Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)


 Denis Hopkins
 2 years ago
 Views:
Transcription
1 Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1
2 Roadmap: How Does This Work? 2
3 Processor Board 3
4 More Detailed Roadmap For This Week In the last week of lectures we will introduce a new device, an inductor, and then use it and capacitors to take an energy source at one voltage, and convert it to produce energy at another voltage. While this might seem like a funny thing to do, you use a ton of these every day. They are the little wall warts that you use to charge your cell phone, your tablet, laptop, and are built into most of the lighting that we use today. These wall warts used to be big and clunky, but now they are much smaller, light weight, and, of course, cheaper. These lectures will explain what happened 4
5 Roadmap For Today What is an inductor Introduction to a simple step down voltage converter Use impedance to analyze this converter 5
6 Learning Objectives Understand what an inductor is V=L di/dt It is a device that tries to keep current constant Generates voltage (in either direction) to resist current changes Understand that ideal inductors and capacitor are lossless They store energy, and don t dissipate it Energy that goes into an LC circuit, must come out We can use this to convert energy from one voltage to another Size of the components is related to the energy they can store Be able to use impedance to Solve for the output voltage of a buck converter Determine the needed switching freq given L,C (or vice versa) 6
7 PREVIOUSLY IN E40M 7
8 ECG Measurement Need to measure the difference between L1 and L2 We think the circuit looks like 8
9 The Circuit Really Looks Like This: There are many unwanted signals coupling into our circuit Both capacitive (stray E fields) and inductive (B fields) These signals can be larger than what we want to measure! How to prevent them from obscuring our signal? 9
10 Balanced Amplifier This is a completely differential system Good for reducing noise coupling 10
11 Why Does the ECG Circuit Look Like This? 11
12 12
13 INDUCTORS 13
14 Inductors An inductor is a new type of two terminal device It is linear Double V, you will double I Like a capacitor it stores energy Ideal inductors don t dissipate energy But unlike a capacitor Its current determines the stored energy In a capacitor the capacitor voltage sets the energy stored Defining equation: If the input is a sinewave, Z = 2 f L 14
15 Energy Flow in Inductors Power flow into a device is always iv Power flow into an inductor is iv = i Ldi/dt Total energy that flows into the inductor Assumes current starts at 0A ends at i final The energy stored in the inductor is Li 2 /2 This energy is returned when the current ramps to zero. 15
16 What This Means The current flowing through an inductor sets its stored energy The only way to change this energy Is to pull power out of the device Is to push power into the device Power is iv So a rapid change in current (a.k.a energy) Requires large power, But i is set by the inductor So it will generate a very large voltage Inductors try to keep their current from changing rapidly And look like current sources for short time periods 16
17 Inductor Info, if You Know Physics E&M Models the energy stored in magnetic fields An inductor is just a wire. In the idea case the wire has zero resistance But current through a wire causes a magnetic field Changing magnetic flux induces a voltage Size of flux/i depends on the length of the wire Faraday s Law is what generates the voltage 17
18 Transformers The energy is stored in the magnetic field And the field is generated by the current If you have two coils of wire around the same magnetic material Both wires will see the same magnetic material You can transfer power between the two coils Drive one with a sinewave to create changing magnetic field The other coil will develop a voltage across it The voltage depends on the relative inductance 18
19 Ideal vs. Real Inductors Ideal inductors Have no loss Can store energy by letting the stored current circulate Real Inductors Are not that idea (unless they are superconducting) They have significant resistance from the wire Can by modeled by an ideal inductor in series with a resistor The resistance causes a voltage across the ideal inductor Since the voltage across the ideal inductor is negative The current decreases 19
20 BREAKING BREAK 20
21 Take Apart A GFI Outlet 21
22 BUCK CONVERTER FREQUENCY ANALYSIS 22
23 Problem: Convert 12V to 1V Your laptop / tablet adapter generates around 12V Its internal battery is probably around 8V But the processor requires a Vdd of around 1V And it can draw up to 30W in a laptop That is 30A at 1V So we need to convert the energy from battery/wall To 1V And we don t want to waste energy 23
24 Basic Buck Converter What happens if I drive a power inverter from a 12V supply? 12V How do we analyze this? Assume R = 0.1 1V) 24
25 Let s Use Impedance
26 Bode Plot Frequency 0 db 26
27 Some Reasonable Values L = 5 H; C=600 F If the input square wave was at 200kHz 2 = 5000, So the signal at 200kHz would be very small A couple of mv! So what is left? Average value of the input The DC component Set by the duty cycle! 27
28 BUCK CONVERTER ENERGY ANALYSIS 28
29 Setting The Output Voltage 29
30 Is This Energy Efficient? Ideal C, L don t dissipate power Can make the R of the transistors small So it doesn t seem to dissipate much energy 12V If it is energy efficient 12V supply ~ But this means = 12 Is this possible? 30
31 How Can This Work? Remember inductor current changes slowly 12V 31
32 32
33 Learning Objectives Understand what an inductor is V=L di/dt It is a device that tries to keep current constant Generates voltage (in either direction) to resist current changes Understand that ideal inductors and capacitor are lossless They store energy, and don t dissipate it Energy that goes into an LC circuit, must come out We can use this to convert energy from one voltage to another Size of the components is related to the energy they can store Be able to use impedance to Solve for the output voltage of a buck converter Determine the needed switching freq given L,C (or vice versa) 33
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
More informationSlide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationCircuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
More informationHomework #11 20311721 Physics 2 for Students of Mechanical Engineering
Homework #11 20311721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
More informationEE301 Lesson 14 Reading: 10.110.4, 10.1110.12, 11.111.4 and 11.1111.13
CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how
More informationRLC Resonant Circuits
C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document
More informationCreating a Usable Power Supply from a Solar Panel
Creating a Usable Power Supply from a Solar Panel An exploration in DC DC converters By Kathleen Ellis Advised by Dr. Derin Sherman Department of Physics, Cornell College November 21, 2012 Introduction
More informationUnderstanding Power Impedance Supply for Optimum Decoupling
Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,
More informationLast time : energy storage elements capacitor.
Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because
More informationDesigning Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators
Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More informationRESONANCE AND FILTERS
14221 RESONANCE AND FILTERS Experiment 1, Resonant Frequency and Circuit Impedance For more courses visit www.ciewc.edu OBJECTIVES 1. To verify experimentally our theoretical predictions concerning the
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More informationReading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
More informationPhysics 2102 Lecture 19. Physics 2102
Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric
More informationW03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018  Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
More informationLaboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 2024) and Week 10 (Oct. 2731) Due Week 11 (Nov. 37) 1 PreLab This PreLab should be completed before attending your regular
More informationFundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
More informationExperiment V: The AC Circuit, Impedance, and Applications to High and Low Pass Filters
Experiment : The AC Circuit, Impedance, and Applications to High and Low Pass Filters I. eferences Halliday, esnick and Krane, Physics, ol. 2, 4th Ed., Chapters 33 Purcell, Electricity and Magnetism, Chapter
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationModule 11: Conducted Emissions
Module 11: Conducted Emissions 11.1 Overview The term conducted emissions refers to the mechanism that enables electromagnetic energy to be created in an electronic device and coupled to its AC power cord.
More informationLab 9: Op Amps Lab Assignment
3 class days 1. Differential Amplifier Source: HandsOn chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The
More informationPractice Problems  Chapter 33 Alternating Current Circuits
Multiple Choice Practice Problems  Chapter 33 Alternating Current Circuits 4. A highvoltage powerline operates at 500 000 Vrms and carries an rms current of 500 A. If the resistance of the cable is
More informationECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models
Lab 1 Nodal Analysis, Capacitor and Inductor Models Objectives: At the conclusion of this lab, students should be able to: use the NI mydaq to power a circuit using the power supply and function generator
More informationChapter 7: AC Transistor Amplifiers
Chapter 7: AC Transistor Amplifiers The transistor amplifiers that we studied in the last chapter have some serious problems for use in AC signals. Their most serious shortcoming is that there is a dead
More informationApril 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.
Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  164 Summary Gauss's
More informationDCDC Converter Basics
Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / OnLine Textbook
More informationLine Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
More informationCurrent Probes, More Useful Than You Think
Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998
More informationRLC Series Resonance
RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistorinductorcapacitor (RLC) circuit by examining the current through the circuit as a function
More informationCurrent Ripple Factor of a Buck Converter
Application Note Edwin Wang AN1 April 14 Current Ripple Factor of a Buck Converter Abstract Inductor and capacitor forms a lowpass filter in a buck converter. The corner frequency the C filter is always
More informationTRANSISTOR AMPLIFIERS AET 8. First Transistor developed at Bell Labs on December 16, 1947
AET 8 First Transistor developed at Bell Labs on December 16, 1947 Objective 1a Identify Bipolar Transistor Amplifier Operating Principles Overview (1) Dynamic Operation (2) Configurations (3) Common Emitter
More informationMAS.836 HOW TO BIAS AN OPAMP
MAS.836 HOW TO BIAS AN OPAMP OpAmp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an opamp circuit, the operating characteristic
More informationUnderstanding SMD Power Inductors. Application Note. July 2011
Understanding SMD Power Inductors July 2011 Application Note Power inductors play an important role in voltage conversion applications by yielding lower core losses. They are also used to store energy,
More informationTechnical Note #3. Error Amplifier Design and Applications. Introduction
Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closedloop control to force the output to match the desired value. Both digital
More informationOperational Amplifiers: Part 2. Nonideal Behavior of Feedback Amplifiers DC Errors and LargeSignal Operation
Operational Amplifiers: Part 2 Nonideal Behavior of Feedback Amplifiers DC Errors and LargeSignal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions
More informationPower supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
More informationCoupling Magnetic Signals to a SQUID Amplifier
SQUID Application Note 1050 Coupling Magnetic Signals to a SQUID Amplifier Matching the effective inductances of the Pickup Coil and the Input Coil to detect and couple magnetic flux maximizes the sensitivity
More informationEvaluating AC Current Sensor Options for Power Delivery Systems
Evaluating AC Current Sensor Options for Power Delivery Systems Stateoftheart isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy
More informationSophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
More informationFILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.
FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in
More informationRC Circuit (Power amplifier, Voltage Sensor)
Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power
More informationR f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response
ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationMutual Inductance and Transformers F3 3. r L = ω o
utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More information30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
More informationRectifier filter stage post filtering sense
TopCon DC power supplies Customer support files Nr. 042.0208.016_e Topic: Protecting the DC output 1. Abstract TopCon DC power supplies are generally well suited for operation into reactive DC loads. Reactive
More informationCONSTRUCTING A VARIABLE POWER SUPPLY UNIT
CONSTRUCTING A VARIABLE POWER SUPPLY UNIT Building a power supply is a good way to put into practice many of the ideas we have been studying about electrical power so far. Most often, power supplies are
More informationOutput Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier
The AAT50 is a high efficiency, 2.5W mono class D audio power amplifier. It can be used in portable devices, such as MP4s, cell phones, laptops, GPS and PDAs. The device can work as a filterless class
More informationStep Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
More information= V peak 2 = 0.707V peak
BASIC ELECTRONICS  RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
More informationInductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
More informationEffect of Frequency on Inductive Reactance
TUNED CIRCUITS Effect of Frequency on Inductive Reactance Resonance The ideal seriesresonant circuit How the ParallelLC Circuit Stores Energy Parallel resonance Resonant circuits as filter circuits Pulsed
More informationStudents will need about 30 minutes to complete these constructed response tasks.
Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of
More informationChapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (OpAmp) Operational amplifiers (opamps) are very high gain dc coupled amplifiers with differential inputs; they are used
More informationWelcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at:
Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at: How switch mode drivers work, switch mode driver topologies,
More informationExperiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage
More information12. Transformers, Impedance Matching and Maximum Power Transfer
1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than
More informationGeneration of Square and Rectangular Waveforms Using Astable Multivibrators
Generation of Square and Rectangular Waveforms Using Astable Multivibrators A square waveform can be generated by arranging for a bistable multivibrator to switch states periodically. his can be done by
More informationLab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response
Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all
More informationUNDERSTANDING AND CONTROLLING COMMONMODE EMISSIONS IN HIGHPOWER ELECTRONICS
Page 1 UNDERSTANDING AND CONTROLLING COMMONMODE EMISSIONS IN HIGHPOWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 9921793 www.hottconsultants.com hott@ieee.org Page 2 THE BASIC
More information3Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines
3Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines Odile Ronat International Rectifier The fundamental reason for the rapid change and growth in information
More informationThe Ideal Transformer. Description and Circuit Symbol
The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However,
More informationRLC Circuits. OBJECTIVES To observe free and driven oscillations of an RLC circuit.
ircuits It doesn t matter how beautiful your theory is, it doesn t matter how smart you are. If it doesn t agree with experiment, it s wrong. ichard Feynman (19181988) OBJETIVES To observe free and driven
More informationHalfWave Rectifiers
HalfWave Rectifiers Important Points of This Lecture Calculation of output voltage using appropriate piecewise models for diode for simple (unfiltered) halfwave rectifier Differences between calculations
More informationMeasuring Impedance and Frequency Response of Guitar Pickups
Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear
More informationHarmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
More informationDesign of a DC/DC buck converter for ultralow power applications in 65nm CMOS Process. Naeim Safari
Design of a DC/DC buck converter for ultralow power applications in 65nm CMOS Process Master thesis performed in Electronic Devices by Naeim Safari Report number: LiTHISYEX12/4547SE Linköping, March
More information8 Bit DigitaltoAnalog Converter
8 Bit DigitaltoAnalog Converter Tim Adams ttexastim@hotmail.com Richard Wingfield wingfiel@cs.utah.edu 8 Bit DAC Project Description: For this project, an 8 bit digitaltoanalog converter was designed.
More informationPeggy Alavi Application Engineer September 3, 2003
OpAmp Basics Peggy Alavi Application Engineer September 3, 2003 OpAmp Basics Part 1 OpAmp Basics Why opamps Opamp block diagram Input modes of OpAmps Loop Configurations Negative Feedback Gain Bandwidth
More informationCHAPTER 16 OSCILLATORS
CHAPTER 16 OSCILLATORS 161 THE OSCILLATOR  are electronic circuits that generate an output signal without the necessity of an input signal.  It produces a periodic waveform on its output with only the
More informationDesign A High Performance Buck or Boost Converter With Si9165
Design A High Performance Buck or Boost Converter With Si9165 AN723 AN723 by Kin Shum INTRODUCTION The Si9165 is a controller IC designed for dctodc conversion applications with 2.7 to 6 input voltage.
More informationDirect versus Alternating Current Things We Can Measure
Phil Sherrod W4PHS Direct versus Alternating Current Things We Can Measure Direct Current (DC) Alternating Current (AC) Voltage Voltage (peak, RMS) Current Current (peak, effective) Power True power, Apparent
More informationEXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING
Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...
More information1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.
Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north
More informationSwitch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
More informationLM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
More informationApprentice Telecommunications Technician Test (CTT) Study Guide
Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The
More informationCommon Mode and Differential Mode Noise Filtering
Summary Introduction This application note gives a practical explanation of differential mode and common mode noise along with the traditional filtering approaches. In addition, an alternative method of
More informationChapter 5: Analysis of TimeDomain Circuits
Chapter 5: Analysis of TimeDomain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of
More informationRESONANCE AND FILTERS
14221 RESONANCE AND FILTERS Experiment 4, Resonant Frequency and Impedance of a Parallel Circuit, For more courses visit www.ciewc.edu OBJECTIVES: 1. To demonstrate the resonant frequency of a parallel
More informationExperiment A5. Hysteresis in Magnetic Materials
HYSTERESIS IN MAGNETIC MATERIALS A5 1 Experiment A5. Hysteresis in Magnetic Materials Objectives This experiment illustrates energy losses in a transformer by using hysteresis curves. The difference betwen
More informationWhich is the best PFC stage for a 1kW application?
Which is the best PFC stage for a 1kW application? Comparison of different PFC stage topologies under an identical design philosophy Ulf Schwalbe/ Marko Scherf ISLE Steuerungstechnik und Leistungselektronik
More informationOperational Amplifier  IC 741
Operational Amplifier  IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
More informationLet s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.
Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.
More informationLM2576R. 3.0A, 52kHz, StepDown Switching Regulator FEATURES. Applications DESCRIPTION TO220 PKG TO220V PKG TO263 PKG ORDERING INFORMATION
LM2576 FEATURES 3.3, 5.0, 12, 15, and Adjustable Output ersions Adjustable ersion Output oltage Range, 1.23 to 37 +/ 4% AG10Maximum Over Line and Load Conditions Guaranteed 3.0A Output Current Wide Input
More informationA Simple CurrentSense Technique Eliminating a Sense Resistor
INFINITY Application Note AN7 A Simple CurrentSense Technique Eliminating a Sense Resistor Copyright 998 A SIMPE CURRENTSENSE TECHNIQUE EIMINATING A SENSE RESISTOR INTRODUCTION A sense resistor R S,
More informationBSNL TTA Question PaperInstruments and Measurement Specialization 2007
BSNL TTA Question PaperInstruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above
More informationLR Phono Preamps. Pete Millett ETF.13. pmillett@hotmail.com
LR Phono Preamps Pete Millett ETF.13 pmillett@hotmail.com Agenda A bit about me Part 1: What is, and why use, RIAA? Grooves on records The RIAA standard Implementations of RIAA EQ networks and preamps
More informationCapacitors and Inductors
P517/617 ec2, P1 Capacitors and Inductors 1) Capacitance: Capacitance (C) is defined as the ratio of charge (Q) to voltage () on an object. Define capacitance by: C = Q/ = Coulombs/olt = Farad. Capacitance
More informationDirection of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
More informationMeasuring Biased Inductors with the GenRad Digibridge
534 Main Street, Westbury NY 11590 www.ietlabs.com sales@ietlabs.com P: 5163345959, 8008998438 pplication Note Measuring Biased Inductors with the GenRad Digibridge This note is intended for those who
More informationEET272 Worksheet Week 9
EET272 Worksheet Week 9 answer questions 15 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming
More informationElectronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
More information12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance?
12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance? From Equation 325, L = E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard
More informationPS6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
More informationINSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS
INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS This tutorial provides an overview of signal processing and conditioning for use in instrumentation and automatic control systems.
More information