Sophomore Physics Laboratory (PH005/105)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Sophomore Physics Laboratory (PH005/105)"

Transcription

1 CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision December 212)

2 Chapter 6 Active Filters Introduction An electronic circuit that modifies the frequency spectrum of an arbitrary signal is called filter A filter that modifies the spectrum producing amplification is said to be an active filter Vis à vis its definition, it is convenient to study the filter characteristics in terms of the frequency response of its associated two port network H(ω) = (ω) (ω), where and are respectively the input voltage and the output voltage of the network, and ω the angular frequency Depending on the design, active filters have some important advantages: they can provide gain, they can provide isolation because of the typical characteristic impedances of amplifiers, they can be cascaded because of the typical characteristic impedances of amplifiers, they can avoid the use of inductors greatly simplifying the design of the filters Here some disadvantages: 127

3 128 CHAPTER 6 ACTIVE FILTERS they are limited by the amplifiers band-with, and noise, they need power supplies, they dissipate more heat than a passive circuit Let s make some simple definitions useful to classify different types of filters 61 Classification of Ideal Filters Based on their magnitude response H(ω), Some basic ideal filters can be classified as follows: H(ω) H(ω) 1 1 ω Low-pass ω ω High-pass ω H(ω) 1 H(ω) 1 H(ω) 1 ω ω 1 ω ω ω 1 ω Band-pass Stop-band/band-reject ω ω Notch Practical filters approximate more or less the ideal definitions

4 62 FILTERS AS RATIONAL FUNCTIONS 129 A 1 DA 1 DA 3 A 3 DA 2 A 2 ω 1 ω 2 ω 3 ω 4 ω 5 ω 6 ω 7ω 8 ω Figure 61: Graphical definition of the filter performance specifications, and hypothetical filter response (red curve) that satisfy the specification Usually, the filter requirements are specified defining the band frequencies with their gains (attenuation or amplification) gain ripples, and slope transitions in terms of power of the frequency Figure 61 shows a quite general graphical definition of the design parameters of a filter with an hypothetical design For a complete specification one should also define the requirement for phase response 62 Filters as Rational Functions Let s consider filters whose transfer function can be expressed as rational function or standard form H(ω) = α α 1 jωα 2 (jω) 2 α N (jω) N β β 1 jωβ 2 (jω) 2 β M (jω) M For the filter not to diverge M N H(ω) < for any value of ω Writing the transfer function as a polynomial factorization we obtain H(ω) = k (ω z 1) n 1 (ωz 2 ) n 2 (ω z N ) n N (ω p 1 ) m 1 (ω p 2 ) m 2 (ω p M ) m M

5 13 CHAPTER 6 ACTIVE FILTERS Denominator roots p 1, p 2,, p n are called poles, and numerator roots z 1, z 2,, z m are called zeros The integers n 1, n 2,, n N, and m 1, m 2,, m N are therefore the multiplicity of poles and zeros Poles and zeros values determine the shape of the filter, and apart from zero frequency, one could say that poles provide attenuation and zeros amplification The transition from transmission to attenuation, and vice versa, in the filter magnitude H(ω) is characterized by an asymptote slope which determine the so called filter order For example, considering the RC low pass filter with ω = 1/RC, we have one pole p 1 = jω H(ω) = ω ω jω first oder low pass filter with cut-off freq ω For the RC high pass filter with ω = 1/RC, we have one pole p 1 = jω and one zero z 1 = H(ω) = ω ω jω first oder high pass filter with cut-off freq ω In the next sub-sections, we will analyze into more details filters with the following transfer function H(ω) = H ω 2 jω ω 1 Q 1 ω 2 1 ω 2 jω ω Q ω2

6 62 FILTERS AS RATIONAL FUNCTIONS Second Order Low-Pass Filter Figure below shows the second order low pass filter bode plot, with resonant frequency ω res, and characteristic frequency ω Magnitude [db] H max Filter ω res ω ω res ω Phase [Deg] 5 φ res ω res ω Frequency [rad/s] The second order low-pass filter written in standard form Transfer Function Resonance Maximum DC High Freq Gain Gain H ω 2 ω 2 jω ω Q ω2 ω 1 1 Q 2Q 2 H 1 1 4Q 2 H

7 132 CHAPTER 6 ACTIVE FILTERS 622 Second Order High-Pass Filter Magnitude [db] H max Filter ω res ω ω 1 3 ω res Phase [Deg] 1 9 φ res ω 1 3 ω res 1 4 Frequency [rad/s] The second order high-pass filter written in standard form Transfer Function Resonance Maximum DC High Freq Gain Gain H ω 2 ω 2 jω ω Q ω2 ω 1 1 2Q 2 H Q 1 1 4Q H

8 62 FILTERS AS RATIONAL FUNCTIONS Band-Pass Filter Magnitude [db] H 5 max Filter ω res ω ω ω res Phase [Deg] φ res ω 1 3 ω res 1 4 Frequency [rad/s] The band-pass filter written in standard form is Transfer Function Resonance Maximum DC Gain High Freq Gain H jω ω Q ω 2 jω ω Q ω2 ω H

9 134 CHAPTER 6 ACTIVE FILTERS For example, depending on the output we consider, the already studied LRC series circuit is a low-pass, a band-pass, or a high-pass filter with the transfer function described above When we will study difference filters topologies we will reduce their transfer function into one of the standard form above 63 Common Circuit Filters Topologies This is a brief and not exhaustive at all list of filter topologies that use resistors, capacitors, and operational amplifiers to implement the filters types described above: Infinite gain, multiple feedback (IGMF) Generalized Sallen-Key (GSK) State Variable (SV) Switched Capacitor Filters (SC) Cascading these implementation allows to increase the filter order

10 64 INFINITE GAIN MULTIPLE FEEDBACK CONFIGURATION (IGMF) Infinite Gain Multiple Feedback Configuration (IGMF) I 1 Y 1 I 4 Y 4 Y 5 I3 A B V A Y 3 V I 2 Y 2 V Figure 62: Infinite Gain Multiple Feedback Filter Let s consider the circuit in Figure 62 with generic admittances Y 1, Y 2, Y 3, Y 4, and Y 5 Applying the KCL to node A and considering the circuit virtual ground (V = ), we have V A Y 3 ( V A ) Y 4 ( V A ) Y 1 V A Y 2 = (61) Again, applying KCL to node B and for the virtual ground we have Y 5 V A Y 3 = V A = Y 5 Y 3 Replacing the last expression into eq 61 and after some algebra we obtain the generic transfer function for the circuit Y = 1 Y 3 Y 5 (Y 1 Y 2 Y 3 Y 4 ) Y 3 Y 4 Choosing the proper type of admittances we can construct different types of active filters, low-pass band-pass, and high-pass It is worthwhile noticing that IGMF configuration allows to implement low-pass, bandpass, and high-pass filter with capacitors, resistor and no inductors This simplifies considerably the design of the filters

11 136 CHAPTER 6 ACTIVE FILTERS 641 Low-pass Filter R 4 C 5 R R V 1 3 i C 2 G Figure 63: Low-pass filter configuration of the infinite gain multiple feedback filter A possible choice to implement a low-pass filter as shown in Figure 63 is Y 1 = 1 R 1, Y 2 = jωc 2, Y 3 = 1 R 3, Y 4 = 1 R 4, Y 5 = jωc 5, and the transfer function of the circuit becomes 1/R 1 R 3 = jωc 5 (1/R 1 jωc 2 1/R 3 1/R 4 )1/R 3 R 4 Rearranging the expression to obtain a rational fraction in ω we finally obtain = 1 R 1 R 3 C 2 C 5 ω 2 jω 1 1 (1/R 1 1/R 3 1/R 4 ) C 2 R 3 R 4 C 2 C 5 Comparing the denominator of the previous equation with the denominator of the transfer function in section 621 we find that the frequency ω, the quality factor Q, and the DC gain H are respectively ω = 1 R 3 R 4 C 2 C 5, Q = ω C 2 (1/R 1 1/R 3 1/R 4 ), H = R 4 R 1

12 64 INFINITE GAIN MULTIPLE FEEDBACK CONFIGURATION (IGMF) High-pass Filter C 4 R 5 C 1 C 3 R 2 G Figure 64: High-pass filter configuration of the infinite gain multiple feedback filter A possible choice to implement a high-pass filter as shown in Figure 64is Y 1 = jωc 1, Y 2 = 1 R 2, Y 3 = jωc 3, Y 4 = jωc 4, Y 5 = 1, R 5 and the transfer function of the circuit becomes jωc = 1 jωc 3 1/R 5 (jωc 1 1/R 2 jωc 3 jωc 4 ) jωc 3 jωc 4 Rearranging the expression to obtain a rational fraction in ω we obtain = ω 2 (C 1/C 4 ) ω jω(c 1 C 3 C 4 ) R 5 C 3 C 4 R 2 R 5 C 3 C 4 Comparing the denominator of the previous equation with the denominator of the transfer function in section 622 we find that the frequency ω, the quality factor Q, High frequency gain H are respectively ω = 1 R 2 R 5 C 3 C 4, Q = ω R 5 C 3 C 4 (C 1 C 3 C 4 ), H = C 1 C 4

13 138 CHAPTER 6 ACTIVE FILTERS 643 Band-pass Filter C 4 R 5 R 1 C 3 R 2 Figure 65: Band-pass filter configuration of the infinite gain multiple feedback filter A possible choice to implement a Band-pass filter is shown in Figure 65 The admittances are Y 1 = 1 R 1, Y 2 = 1 R 2, Y 3 = jωc 3, Y 4 = jωc 4, Y 5 = 1 R 5, and the transfer function of the circuit becomes jωc = 3 /R 1 1/R 5 (1/R 1 1/R 2 jωc 3 jωc 4 ) jωc 3 jωc 4 Rearranging the expression to get a rational fraction in ω we finally obtain ( ) C3 C = R jω 4 5 R 5 C 3 C 4 R 1 ω 2 jω C 3 C 4 R 1R 2 C 3 C 4 R 5 R 1 R 2 R 5 C 3 C 4 Comparing the denominator of the previous equation with the denominator of the transfer function in section 623 we find that the resonance frequency, and the quality factor are respectively R ω = 1 R 2 R, Q = 5 C 3 C ω 4, H R 1 R 2 R 5 C 3 C 4 C 3 = R 5 C 4 R 1

14 65 GENERALIZED SALLEN-KEY FILTER TOPOLOGY (GSK) Generalized Sallen-Key Filter Topology (GSK) I 4 Y 4 I 1 I 3 Y 1 A V A Y 2 B V I 3 Y 3 V C Y 6 I 5 Y 5 I 6 Figure 66: Generalized Sallen-Key Topology Let s consider the circuit in Figure 66 with generic admittances Y 1, Y 2, Y 3, Y 4, Y 5, and Y 6 Applying the KCL to node A, we have ( V A ) Y 1 ( V A ) Y 4 (V V A ) Y 2 = (62) Applying KCL to node B (V V A ) Y 2 V Y 3 = V A = Y 2 Y 3 Y 2 V Applying KCL to node C (V V ) Y 6 V Y 5 = V = V = Y 6 Y 6 Y 5 V Replacing the expression found for V A, and V into eq (62) and after quite some boring algebra, we obtain ( = 1 Y 5 Y 6 ) Y 1 Y 2 Y 6 Y 1 Y 6 (Y 2 Y 3 )Y 3 Y 6 (Y 2 Y 4 )Y 2 Y 4 Y 5 Let s analyze some admittances configuration of the this filter topology

15 14 CHAPTER 6 ACTIVE FILTERS 651 GSK Second Order Low-pass Filter C 4 R 1 R 2 C 3 R 6 R 5 Figure 67: Low-pass filter configuration of the Generalized Sallen-Key filter A possible choice to implement a low-pass filter as shown in Figure 67 is Y 1 = 1 R 1, Y 2 = 1 R 2, Y 3 = jωc 3, Y 4 = jωc 4, Y 5 = 1 R 5, Y 6 = 1 R 6, and the transfer function of the circuit becomes 1 ( = 1 R ) 6 R 1 R 2 C 3 C ( 4 R 5 1 ω 2 jω 1 1 ) R 6 1 R 1 C 4 R 2 C 4 R 2 C 3 R 5 R 1 R 2 C 3 C 4 Comparing the denominator of the previous equation with the denominator of the transfer function in section 621we find that the frequency square ω 2, the quality factor Q, and the DC gain H are respectively ( ω 2 = 1 R, Q = 1 R 2 R 5 C 3 C 4 ω, H = R 1 C 4 R 2 C 3 R 5 (R 1 R 2 ) C 3 R 1 R 6 C 4 1 R 6 R 5 )

16 65 GENERALIZED SALLEN-KEY FILTER TOPOLOGY (GSK) Simple Case If R 1 = R 2 = R, C 3 = C 4 = C, and R 5 = R 6 =, then = ω 2 ω 2 jωω ω 2, ω 2 = 1 R 2 C 2,, Q = 1, which is the transfer function of a second order low-pass filter with low quality factor 653 GSK Second Order High-pass Filter R 4 C 2 C 1 R 3 R 6 R 5 Figure 68: High-pass filter configuration of the Generalized Sallen-Key filter To implement a low-pass filter as shown in Figure 68 one needs to choose the admittances as follows Y 1 = jωc 1, Y 2 = jωc 2, Y 3 = 1 R 3, Y 4 = 1 R 4, Y 5 = 1 R 5, Y 6 = 1 R 6, and the transfer function of the circuit becomes

17 142 CHAPTER 6 ACTIVE FILTERS ( = 1 R ) 6 R 5 ω ( 2 1 ω² jω 1 1 ) R 6 R 3 C 2 R 3 C 1 R 4 C 1 R 5 1 R 3 R 4 C 1 C 2 Comparing the denominator of the previous equation with the denominator of the transfer function in section 622 we find that the frequency square ω 2, the quality factor Q, and the DC gain H are respectively ω 2 = 1 R 3 C 1 R 4 C 2, Q = ω R 3 R 4 R 5 C 1 C 2 R 5 (C 1 C 2 ) R 3 C 1 R 6 R 4, H = 654 Simple Case If R 1 = R 2 = R, C 3 = C 4 = C, and R 5 = R 6 =, then = ω 2 ω 2 jωω ω 2, ω 2 = 1 R 2 C 2,, Q = 1, which is the transfer function of a second order high-pass filter with low quality factor 655 GSK Band-pass Filter ( 1 R ) 6 R 5 R 4 C 2 V R 1 i R 3 C 3 R6 R 5 Figure 69: Band-pass filter configuration of the Generalized Sallen-Key filter

18 65 GENERALIZED SALLEN-KEY FILTER TOPOLOGY (GSK) 143 To implement a band-pass filter as shown in Figure 69 one needs to choose the admittances as follows Y 1 = 1 R 1, Y 2 = jωc 2, Y 3 = 1 R 3 jωc 3, Y 4 = 1 R 4, Y 5 = 1 R 5, Y 6 = 1 R 6, and the transfer function of the circuit becomes ( = 1 R ) 6 R 5 R 1 C ( 3 C2 ω 2 C 3 jω ) R 6 C 2 C 3 R 1 C 3 R 3 C 2 R 4 C 3 R 4 R 5 Comparing the denominator of the previous equation with the denominator of the transfer function in section 623 we find that the frequency square ω 2, the quality factor Q, and the DC gain H are respectively jω R 1R 4 C 2 C 3 R 1 R 3 R 4 Q = ω C 2 C 3 R 1 R 3 R 4 R 5 (C 2 C 3 ) R 3 R 4 R 5 C 2 R 1 R 4 R 5 C 3 R 1 R 3 R 5 C 2 R 1 R 3 R 6, 656 Simple Case ω 2 = R 1R 4,H = 1 ( C 2 C 3 R 1 R 3 R 4 R 1 C 3 1 R 6 R 5 ) Q ω If R 1 = R 3 = R 4 = R, C 2 = C 3 = C, and R 5 = R 6 =, then = jω ω Q ω 2 jω ω Q ω2 2 2, ω = RC,, Q = 3, which is the transfer function of a second order high-pass filter with low quality factor

19 144 CHAPTER 6 ACTIVE FILTERS 66 State Variable Filter Topology (SV) The state variable filter provides a low pass, a band pass, and a high pass filter outputs At the same time, it allows to change the gain, the cut-off frequencies, and the quality factor independently, but it requires 4 Op- Amps R 1 R 2 R3 R 4 R 5 C 1 C 2 G V HP G V BP G V LP R 7 R 6 Figure 61: State variable filter circuit TBF 67 Practical Considerations 671 Component Values How do we select the values of capacitance and resistance? Here are some considerations that should help the filter design: reducing the resistance values reduces the thermal noise and therefore the filter noise, reducing resistance values minimizes the op-amp voltage offsets,

20 67 PRACTICAL CONSIDERATIONS 145 increasing the resistance reduce the current load on the op-amps, increasing the resistances usually allows to decrease the capacitance and therefore it make easier to find capacitors because of the small capacitance values needed, reducing the capacitance minimizes the capacitance fluctuations due to temperature, increasing the capacitance allows to reduce resistance values and therefore the thermal noise As we can clearly see, some of the consideration cannot be used at the same time Based on the design requirements one can decide which of the consideration above are more important to finally meet the design requirements Rules of Thumb Particularly critical design often overrule these following rules: Capacitor with capacitance less of ~1 pf should be avoided, Try to use resistor with resistance between few kilo-ohms to few hundreds of kilo-ohms 672 Components technology Capacitors The use of low loss dielectric is very important to obtain good results If possible one should use plastic film capacitors or CG/NPO ceramic capacitors, 1% tolerance for temperature stability Resistor Low thermal noise resistors such as metal film resistors 1% tolerance for temperature stability should be used

21 146 CHAPTER 6 ACTIVE FILTERS

22 Bibliography [1] Hank Zumbahlen, State Variable Filters, Mini Tutorial MT-223, Analog Devices 147

23 148 BIBLIOGRAPHY

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency. FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

More information

EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter)

EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter) EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter) Objective The purpose of this experiment is to design a set of second-order Sallen-Key active filters and to investigate

More information

First and Second Order Filters

First and Second Order Filters First and Second Order Filters These functions are useful for the design of simple filters or they can be cascaded to form high-order filter functions First Order Filters General first order bilinear transfer

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY. We start with examples of a few filter circuits to illustrate the concept.

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY. We start with examples of a few filter circuits to illustrate the concept. FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

S-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS

S-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS S-DOMAIN ANAYSIS: POES, ZEROS, AND BODE POTS The main objectiveis to find amplifier voltage gain as a transfer function of the complex frequency s. In this s-domain analysis a capacitance С is replaced

More information

EXPERIMENT 6 - ACTIVE FILTERS

EXPERIMENT 6 - ACTIVE FILTERS 1.THEORY HACETTEPE UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELE-313 ELECTRONICS LABORATORY II EXPERIMENT 6 - ACTIVE FILTERS A filter is a circuit that has designed to pass a specified

More information

Application Report SLOA024B

Application Report SLOA024B Application Report July 999 Revised September 2002 Mixed Signal Products SLOA024B IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,

More information

Objectives: to get acquainted with active filter circuits and parameters, design methods, build and investigate active LPF, HPF and BPF.

Objectives: to get acquainted with active filter circuits and parameters, design methods, build and investigate active LPF, HPF and BPF. Laboratory of the circuits and signals Laboratory work No. 4 ACTIVE FILTERS Objectives: to get acquainted with active filter circuits and parameters, design methods, build and investigate active LPF, HPF

More information

LAB 12: ACTIVE FILTERS

LAB 12: ACTIVE FILTERS A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op- amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequency-selecting circuit designed

More information

Chapter 21 Band-Pass Filters and Resonance

Chapter 21 Band-Pass Filters and Resonance Chapter 21 Band-Pass Filters and Resonance In Chapter 20, we discussed low-pass and high-pass filters. The simplest such filters use RC components resistors and capacitors. It is also possible to use resistors

More information

Chapter 5. Basic Filters

Chapter 5. Basic Filters Chapter 5 Basic Filters 39 CHAPTER 5. BASIC FILTERS 5.1 Pre-Lab The answers to the following questions are due at the beginning of the lab. If they are not done at the beginning of the lab, no points will

More information

SECTION 5-5: FREQUENCY TRANSFORMATIONS

SECTION 5-5: FREQUENCY TRANSFORMATIONS ANALOG FILTERS FREQUENCY TRANSFORMATIONS SECTION 55: FREQUENCY TRANSFORMATIONS Until now, only filters using the lowpass configuration have been examined. In this section, transforming the lowpass prototype

More information

DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

More information

More Filter Design on a Budget

More Filter Design on a Budget Application Report SLOA096 December 2001 More Filter Design on a Budget Bruce Carter High Performance Linear Products ABSTRACT This document describes filter design from the standpoint of cost. Filter

More information

Chapter 15. Active Filter Circuits

Chapter 15. Active Filter Circuits hapter 5 Active Filter ircuits 5.0 Introduction Filter is circuit that capable of passing signal from input to put that has frequency within a specified band and attenuating all others side the band. This

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Aims: To know: Basic Op Amp properties eal & Ideal Basic ideas of feedback. inv input noninv input output gnd To be able to do basic circuit analysis of op amps: using KCL, KL with

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Bharathwaj Muthuswamy EE100 Active Filters

Bharathwaj Muthuswamy EE100 Active Filters Bharathwaj Muthuswamy EE100 mbharat@cory.eecs.berkeley.edu 1. Introduction Active Filters In this chapter, we will deal with active filter circuits. Why even bother with active filters? Answer: Audio.

More information

30. Bode Plots. Introduction

30. Bode Plots. Introduction 0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

More information

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim This application note describes how to build a 5 th order low pass, high pass Butterworth filter for 10 khz

More information

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

More information

Laboratory #5: RF Filter Design

Laboratory #5: RF Filter Design EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order low-pass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations

More information

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data. Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter

More information

Analog and Digital Filters Anthony Garvert November 13, 2015

Analog and Digital Filters Anthony Garvert November 13, 2015 Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range

More information

UAF42 As a Low-pass Active Filter

UAF42 As a Low-pass Active Filter UAF As a Lowpass Active Filter Many times, instrumentation of electromechanical systems, which utilize modern switching type power electronics, produces signals with unacceptable noise levels or high frequency

More information

Chapter 12. RL Circuits. Objectives

Chapter 12. RL Circuits. Objectives Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine

More information

Design of op amp sine wave oscillators

Design of op amp sine wave oscillators Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation

More information

Analogue Filter Design

Analogue Filter Design Analogue Filter Design Module: SEA Signals and Telecoms Lecturer: URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk Number of Lectures: 5 Reference text: Design with Operational

More information

Designing Active High Speed Filters

Designing Active High Speed Filters Designing Active High Speed Filters Filters built from resistors (R), inductors (L) and capacitors (C) are known as RLC or passive filters and are the dominant type of filter for high frequency applications.

More information

Frequency response of a general purpose single-sided OpAmp amplifier

Frequency response of a general purpose single-sided OpAmp amplifier Frequency response of a general purpose single-sided OpAmp amplifier One configuration for a general purpose amplifier using an operational amplifier is the following. The circuit is characterized by:

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

Frequency response: Resonance, Bandwidth, Q factor

Frequency response: Resonance, Bandwidth, Q factor Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The

More information

University of Technology Laser & Optoelectronics Engineering Department Communication Engineering Lab.

University of Technology Laser & Optoelectronics Engineering Department Communication Engineering Lab. OBJECT: To establish the pass-band characteristic. APPARTUS: 1- Signal function generator 2- Oscilloscope 3- Resisters,capacitors 4- A.V.O. meter. THEORY: Any combination of passive (R, L, and C) and/or

More information

Integrator Based Filters

Integrator Based Filters Integrator Based Filters Main building block for this category of filters integrator By using signal flowgraph techniques conventional filter topologies can be converted to integrator based type filters

More information

ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Frequency Response of Passive RC Filters ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

More information

Analog Filter Design Demystified

Analog Filter Design Demystified FILTER CIRCUITS (ANALOG) VIDEO CIRCUITS Dec 03, 2002 Analog Filter Design Demystified This article shows the reader how to design analog filters. It starts by covering the fundamentals of filters, it then

More information

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works) Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

More information

Lab 4 Op Amp Filters

Lab 4 Op Amp Filters Lab 4 Op Amp Filters Figure 4.0. Frequency Characteristics of a BandPass Filter Adding a few capacitors and resistors to the basic operational amplifier (op amp) circuit can yield many interesting analog

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

Modern Definition of Terms

Modern Definition of Terms Filters In the operation of electronic systems and circuits, the basic function of a filter is to selectively pass, by frequency, desired signals and to suppress undesired signals. The amount of insertion

More information

Lab 9: Op Amps Lab Assignment

Lab 9: Op Amps Lab Assignment 3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

More information

Application Note 2. Analog Audio Parametric Equalizer

Application Note 2. Analog Audio Parametric Equalizer Application Note 2 App Note Application Note 2 Highlights Pot and Switch Components Target Optimizer for Curve Parameters Potentiometer Analysis Noise Analysis LEQ, HEQ, BEQ Filters n Design Objective

More information

Chapter 10. RC Circuits. Objectives

Chapter 10. RC Circuits. Objectives Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

More information

Log Amp Basics X = 1. Figure 1: Graph of Y = log (X)

Log Amp Basics X = 1. Figure 1: Graph of Y = log (X) MT077 TUTORIAL Log Amp Basics BASIC LOG AMP CONCEPTS AND TERMINOLOGY The term "Logarithmic Amplifier" (generally abbreviated to "log amp") is something of a misnomer, and "Logarithmic Converter" would

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

Filters and Waveform Shaping

Filters and Waveform Shaping Physics 333 Experiment #3 Fall 211 Filters and Waveform Shaping Purpose The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and the

More information

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill

More information

Module 2: Op Amps Introduction and Ideal Behavior

Module 2: Op Amps Introduction and Ideal Behavior Module 2: Op Amps Introduction and Ideal Behavior Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering Introduce Op Amps and examine ideal behavior School of

More information

AN-649 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703

AN-649 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Using the Analog Devices Active Filter Design Tool By Hank Zumbahlen INTRODUCTION

More information

EE247 Lecture 3. Signal flowgraph concept First order integrator based filter Second order integrator based filter & biquads

EE247 Lecture 3. Signal flowgraph concept First order integrator based filter Second order integrator based filter & biquads Summary last week EE47 Lecture 3 Integrator based filters Signal flowgraph concept First order integrator based filter Second order integrator based filter & biquads High order & high Q filters Cascaded

More information

In modern electronics, it is important to be able to separate a signal into different

In modern electronics, it is important to be able to separate a signal into different Introduction In modern electronics, it is important to be able to separate a signal into different frequency regions. In analog electronics, four classes of filters exist to process an input signal: low-pass,

More information

Filter Design Introduction

Filter Design Introduction FLORIDA INTERNATIONAL UNIVERSITY Filter Design Introduction Utilizing CAD Tools Christian D. Archilla, B.S.C.E., Research Associate, VLSI Assistant Lab Manager June 2008 Table of Contents 1. Introduction...

More information

USING THE ANALOG DEVICES ACTIVE FILTER DESIGN TOOL

USING THE ANALOG DEVICES ACTIVE FILTER DESIGN TOOL USING THE ANALOG DEVICES ACTIVE FILTER DESIGN TOOL INTRODUCTION The Analog Devices Active Filter Design Tool is designed to aid the engineer in designing all-pole active filters. The filter design process

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Introduction The operational amplifier (op-amp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the op-amp

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 31. Alternating Current Circuits Assignment is due at 2:00am on Wednesday, March 21, 2007 Credit for problems submitted late will decrease to 0% after the

More information

Electronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers

Electronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers Electronics most instruments work on either analog or digital signals we will discuss circuit basics parallel and series circuits voltage dividers filters high-pass, low-pass, band-pass filters the main

More information

Problem 9.36 Design an active lowpass filter with a gain of 4, a corner frequency of1khz,andagainroll-offrateof 60 db/decade.

Problem 9.36 Design an active lowpass filter with a gain of 4, a corner frequency of1khz,andagainroll-offrateof 60 db/decade. Problem 9.36 Design an active lowpass filter with a gain of 4, a corner frequency of1khz,andagainroll-offrateof 60 db/decade. Solution: The roll-off rate of 60 db requires a three-stage LP filter, similar

More information

Using the Impedance Method

Using the Impedance Method Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

More information

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Literature Number SLOA088 Excerpted from Op Amps for Everyone Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Thomas Kugelstadt 16.1 Introduction

More information

Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. #06 Power Amplifiers Lecture No. #01 Power Amplifiers (Refer Slide Time: 00:44) We now move to the next

More information

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response NAPIER University School of Engineering Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response In R1 R2 C2 C1 + Opamp A - R1 R2 C2 C1 + Opamp B - Out

More information

An Analog Filter Design Software Package Using Mathematica

An Analog Filter Design Software Package Using Mathematica An Analog Filter Design Software Package Using Mathematica DAVID BÁEZ-VILLEGAS and DAVID BÁEZ-LÓPEZ Departamento de Ingeniería Electrónica, Universidad de las Américas-Puebla, Cholula, Puebla, México dbaeziec@udlap.mx

More information

2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout

2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout 2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout Instructor: Hong Ma Sept. 12, 2007 Fundamental Elements Resistor (R) Capacitor (C) Inductor (L) Voltage Source Current

More information

Understanding Power Impedance Supply for Optimum Decoupling

Understanding Power Impedance Supply for Optimum Decoupling Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

More information

Chapter 4: Passive Analog Signal Processing

Chapter 4: Passive Analog Signal Processing hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted

More information

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

CHAPTER 7 FILTERS, LOADING AND OP-AMPS

CHAPTER 7 FILTERS, LOADING AND OP-AMPS CHAPTE 7 FILTES, LOADING AND OP-AMPS INTODUCTION Sometimes we make measurements and what is measured is a combination of what we wished to measure and noise. This noise could be caused by the electronic

More information

11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION 11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

More information

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

Analog Signal Conditioning

Analog Signal Conditioning Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

More information

Lab #4 examines inductors and capacitors and their influence on DC circuits.

Lab #4 examines inductors and capacitors and their influence on DC circuits. Transient DC Circuits 1 Lab #4 examines inductors and capacitors and their influence on DC circuits. As R is the symbol for a resistor, C and L are the symbols for capacitors and inductors. Capacitors

More information

Chapter 5: Analysis of Time-Domain Circuits

Chapter 5: Analysis of Time-Domain Circuits Chapter 5: Analysis of Time-Domain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of

More information

Lock - in Amplifier and Applications

Lock - in Amplifier and Applications Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

More information

APPLICATION BULLETIN

APPLICATION BULLETIN APPLICATION BULLETIN Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602) 746-1111 Twx: 910-952-111 Telex: 066-6491 FAX (602) 889-1510 Immediate

More information

Lab 8: Basic Filters: Low- Pass and High Pass

Lab 8: Basic Filters: Low- Pass and High Pass Lab 8: Basic Filters: Low- Pass and High Pass Names: 1.) 2.) 3.) Beginning Challenge: Build the following circuit. Charge the capacitor by itself, and then discharge it through the inductor. Measure the

More information

The Class-D Amplifier

The Class-D Amplifier The Class-D Amplifier (From the book Introduction to Electroacoustics and Audio Amplifier Design, Second Edition - Revised Printing, by W. Marshall Leach, Jr., published by Kendall/Hunt, c 2001.) A class-d

More information

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

More information

A Simple Method of Designing Multiple Order All Pole Bandpass Filters by Cascading 2nd Order Sections

A Simple Method of Designing Multiple Order All Pole Bandpass Filters by Cascading 2nd Order Sections A Simple Method of Designing Multiple Order All Pole Bandpass Filters by Cascading nd Order Sections Nello Sevastopoulos Richard Markell June 1988 INTRODUCTION Filter design, be it active, passive, or

More information

Pulse Width Modulation

Pulse Width Modulation Pulse Width Modulation Pulse width modulation (PWM) is a technique in which a series of digital pulses is used to control an analog circuit. The length and frequency of these pulses determines the total

More information

INTEGRATED CIRCUITS DATA SHEET. TDA8340 TDA8341 Television IF amplifier and demodulator. Product specification File under Integrated Circuits, IC02

INTEGRATED CIRCUITS DATA SHEET. TDA8340 TDA8341 Television IF amplifier and demodulator. Product specification File under Integrated Circuits, IC02 INTEGRATED CIRCUITS DATA SHEET Television IF amplifier and demodulator File under Integrated Circuits, IC02 November 1987 DESCRIPTION The ;Q and ;Q are integrated IF amplifier and demodulator circuits

More information

Outline. Switched-Capacitor Circuits. Introduction (why and how) Integrators and filters Gain circuits Noise and charge injection INF4420

Outline. Switched-Capacitor Circuits. Introduction (why and how) Integrators and filters Gain circuits Noise and charge injection INF4420 INF4420 Switched-Capacitor Circuits Jørgen Andreas Michaelsen Spring 2013 1 / 42 Outline Introduction (why and how) Integrators and filters Gain circuits Noise and charge injection Spring 2013 Switched-Capacitor

More information

The output signal may be of the same form as the input signal, i.e. V in produces V out

The output signal may be of the same form as the input signal, i.e. V in produces V out What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input

More information

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

More information

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

Lab 4 Band Pass and Band Reject Filters

Lab 4 Band Pass and Band Reject Filters Lab 4 Band Pass and Band Reject Filters Introduction During this lab you will design and build three filters. First you will build a broad-band band-pass filter by cascading the high-pass and low-pass

More information

Filter Considerations for the IBC

Filter Considerations for the IBC application note AN:202 Filter Considerations for the IBC Mike DeGaetano Application Engineering July 2013 Contents Page Introduction 1 IBC Attributes 1 Damping and 2 Converter Bandwidth Filtering 3 Filter

More information

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary

More information

Part I: Operational Amplifiers & Their Applications

Part I: Operational Amplifiers & Their Applications Part I: Operational Amplifiers & Their Applications Contents Opamps fundamentals Opamp Circuits Inverting & Non-inverting Amplifiers Summing & Difference Amplifiers Integrators & Differentiators Opamp

More information

UNIVERSAL ACTIVE FILTER

UNIVERSAL ACTIVE FILTER UAF4 UNIVESAL ACTIVE FILTE FEATUES VESATILE LOW-PASS, HIGH-PASS BAND-PASS, BAND-EJECT SIMPLE DESIGN POCEDUE ACCUATE FEQUENCY AND Q INCLUDES ON CHIP 000pF ±0.5% CAPACITOS APPLICATIONS TEST EQUIPMENT COMMUNICATIONS

More information

Selected Filter Circuits Dr. Lynn Fuller

Selected Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035

More information

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters - Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and Switched-Capacitor

More information

A Single-Supply Op-Amp Circuit Collection

A Single-Supply Op-Amp Circuit Collection Application Report SLOA058 November 2000 A SingleSupply OpAmp Circuit Collection Bruce Carter OpAmp Applications, High Performance Linear Products One of the biggest problems for designers of opamp circuitry

More information