIntroduction to Bode Plot
Introduction to Bode Plot 2 plots both have logarithm of frequency on xaxis o yaxis magnitude of transfer function, H(s), in db o yaxis phase angle The plot can be used to interpret how the input affects
More informationUnderstanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
More information2.161 Signal Processing: Continuous and Discrete Fall 2008
MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
More informationPositive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
More informationUNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101  Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101  Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2sided sheet of
More informationAnalog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.
3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGrawHill
More informationSIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
More informationε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
More informationLock  in Amplifier and Applications
Lock  in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lockin amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
More informationA Basic Introduction to Filters Active Passive and SwitchedCapacitor
A Basic Introduction to Filters Active Passive and SwitchedCapacitor 1 0 INTRODUCTION Filters of some sort are essential to the operation of most electronic circuits It is therefore in the interest of
More information2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Twoways of describing device: A. Equivalent  CircuitModel
ECE45A/8A Notes et #4 Port Parameters Twoways of describing device: A. Equivalent  CircuitModel Physically based Includes bias dependence Includes frequency dependence Includes size dependence  scalability
More informationFrequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V  Figure The
More informationKeysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the
More informationHomework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9V dc power supply generates 10 W in a resistor. What peaktopeak amplitude should an ac source have to generate the same
More informationAC CIRCUITS  CAPACITORS AND INDUCTORS
EXPRIMENT#8 AC CIRCUITS  CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective
More informationChapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A
hapter 16 Active Filter Design Techniques Literature Number SLOA088 Excerpted from Op Amps for Everyone Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Thomas Kugelstadt 16.1 Introduction
More informationElectrical Resonance
Electrical Resonance (RLC series circuit) APPARATUS 1. RLC Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
More informationThe front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
More informationCHAPTER 8 ANALOG FILTERS
ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER
More informationBasic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
More informationLecture 14. Point Spread Function (PSF)
Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signaltonoise Ratio (SNR), Contrasttonoise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect
More informationMeasuring Impedance and Frequency Response of Guitar Pickups
Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear
More informationChapter 4: Passive Analog Signal Processing
hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted
More informationAgilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?
More informationSIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY
SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better
More informationMODELING FIRST AND SECOND ORDER SYSTEMS IN SIMULINK
MODELING FIRST AND SECOND ORDER SYSTEMS IN SIMULINK First and second order differential equations are commonly studied in Dynamic courses, as they occur frequently in practice. Because of this, we will
More informationDesign of a TL431Based Controller for a Flyback Converter
Design of a TL431Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used
More informationAN691 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 020629106 Tel: 781/3294700 Fax: 781/4613113 www.analog.com
APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 020629106 Tel: 781/3294700 Fax: 781/4613113 www.analog.com Operation of RF Detector Products at Low Frequency by Matthew Pilotte INTRODUCTION
More informationThe Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
More informationFAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to
More informationSophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
More informationLecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)
Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function
More informationVi, fi input. Vphi output VCO. Vosc, fosc. voltagecontrolled oscillator
Experiment #4 CMOS 446 PhaseLocked Loop c 1997 Dragan Maksimovic Department of Electrical and Computer Engineering University of Colorado, Boulder The purpose of this lab assignment is to introduce operating
More informationChapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... . A ircuits with a Source and One ircuit Element... 3.. Purely esistive oad... 3.. Purely Inductive oad... 6..3 Purely apacitive oad... 8.3 The Series ircuit...
More informationAN837 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDSBased Clock Jitter Performance vs. DAC Reconstruction Filter Performance
More informationVCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
More informationLAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the iv characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
More informationAlternatingCurrent Circuits
hapter 1 Alternatingurrent ircuits 1.1 A Sources... 11. Simple A circuits... 13 1..1 Purely esistive load... 13 1.. Purely Inductive oad... 15 1..3 Purely apacitive oad... 17 1.3 The Series ircuit...
More informationThe Phase Modulator In NBFM Voice Communication Systems
The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called
More informationController Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
More informationTime series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
More informationRANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military
More informationFrequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
More informationAN105. Introduction: The Nature of VCRs. Resistance Properties of FETs
Introduction: The Nature of s A voltagecontrolled resistor () may be defined as a threeterminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential
More informationEquivalent Circuits and Transfer Functions
R eq isc Equialent Circuits and Transfer Functions Samantha R Summerson 14 September, 009 1 Equialent Circuits eq ± Figure 1: Théenin equialent circuit. i sc R eq oc Figure : MayerNorton equialent circuit.
More informationAnalog & Digital Electronics Course No: PH218
Analog & Digital Electronics Course No: PH18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:
More informationLecture  4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture  4 Diode Rectifier Circuits
More informationHow to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim
How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim This application note describes how to build a 5 th order low pass, high pass Butterworth filter for 10 khz
More informationBasic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture2 Transistor
More informationUnderstanding the Fundamental Principles of Vector Network Analysis. Application Note 12871. Table of Contents. Page
Understanding the Fundamental Principles of Vector Network Analysis Application Note 12871 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements
More informationI + Understanding Impedances. Why do we need to know this?
Understanding Impedances HSSP Audio and Speakerbuilding Teacher: Michael Price Why do we need to know this? We re going to build speakers using two or more different drivers (for example, a woofer and
More informationIntroduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
More informationOPAMP AND ITS APPLICATIONS
C H A P T E R68 Learning Objectives What is an OPAMP? OPAMP Symbol Polarity Conventions Ideal Operational Amplifier Virtual Ground and Summing Point Why V i is Reduced to Almost Zero? OPAMP Applications
More informationAN1991. Audio decibel level detector with meter driver
Rev. 2.1 20 March 2015 Application note Document information Info Keywords Abstract Content SA604A, LM358, RSSI, cellular radio The SA604A can provide a logarithmic response proportional to the input signal
More informationLaboratory Manual. ELEN325 Electronics
Laboratory Manual ELEN325 Electronics Department of Electrical & Computer Engineering Texas A&M University Prepared by: Dr. Jose SilvaMartinez (jsilva@ece.tamu.edu) Rida Assaad (rida@ece.tamu.edu) Raghavendra
More informationAVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8bit and 32bit Microcontrollers APPLICATION NOTE
Atmel 8bit and 32bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analogtodigital converter (ADC) and the
More informationFigure 1. Diode circuit model
Semiconductor Devices Nonlinear Devices Diodes Introduction. The diode is two terminal non linear device whose IV characteristic besides exhibiting nonlinear behavior is also polarity dependent. The
More informationStep Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
More informationSpikeBased Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept
SpikeBased Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEUROSILICON WORKSHOP, AUG 12, 2006 Take Home Messages Introduce integrateandfire
More informationMore Filter Design on a Budget
Application Report SLOA096 December 2001 More Filter Design on a Budget Bruce Carter High Performance Linear Products ABSTRACT This document describes filter design from the standpoint of cost. Filter
More informationBasic Acoustics and Acoustic Filters
Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors
More informationPHYSICS 360  LAB #2 Passive Lowpass and Highpass Filter Circuits and Integrator and Differentiator Circuits
PHYSICS 360  LAB #2 Passie Lowpass and Highpass Filter Circuits and Integrator and Differentiator Circuits Objectie: Study the behaior of lowpass and highpass filters. Study the differentiator and
More informationMATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 4699510 FAX (732) 4690418 MATRIX TECHNICAL NOTES MTN107 TEST SETUP FOR THE MEASUREMENT OF XMOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
More informationManufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
More informationA few words about imaginary numbers (and electronics) Mark Cohen mscohen@g.ucla.edu
A few words about imaginary numbers (and electronics) Mark Cohen mscohen@guclaedu While most of us have seen imaginary numbers in high school algebra, the topic is ordinarily taught in abstraction without
More informationANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 21
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
More informationSound Pressure Measurement
Objectives: Sound Pressure Measurement 1. Become familiar with hardware and techniques to measure sound pressure 2. Measure the sound level of various sizes of fan modules 3. Calculate the signaltonoise
More informationTutorial and Simulations for MicroCap IV
ELEC 380 Electronic Circuits II Tutorial and Simulations for MicroCap IV By Adam Zielinski (Posted at: http://wwwece.uvic.ca/~adam/) Version: August 22, 2002 ELEC 380 Electronic Circuits II  Tutorial
More informationChapter 29 AlternatingCurrent Circuits
hapter 9 Alternatingurrent ircuits onceptual Problems A coil in an ac generator rotates at 6 Hz. How much time elapses between successive emf values of the coil? Determine the oncept Successive s are
More informationA Tutorial on the Decibel
A Tutorial on the Decibel This tutorial combines information from several authors, including Bob DeVarney, W1ICW; Walter Bahnzaf, WB1ANE; and Ward Silver, NØAX Decibels are part of many questions in the
More informationEstimation of Loudness by Zwicker's Method
Estimation of Loudness by Zwicker's Method Loudness is one category in the list of human perceptions of sound. There are many methods of estimating Loudness using objective measurements. No method is perfect.
More informationAgilent Time Domain Analysis Using a Network Analyzer
Agilent Time Domain Analysis Using a Network Analyzer Application Note 128712 0.0 0.045 0.6 0.035 Cable S(1,1) 0.4 0.2 Cable S(1,1) 0.025 0.015 0.005 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) 0.005
More informationUnderstanding Power Impedance Supply for Optimum Decoupling
Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,
More informationChapter 19 Resonant Conversion
Chapter 9 Resonant Conversion Introduction 9. Sinusoidal analysis of resonant converters 9. Examples Series resonant converter Parallel resonant converter 9.3 Exact characteristics of the series and parallel
More information