University of Rochester Department of Electrical and Computer Engineering ECE113 Lab. #7 Higherorder filter & amplifier designs March, 2012


 Diane Patterson
 3 years ago
 Views:
Transcription
1 University of Rochester Department of Electrical and Computer Engineering ECE113 Lab. #7 Higherorder filter & amplifier designs March, 2012 Writeups, due one week after the lab is performed, should provide a detailed description of the laboratory exercise with diagrams of all circuits, a description of your procedures, loglog plots of gain versus frequency, and a separate abstract. Late work is not accepted. I. Background The attached pages describe dual sets of active amplifier/filter circuits, one 2nd order and the other 3 rd order. Enough information is provided on these pages to allow you to design lowpass and highpass filters with prescribed frequency breakpoints. The design methodology is based on frequency and amplitude scaling to determine the component values for your chosen filter. Your design is then to be tested in the laboratory. II. Preparation for laboratory exercise Read this entire assignment first, then with your partner select one (1) of the four circuits listed below and create a design according to the specifications. a) 2 nd order LP ampl. with G LP = 5: critical 10 khz b) 2 nd order HP ampl. with G HP = 5: critical 5 khz c) 3 rd order LP filter (G LP = 1): critical 20 khz d) 3 rd order HP filter (G HP = 1): critical 5 khz Start with a Bode diagram of the desired circuit. To determine the values of the components, especially for the 3 rd order filters, you can use frequency and amplitude scaling to great advantage. You will need to use a trialanderror approach to calculate some of your component values. For any of the circuits selected, restrict resistor values to the range of 1 to 20 kω. NOTE: There is no single, unique solution for any of these designs, though some choices will be better than others. Before you come to the lab, prepare a onepage (singlesided) design sheet. This design sheet must clearly show your circuit, the design methodology, and a parts list. The amplitude & phase Bode plots used in the design should be attached. Bring two copies of these sheets to the lab and hand one of them to the TA before you start the lab. Loglog paper for use in your Bode diagram will be available in the plastic tray outside my office and in the lab.
2 pg 2 of 5 III. Experimental procedure A. Assemble your circuit. After doublechecking your connections, test it thoroughly across a frequency range appropriate to the critical frequency specified for the design you selected. Measure both the amplitude and the phase of the transfer function. Be smart about the frequency values chosen for your measurement: concentrate the data collected close to the breakpoint, that is, where H(jω) and H(jω) change most rapidly. The smart way to record date is to plot it directly on the loglog paper. B. If the performance of your circuit is far out of specs, look closely at the design to see if you have made some error in either the calculations or the design itself. Make appropriate corrections, and repeat the test measurements. The thirdorder filters can be made to work properly if you lay out the circuit carefully, use star grounding, and choose component values correctly. Do not use electrolytic capacitors as filter elements. Feel free to use any opamp available in the lab; 741 s are not good choices for 3 rd order filters. IV. Writeup In your writeup, summarize the design procedure and include a copy of the onepage design sheet and Bode plot. Describe and analyze the performance of your circuit, comparing the actual measured break frequency, behavior of the filter in the pass band, and rolloff in db/decade. Include carefully prepared plots of your data with the Bode diagrams superimposed. Summarize any data analysis or theoretical calculations relevant to your work. In the last section of the report, discuss any shortcomings of your circuit and consider explanations for such discrepancies. Do not forget to include a separate abstract with your writeup.
3 pg 3 of 5 L o w g a i n 2 n d o r d e r a m p l i f i e r s Lowgain 2ndorder LP and HP amplifiers can be designed from a common circuit topology using two capacitors, four resistors, and one opamp. Lowpass (LP) amplifier The critical break frequency of this LP amplifier is! h = 1/ C 1 C 2, while the lowfrequency voltage gain is G LP = 1 R b /R a. Subject to the assumption that the openloop gain of the opamp is very high, the transfer function of this LP filter is: R a R b Highpass (HP) amplifier G LP H(s) = s 2 C 1 C 2 s [C 2 ( ) C 1 R b / R a ]1 The critical break frequency of this HP amplifier is! l = 1/ C 1 C 2 and the highfrequency gain is G HP = 1 R b /R a. Subject to the assumption that the openloop gain of the opamp is very high, the transfer function of this HP filter is: R a R b H(s) = G H P s 2 C 1 C 2 s 2 C 1 C 2 s [ (C 1 C 2 ) C 2 R b / R a ]1 You can base your design methodology for either of these amplifiers on the given analytical expressions for H(s) as follows: (i) identify the damping factor ζ within H; (ii) set ω break = 1 rad/sec, = = R a = 1 Ω, and then use G plus a reasonable guess for the value of ζ to determine R b, C 1, and C 2 ; (iii) employ frequency & amplitude scaling to move the break frequency where you want it and to put the resistors and capacitor values into practical ranges. NOTE: You must use trial and error methods to determine your capacitor values. In either case, make sure the coefficient of s in the denominator is positive! If it goes negative, the poles move to the righthalf plane and instability results.
4 pg 4 of 5 U n i t y g a i n 3 r d o r d e r f i l t e r s 3rdorder LP and HP filters can be designed to give unity gain in their pass bands and very steep rolloff (60 db/decade) in their stop bands. The transfer function H(s) of a 3rdorder filter is algebraically hard to manipulate. Thus, it is common to start with given component values (e.g., derived from the maximally flat condition, H = 3 db with a breakpoint at ω break = 1 rad/sec). To create a ckt to meet practical specifications, the component values are frequencyscaled to achieve the desired corner frequency and amplitudescaled to put components into practical ranges. LP filter The 3rdorder LP filter ckt uses 3 resistors & 3 capacitors, as shown at right. Starting point values giving the maximally flat condition with ω h = 1 rad/sec are: R 3 C3 = = R 3 = 1 Ω, C 1 = F, C 2 = 3.57 F, & C 3 = 1.39 F. HP filter The 3rdorder HP filter exchanges the 3 resistors and 3 capacitors, as shown at right. C3 Starting point values giving the maximally flat condition & a corner freq. ω l = 1 rad/sec are: R 3 C 1 = C 2 = C 3 = 1.00 F, = 4.94 Ω, = Ω, & R 3 = Ω.
5 pg 5 of 5 If you are ambitious and enjoy algebra, you can attempt to use the mesh equations to solve for the transfer function H(s). If you succeed, you can study the influence of component values on frequency response. This is not necessary for completion of the assignment but, if you succeed in obtaining H(s), let me know and I will plot it for you. Note that 3 rd order filters exhibit rather strong sensitivity to component values, indicative of the everpresent tradeoff between component cost and performance.
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
More information30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
More informationLAB 12: ACTIVE FILTERS
A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequencyselecting circuit designed
More informationBode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson
Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary
More informationLaboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 2024) and Week 10 (Oct. 2731) Due Week 11 (Nov. 37) 1 PreLab This PreLab should be completed before attending your regular
More informationChapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A
hapter 16 Active Filter Design Techniques Literature Number SLOA088 Excerpted from Op Amps for Everyone Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Thomas Kugelstadt 16.1 Introduction
More informationFrequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
More informationEngineering Sciences 22 Systems Summer 2004
Engineering Sciences 22 Systems Summer 24 BODE PLOTS A Bode plot is a standard format for plotting frequency response of LTI systems. Becoming familiar with this format is useful because: 1. It is a standard
More informationLaboratory #5: RF Filter Design
EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order lowpass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations
More informationSophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
More information2.161 Signal Processing: Continuous and Discrete Fall 2008
MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
More informationApplication Report SLOA024B
Application Report July 999 Revised September 2002 Mixed Signal Products SLOA024B IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
More informationLM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters  Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A
LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters  Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and SwitchedCapacitor
More informationDesigning Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators
Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.
More informationOPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
More informationAnalog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.
Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter
More informationHow to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim
How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim This application note describes how to build a 5 th order low pass, high pass Butterworth filter for 10 khz
More information11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an opamp depend primarily on the characteristics of the feedback network rather than on those of the opamp itself. A
More informationSDOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS
SDOMAIN ANAYSIS: POES, ZEROS, AND BODE POTS The main objectiveis to find amplifier voltage gain as a transfer function of the complex frequency s. In this sdomain analysis a capacitance С is replaced
More informationSelected Filter Circuits Dr. Lynn Fuller
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035
More informationε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
More informationUnderstanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
More informationChapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (OpAmp) Operational amplifiers (opamps) are very high gain dc coupled amplifiers with differential inputs; they are used
More informationStep Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
More informationBJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple largesignal model) and A signals (smallsignal model), analysis of JT circuits follows these steps: D biasing analysis:
More informationCIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steadystate behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
More informationA Basic Introduction to Filters Active Passive and SwitchedCapacitor
A Basic Introduction to Filters Active Passive and SwitchedCapacitor 1 0 INTRODUCTION Filters of some sort are essential to the operation of most electronic circuits It is therefore in the interest of
More informationNAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response
NAPIER University School of Engineering Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response In R1 R2 C2 C1 + Opamp A  R1 R2 C2 C1 + Opamp B  Out
More informationPositive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
More informationMaking Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz
Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in
More informationLABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
More informationAnalog and Digital Filters Anthony Garvert November 13, 2015
Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range
More informationMore Filter Design on a Budget
Application Report SLOA096 December 2001 More Filter Design on a Budget Bruce Carter High Performance Linear Products ABSTRACT This document describes filter design from the standpoint of cost. Filter
More informationActive LowPass Filter Design
Application Report SLOA049B  September 00 Active LowPass Filter Design Jim Karki AAP Precision Analog ABSTRACT This report focuses on active lowpass filter design using operational amplifiers. Lowpass
More informationVCO K 0 /S K 0 is tho slope of the oscillator frequency to voltage characteristic in rads per sec. per volt.
Phase locked loop fundamentals The basic form of a phase locked loop (PLL) consists of a voltage controlled oscillator (VCO), a phase detector (PD), and a filter. In its more general form (Figure 1), the
More informationBJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple largesignal model) and A signals (smallsignal model), analysis of JT circuits follows these steps: D biasing analysis:
More informationUNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics
More informationController Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
More information*For stability of the feedback loop, the differential gain must vary as
ECE137a Lab project 3 You will first be designing and building an opamp. The opamp will then be configured as a narrowband amplifier for amplification of voice signals in a public address system. Part
More informationCTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION. Virgil Leenerts WØINK 8 June 2008
CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION Virgil Leenerts WØINK 8 June 28 The response of the audio voice band high pass filter is evaluated in conjunction with the rejection
More informationΣ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback:
Feedback Amplifiers: One and Two Pole cases Negative Feedback: Σ _ a f There must be 180 o phase shift somewhere in the loop. This is often provided by an inverting amplifier or by use of a differential
More informationAPPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 7461111 Telex: 0666491 FAX (520) 8891510 Product Info: (800) 5486132
More informationAPPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 400 Tucson, AZ 8574 Street Address: 670 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602) 746 Twx: 90952 Telex: 066649 FAX (602) 88950 Immediate Product Info:
More informationI + Understanding Impedances. Why do we need to know this?
Understanding Impedances HSSP Audio and Speakerbuilding Teacher: Michael Price Why do we need to know this? We re going to build speakers using two or more different drivers (for example, a woofer and
More informationUsing the Texas Instruments Filter Design Database
Application Report SLOA062 July, 2001 Bruce Carter Using the Texas Instruments Filter Design Database High Performance Linear Products ABSTRACT Texas Instruments applications personnel have decades of
More informationFrequency response. Chapter 1. 1.1 Introduction
Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred
More informationFig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal opamp real opamp
Experiment: General Description An operational amplifier (opamp) is defined to be a high gain differential amplifier. When using the opamp with other mainly passive elements, opamp circuits with various
More informationApplication Report SLOA020A
Application Report March 200 Mixed Signal Products SLOA020A IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
More informationCHAPTER 8 ANALOG FILTERS
ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER
More informationTesting a power supply for line and load transients
Testing a power supply for line and load transients Powersupply specifications for line and load transients describe the response of a power supply to abrupt changes in line voltage and load current.
More informationChapter 4: Passive Analog Signal Processing
hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted
More informationMassachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,
More informationAC 20123923: MEASUREMENT OF OPAMP PARAMETERS USING VEC TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY
AC 2123923: MEASUREMENT OF OPAMP PARAMETERS USING VEC TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY Dr. Tooran Emami, U.S. Coast Guard Academy Tooran Emami received her M.S. and Ph.D.
More informationRC & RL Transient Response
EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient
More informationNetwork analysis is a powerful and wellestablished
Simple Signal Injector Aids ControlLoop Analysis A signalinjection circuit for controlloop analysis is flat from dc to 200 khz, isolated from chassis ground and easily constructed with a readily available
More informationReading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
More informationAN48. Application Note DESIGNNOTESFORA2POLEFILTERWITH DIFFERENTIAL INPUT. by Steven Green. 1. Introduction AIN AIN+ C2
Application Note DESIGNNOTESFORA2POLEFILTERWITH DIFFERENTIAL INPUT by Steven Green C5 AIN R3 C2 AIN C2 R3 C5 Figure 1. 2Pole LowPass Filter with Differential Input 1. Introduction Many of today s DigitaltoAnalog
More information2. The Vector Network Analyzer
ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission
More informationENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742
1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers
More informationDesign of a TL431Based Controller for a Flyback Converter
Design of a TL431Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used
More informationBasic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
More informationUnderstanding Power Impedance Supply for Optimum Decoupling
Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,
More informationLab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
More information6.101 Final Project Report Class G Audio Amplifier
6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable
More informationA SingleSupply OpAmp Circuit Collection
Application Report SLOA058 November 2000 A SingleSupply OpAmp Circuit Collection Bruce Carter OpAmp Applications, High Performance Linear Products One of the biggest problems for designers of opamp circuitry
More informationUsing the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
More informationElectronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
More informationConstant Current Control for DCDC Converters
Constant Current Control for DCDC Converters Introduction... Theory of Operation... Power Limitations... Voltage Loop Stability...2 Current Loop Compensation...3 Current Control Example...5 Battery Charger
More informationChapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
More informationSECTION 55: FREQUENCY TRANSFORMATIONS
ANALOG FILTERS FREQUENCY TRANSFORMATIONS SECTION 55: FREQUENCY TRANSFORMATIONS Until now, only filters using the lowpass configuration have been examined. In this section, transforming the lowpass prototype
More informationSystem Modeling and Control for Mechanical Engineers
Session 1655 System Modeling and Control for Mechanical Engineers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Abstract
More informationPIEZO FILTERS INTRODUCTION
For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on
More informationProgrammableGain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems
ProgrammableGain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORTCIRCUIT PHOTODIODE SHORT CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision
More informationExperiment # (4) AM Demodulator
Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment
More informationSeries and Parallel Resistive Circuits Physics Lab VIII
Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested
More informationExperiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage
More informationLab 5 Operational Amplifiers
Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties
More informationKirchhoff s Laws Physics Lab IX
Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,
More informationISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 10.5 Broadband ESD Protection Circuits in CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering Department, University of
More informationLecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)
Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function
More informationAn audio circuit collection, Part 1
An audio circuit collection, Part By Bruce Carter Advanced Analog Products, Op Amp Applications Introduction This is the first of two articles on audio circuits. New operational amplifiers from Texas Instruments
More informationPHYSICS 360  LAB #2 Passive Lowpass and Highpass Filter Circuits and Integrator and Differentiator Circuits
PHYSICS 360  LAB #2 Passie Lowpass and Highpass Filter Circuits and Integrator and Differentiator Circuits Objectie: Study the behaior of lowpass and highpass filters. Study the differentiator and
More informationPhysics 120 Lab 6: Field Effect Transistors  Ohmic region
Physics 120 Lab 6: Field Effect Transistors  Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS  V
More informationRC Circuits and The Oscilloscope Physics Lab X
Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for
More informationLock  in Amplifier and Applications
Lock  in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lockin amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
More informationBuild a Voltage and Current Peak Detector
ax You Can DIY! Build a Voltage and Current Peak Detector Here is a simple portable device that can help answer the question about peak voltage and peak current requirements and whether or not your power
More informationHigh CommonMode Rejection. Differential Line Receiver SSM2141. Fax: 781/4613113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High CommonMode Rejection
a FEATURES High CommonMode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements
More informationUNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101  Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101  Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2sided sheet of
More informationCancellation of LoadRegulation in Low DropOut Regulators
Cancellation of LoadRegulation in Low DropOut Regulators Rajeev K. Dokania, Student Member, IEE and Gabriel A. RincόnMora, Senior Member, IEEE Georgia Tech Analog Consortium Georgia Institute of Technology
More informationFilter Comparison. Match #1: Analog vs. Digital Filters
CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a headtohead competition between filters; we'll select
More informationDesign A High Performance Buck or Boost Converter With Si9165
Design A High Performance Buck or Boost Converter With Si9165 AN723 AN723 by Kin Shum INTRODUCTION The Si9165 is a controller IC designed for dctodc conversion applications with 2.7 to 6 input voltage.
More informationFully Differential CMOS Amplifier
ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational
More informationEE 435 Lecture 13. Cascaded Amplifiers.  TwoStage Op Amp Design
EE 435 Lecture 13 Cascaded Amplifiers  TwoStage Op Amp Design Review from Last Time RouthHurwitz Stability Criteria: A thirdorder polynomial s 3 +a 2 s 2 +a 1 s+a 0 has all poles in the LHP iff all
More informationTransistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
More informationObjectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).
1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;
More informationNTE923 & NTE923D Integrated Circuit Precision Voltage Regulator
NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices
More informationTechnical Note #3. Error Amplifier Design and Applications. Introduction
Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closedloop control to force the output to match the desired value. Both digital
More informationClock Recovery in SerialData Systems Ransom Stephens, Ph.D.
Clock Recovery in SerialData Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
More informationFREQUENCY RESPONSE OF AN AUDIO AMPLIFIER
2014 Amplifier  1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HIFI audio equipment To generate a frequency response curve for an audio
More informationVer 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)
Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.
More information