# Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Save this PDF as:

Size: px
Start display at page:

Download "Design of an Auxiliary Power Distribution Network for an Electric Vehicle"

## Transcription

2 300Vdc First Stage 300-to-48Vdc Step-Down Converter (Transformer Isolation Required) 48Vdc Intermediate Distribution Bus 48Vdc Figure 1 Auxiliary System of the Electric Car Auxiliary Power Distribution Network Second Stage 48-to- Step-Down Converter (Auxiliary Power Supply) 48-to- Converter 48-to- Converter 48-to- Converter Supply Distribution Bus To Supply Auxiliary Loads. Current Peak Figure 2 Current waveform of hazard lights Current peaks must be reduced as they lead to a significant power loss in the system. In order to minimise the peaks, an experiment to check performance under current limiting conditions was undertaken on the loads. In the experiment, the auxiliary parts were tested under the condition of limiting the supply current to its average value and seeing whether it still functions the same. For example, power steering was tested using 25A as the limiting current. The power steering operated successfully at this level since the peak current occurred only when the steering operates in hard lock. Therefore an output that limits the current to 25A will be successful. All other auxiliary parts were found to operate properly in the current limit tests; thus, the power ratings of the converters are decided based on the average current values of the loads. Another way of reducing power consumption in the car is to replace all the external and internal light bulbs in the vehicle, except headlights, with high intensity LEDs. Preliminary calculations that were carried out showed that current consumption of these loads decreased significantly if LEDs were used. For example, the current consumption of external lights would reduce from 31A (see Table 1) to 10A by replacing all the external lights by LEDs. 2.2 Power supply placement Using the information provided in Table 1 and assuming that the high intensity LEDs are used, a decision was Table 1 Maximum Current Demand of the Loads Maximum Current Consumed Loads Peak (Initial Spikes) Average (Steady-State) Headlights 27.4A 15A External Lights 53.8A 31A Internal Lights 10.3A 2.1A Power Steering 49.2A 25A Fan, Heater 25.6A 11.8A All Other Electronics 42.1A 20A Total 208.4A 104.9A taken to use four converters with output current ratings that range from 20 to 30A. Specifically, as the average current consumed in power steering is around 25A, one converter with a 30A output will be placed beside it to supply the power. Another 30A power supply is going to be located in the front of the vehicle and supply the headlights and front external lights. A 20A converter will be placed behind the driver s seat to supply the internal lights and heater fans. Finally, the power of all other electronic equipments plus the external taillights is going to be supplied from a 30A power supply inside the boot of the vehicle. Figure 3 illustrates the placement of the four power supplies that will be used in the vehicle. As an initial step in the project, a dc-dc converter with a 30A output current has been built and the design procedures are presented in the next section of this paper. 30A PS for Power Steering 20A PS for Heater Fans and Internal Lights 30A PS for Tail External Lights and All Other Electronics Figure 3 Power Supply Placements 30A PS for Healights and Front External Lights

3 3 Converter selection The Cuk converter topology was selected because it has both continuous input and output current with low current ripple Since the input and output inductor currents are essentially constant in steady state, the switching current is confined entirely within the converter, in the transistor-coupling capacitor-diode loop. With careful layout, this loop can be made physically small, which will reduce the radiated RFI. In addition, the voltage and current waveforms in this converter are particularly clean, with very little ringing or overshoot, and therefore very little snubbing is required [1,2]. Figure 4 illustrates the schematic Cuk converter. 4. Converter design 4.1 Design objectives Figure 4. Cuk Converter The basic requirements of the Cuk converter are listed in Table 2. The normal functional voltage for auxiliaries in the vehicle is between 10.5V to 14Vdc. Therefore, the output voltage supplied from the converter is specified as ±10%, which is inside the normal operational range of the auxiliary loads. In the auxiliary loads investigation carried out in Section 2.1, it was found that large current ripples occurred (between 1.3 ~ 4.2Ap-p) while operating the auxiliaries; the output current is therefore specified as 30A±10%. 4.2 Component calculation The theoretical equations of [4] were used to calculate the component sizes using a switching frequency of 100kHz. This switching frequency was selected because it provides a good compromise between efficiency and component sizes. Table 3 shows the calculation results. 4.3 Converter simulation PSPICE is used to simulate the converter using the component values in Table3. The simulation was run until it reached steady state at a time of 9ms. Figure 5 shows the voltage and current waveforms generated from the simulations for two switching periods. Voltage ripple of 140mVp-p (2%) is obtained at the output of the converter as shown in Figure 5(a). 1 Table2BasicRequirements Input Voltage 48Vdc Output Voltage ±10% Output Current 30A±10% Maximum Output Voltage Ripple 1.2V peak-to-peak (<10% of 12V) Maximum Current Ripple of Inductance L2 3A peak-to-peak (<10% of 30A) Minimum Efficiency Preferably > 85% Input Protection Over voltage Output Protection Over voltage, Over current, Short circuit Table 3 Calculation Results Duty Ratio, D 33% Inductance, L1 L µH 52.8µH Capacitance, C1 33µF C µF Load RL 0.4Ω 12.6V 12.3V 9.8A 9.0A 33A 30A 45A 0A 15A ton Vout = 12.45V Vout,ripple = 140mVp-p a) Output Voltage Ripple IL1 = 9.4A IL1,ripple = 500mAp-p b) Current Ripple of Inductance L1 IL2 = 31A IL2,ripple = 2Ap-p c) Current Ripple of Inductance L2 Iswitch,pulsed = 42Ap-p toff d) Current flow through MOSFET Icap,pulsed = 42Ap-p e) Current Ripple of Capacitor C ms 9.004ms 9.008ms 9.012ms 9.016ms Figure 5. Simulated waveform of the Cuk converter. Figures 5(b) and (c) show the inductor L1 and L2 current waveforms respectively. In inductor L2 the current ripple is 2Ap-p (6.7%).Large amount of pulsed current, 42Ap-p, flows through the switch and capacitor C1 on each PWM cycle as shown in Figure 5(d) and (e) respectively.

4 Min. Power Loss (W) MOSFET Loss Capacitor Loss Figure 6 Estimated Cuk Converter Component Loss 4.4 Circuit losses estimation At various switching frequencies theoretical calculations were made to determine the component values and their losses [4]. Figure 6 illustrates the estimated component losses of the converter over a range of switching frequencies. MOSFET losses were estimated by adding the magnitude of conduction and switching loss in the switch. The power losses in the passive components were determined by finding the product of their series resistance and the current flowing through them. Using the information provided in Figure 6, PSPICE simulations were carried out to determine the overall efficiency of the converter over a range of switching frequencies as shown in Figure Switching frequency selection The need for a high efficiency converter dictates a careful selection of switching frequency. This in turn has an impact on the size of the passive components. Using Figures 6 and 7 a choice of 100kHz as the switching frequency was made. This choice is a compromise between choosing high efficiency and small components. 4.6 Inductor design Winding Loss Total Losses Switching Frequency (khz) The basic inductor design procedure of Billings was followed [5]. Using the ripple current values given in Figure 5(b) and (c), the input parameters of the inductance design are determined and listed in the Table 4. Inductors L1 and L2 are wound on ETD49 and ETD59 ferrite core respectively. Theoretical calculations were carried out and found that without a air-gap, both inductor cores would be saturated at the 100kHz switching frequency. Table 4 Input Parameters of Inductance Design Inductor L1 L2 Inductance 211.2uH 52.8uH Peak Current 9.6A 32A DC Current 9.4A 31A Max. Temp. 100 C 100 C Max. Efficiency (%) Switching frequency (khz) Figure 7 Simulated Cuk Converter Efficiency Therefore an air-gap must be added in these cores to reduce magnetic flux density. However, the result is that extra windings are needed to regain the required inductance. To achieve the best compromise between the core size and the copper loss, an air-gap of 3mm was selected for both cores. This was verified from the tables and figures provided in the Philips Soft Ferrite data book [6]. 4.7 Component selections In the Cuk converter topology, all the current transferred from input to output must pass through capacitor C1. The converter delivers high currents and this results in an enormous ripple current flowing through the capacitance C1 during each PWM period. This is confirmed by PSPICE simulation as shown in Figure 5(e). Due to a large ripple current of up to 40Ap-p, electrolytic capacitors are not considered suitable. Plastic Film type MKT capacitors are used since they offer high AC stress properties. C1 is constructed from ten 3.3µF capacitors connected in parallel. The capacitors that form the output filter must also be able to handle an appreciable amount of ripple current of up to 3Ap-p. To handle this ripple current, ten 47µF electrolytic capacitors were connected in parallel to form the output capacitor C2. To maximize the efficiency of the converter, the switch was chosen to have low conduction and switching losses. An Intersil RFP40N10 N-channel MOSFET was selected to provide higher than necessary current and voltage ratings with low R DS,(ON) of 0.04Ω and fast on and off switching times (47ns and 62ns respectively). Since the converter is used in a step-down application, a high forward-voltage drop in the diode will result in an enormous power loss in the converter. An International Rectifier 30CPQ100 high efficiency, schottky diode was chosen as it offers a low forward-voltage drop of 0.86V and has the capability of handling large current and reverse blocking voltage of 30A and 100V respectively.

5 I L1 I L1 V DS V diode Figure 8 Input inductor current ripple (Top, 2A/div), and MOSFET switch voltage waveform (Bottom, 50V/div). Time scale: 2.5µs/div 5. Prototype performance The prototype model of the 12V, 30A converter has been built and tested for efficiency and steady state output voltage ripple. Under full load, the average current flowing through the Schottky diode is 30A. The diode s forward voltage drop of 0.86V limits the converter s theoretical maximum efficiency to 93.3%. The measured efficiency of the switching converter at various loads is listed in Table 5. Under nominal operating conditions of 48V input, 30A output, the efficiency is measured to be 85.2%. The highest efficiency of 92.4% was obtained at 2/3 load (20A). The characteristic switching waveforms of Figure 8 and 9 show reasonably clean switching under the full load condition and confirms the correct operation of the converter. Table 5. Measured Efficiency of the Converter Load Condition Vin (V) Iin (A) Vout (V) Iout (A) Effi. ζ (%) 1/3 Load /3 Load Full Load Ideally, the nominal voltage across the power devices (MOSFET and Diode) is 60Vp-p. As seen in the Figures 8 and 9, voltage spikes occur when the switches are turned on or off. Voltage clamps (RCD Snubbers) are designed and implemented across these power devices to reduce the voltage spikes and to limit the overall peak-to-peak voltage. Consequently, the voltage across the power devices is 95Vp-p and 92Vp-p respectively when using the voltage clamps. The current ripple of inductor L1 and the output voltage ripple are measured as 514mAp-p and 212mVp-p respectively. These values are close to the simulation results of 500mAp-p and 140mVp-p as given in Section 4.3. The measured output voltage is 12V±5%, whichiswithinthespecificationof±10%. Figure 9 Input inductor current ripple (Top, 2A/div), and Diode switch voltage waveform (Bottom, 50V/div). Time scale: 2.5µs/div 6. Conclusions A distributed power network is to be used in an electric vehicle application. The 300Vdc nominal battery voltage is converted to 48V intermediate voltage. The use of high efficiency LEDs and power supply current limiting results in reduced energy consumption by the auxiliary loads. A Cuk converter has been designed and implemented that converts 48V to 12V at a maximum load current of 30A. The converter operates at 100kHz and has a maximum efficiency of 92.4% at 2/3 load. Comparison between waveforms captured from the prototype and simulation results are similar. This indicates that the simulation results are a good predictor for the experimental results. 7. References [1] T. S. Finnegan, Cuk: the best SMPS?, Electronics World Wireless World, January 1991, pp [2] S. Cuk and R.D. Middlebrook, A New Optimum Topology Switching dc-to-dc Converter, IEEE Power Electronics Specialist Conference 1977 pp [3] Zhe Zhange and S. Cuk, A High efficiency 1.8kW Battery Equalizer Applied Power Electronics Conference, 1993 Record, pp [4] Daniel W. Hart, An Introduction to Power Electronics, Upper Saddle River, N.J. : Prentice Hall, c1997, pp [5] Keith Billings, Switch Mode Power Supply Handbook, 2 nd Ed, McGraw-Hill, Inc, c1999, pp [6] Philips Soft Ferrites Data Book [7] Zhe Zhange and S.Cuk, A High Efficiency 500W Step-up Cuk Converter Applied Power Electronics Conference, 199 Record, pp

### Design and Construction of Variable DC Source for Laboratory Using Solar Energy

International Journal of Electronics and Computer Science Engineering 228 Available Online at www.ijecse.org ISSN- 2277-1956 Design and Construction of Variable DC Source for Laboratory Using Solar Energy

### Chapter 4. LLC Resonant Converter

Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power

### DC-DC Converter Basics

Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / On-Line Textbook

### Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit

Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 986 Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit TUTORIAL 986 Input and

### Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer

### 7-41 POWER FACTOR CORRECTION

POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential

### The Flyback Converter

The Flyback Converter Lecture notes ECEN4517! Derivation of the flyback converter: a transformer-isolated version of the buck-boost converter! Typical waveforms, and derivation of M(D) = V/! Flyback transformer

### Design A High Performance Buck or Boost Converter With Si9165

Design A High Performance Buck or Boost Converter With Si9165 AN723 AN723 by Kin Shum INTRODUCTION The Si9165 is a controller IC designed for dc-to-dc conversion applications with 2.7- to 6- input voltage.

### Design Considerations for an LLC Resonant Converter

Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter

### Power Electronic Circuits

Power Electronic Circuits Assoc. Prof. Dr. H. İbrahim OKUMUŞ Karadeniz Technical University Engineering Faculty Department of Electrical And Electronics 1 DC to DC CONVERTER (CHOPPER) General Buck converter

### Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite

### Designing a Low Power Flyback Power Supply

APPLICATION NOTE INTRODUCTION Bourns is a well-known supplier of standard off-the-shelf high power inductors for power supplies in consumer, medical and automotive applications. Bourns also has a strong

### Inrush Current. Although the concepts stated are universal, this application note was written specifically for Interpoint products.

INTERPOINT Although the concepts stated are universal, this application note was written specifically for Interpoint products. In today s applications, high surge currents coming from the dc bus are a

### Solar Energy Conversion using MIAC. by Tharowat Mohamed Ali, May 2011

Solar Energy Conversion using MIAC by Tharowat Mohamed Ali, May 2011 Abstract This work introduces an approach to the design of a boost converter for a photovoltaic (PV) system using the MIAC. The converter

### The full wave rectifier consists of two diodes and a resister as shown in Figure

The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

### REALISATION OF DC-DC CONVERTER USING SWITCHED CAPACITOR CIRCUIT TO ACHIEVE HIGH DC LINE TO LOAD VOLTAGE RATIO

REALISATION OF DC-DC CONVERTER USING SWITCHED CAPACITOR CIRCUIT TO ACHIEVE HIGH DC LINE TO LOAD VOLTAGE RATIO Mallanagowda.N 1, Rajashekher Koyyeda 2 1, 2 M.Tech Power Electronics, Assistant Professor,

### Hybrid Power System with A Two-Input Power Converter

Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,

### High Voltage DC Power Supply Topology for Pulsed Load Applications with Converter Switching Synchronized to Load Pulses

High Voltage DC Power Supply Topology for Pulsed Load Applications with Converter Switching Synchronized to Load Pulses Abstract - High voltage power supplies for radar applications are investigated, which

### 0.9V Boost Driver PR4403 for White LEDs in Solar Lamps

0.9 Boost Driver for White LEDs in Solar Lamps The is a single cell step-up converter for white LEDs operating from a single rechargeable cell of 1.2 supply voltage down to less than 0.9. An adjustable

### High Intensify Interleaved Converter for Renewable Energy Resources

High Intensify Interleaved Converter for Renewable Energy Resources K. Muthiah 1, S.Manivel 2, Gowthaman.N 3 1 PG Scholar, Jay Shriram Group of Institutions,Tirupur 2 Assistant Professor, Jay Shriram Group

### QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1317A-A ACTIVE RESET ISOLATED 48V INPUT TO DC/DC POWER CONVERTER

DESCRIPTION Demonstration circuit 1317A-A is isolated input to high current output 1/8th Brick footprint converter featuring the LT 1952 switching controller with Active Reset circuit. The Active Reset

### Single phase, uncontrolled rectification (conversion)

Single phase, uncontrolled rectification (conversion) J Charles Lee Doyle C12763425 29 October 2015 Abstract An experiment investigating full wave rectification, for the purposes of producing a steady

### Welcome to the combined product training module of Linear Technology and Wurth Electronics about their efficient design solution for DC/DC Flyback

Welcome to the combined product training module of Linear Technology and Wurth Electronics about their efficient design solution for DC/DC Flyback Converters. As leading manufacturers in their industries,

### Cree PV Inverter Tops 1kW/kg with All-SiC Design

Cree PV Inverter Tops 1kW/kg with All-SiC Design Alejandro Esquivel September, 2014 Presentation Outline 1. Meeting an Industry Need a) 1kW/Kg b) No electrolytic capacitors in DC link 2. 50 + kw SiC based

### THE flyback-current-fed push pull dc dc converter [1], [2]

1056 IEEE TRANSACTIONS ON POWER ELECTRONICS, OL. 14, NO. 6, NOEMBER 1999 A New Flyback-Current-Fed Push Pull DC DC Converter Domingo A. Ruiz-Caballero, Student Member, IEEE, and Ivo Barbi, Senior Member,

### 98% Efficient Single-Stage AC/DC Converter Topologies

16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power

### Capacitor Ripple Current Improvements

Capacitor Ripple Current Improvements The multiphase buck regulator topology allows a reduction in the size of the input and put capacitors versus single-phase designs. By quantifying the input and put

### Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application A.Thiyagarajan Assistant Professor, Department of Electrical and Electronics Engineering Karpagam Institute of Technology

### LM5041 Application DC DC Converter Featuring the Cascaded Power Converter Topology

LM5041 Application DC DC Converter Featuring the Cascaded Power Converter Topology 1 Current Fed Push-Pull Concept Buck Stage Push-Pull Stage 33-76V Vout HB Vin HD HI HO HS LD LI LO LM5041 LM5101 Vss PUSH

### Application Report SLVA061

Application Report March 1999 Mixed Signal Products SLVA061 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product

### Current Ripple Factor of a Buck Converter

Application Note Edwin Wang AN1 April 14 Current Ripple Factor of a Buck Converter Abstract Inductor and capacitor forms a low-pass filter in a buck converter. The corner frequency the C filter is always

### National Semiconductor Power Products - Seminar 3 (LED Lighting)

National Semiconductor Power Products - Seminar 3 (LED Lighting) Dr. Iain Mosely Converter Technology Ltd. Slide 1 Overview Background on LEDs Power Electronics for Driving LEDs LED Driver Specific Solutions

### Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)

00-00-//\$0.00 (c) IEEE IEEE Industry Application Society Annual Meeting New Orleans, Louisiana, October -, Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part

### Doc. CC-0007 FOR MOSFET OR IGBT CONTROL, SCR TRIGGERING, DC/DC CONVERSION POWER LINE COMMUNICATION COUPLING TRANSFORMERS

PRODUCT INDEX FLYBACK TRANSFORMERS RANGE TRANSFORMERS/CONTROL CIRCUITS CROSS REFERENCE LIST 1 TO 9 W EE 16 74090 74091 74092 74093 74094 74095 1 TO 6 W EE 16 74000 74001 74002 74003 6 TO 12 W EE 16 74010

### Boundary between CCM and DCM in DC/DC PWM Converters

Boundary between CCM and DCM in DC/DC PWM Converters ELENA NICULESCU and E. P. IANCU Dept. of Electronics and Instrumentation, and Automation University of Craiova ROMANIA Abstract: - It is presented a

### 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter. General Description. Ordering Information. Applications. Features. Marking Information

1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter General Description The is a high-efficiency Pulse-Width-Modulated (PWM) step-down DC-DC converter. Capable of delivering 1A output current over

### Preliminary Datasheet

Features Macroblock Preliminary Datasheet 1.2A Constant Output Current 93% Efficiency @ input voltage 13V, 350mA, 9~36V Input Voltage Range Hysteretic PFM Improves Efficiency at Light Loads Settable Output

### International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5.

The Derivative of a Switched Coupled Inductor DC DC Step-Up Converter by Using a Voltage Lift Network with Closed Loop Control for Micro Source Applications Sangeetha K 1, Akhil A. Balakrishnan 2 1 PG

### Selecting Film Bus Link Capacitors For High Performance Inverter Applications

Selecting Film Bus Link s For High Performance Inverter Applications Michael Salcone and Joe Bond Electronic Concepts Inc. 526 Industrial Way Eatontown, NJ 07724 Abstract - For years design engineers have

### Introduction to Power Supplies

Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power

### MEETING TRANSIENT SPECIFICATIONS FOR ELECTRICAL SYSTEMS IN MILITARY VEHICLES

MEETING TRANSIENT SPECIFICATIONS FOR ELECTRICAL SYSTEMS IN MILITARY VEHICLES By Arthur Jordan Sr. Applications Engineer, Vicor Electrical systems in military vehicles are normally required to meet stringent

### INDUCTION HEATING TOPOLOGY WITH ASSYMETRICAL SWITCHING SCHEME

INDUCTION HEATING TOPOLOGY WITH ASSYMETRICAL SWITCHING SCHEME Janet Teresa K. Cyriac 1, Sreekala P 2 1 P.G. Scholar, Amal Jyothi College of Engineering, Kanjirapally, India 2 Assistant Professor, Amal

### Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

### AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family

AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal

### Fairchild On-Line Design Tool: Power Supply WebDesigner Step-by-Step Guide

Fairchild On-Line Design Tool: Power Supply WebDesigner Step-by-Step Guide Start Decide what your power supply requirements will be. Design Example: For this step we will design an AC to DC off-line power

### Application Note TMA Series

1W, SIP, Single & Dual Output DC/DC Converters Features SIP Package with Industry Standard Pinout Package Dimension: 19.5 x 10.2 x 6.1 mm (0.77 x 0.4 x 0.24 ) 5V&12V Models 19.5 x 10.2 x 7.1 mm (0.77 x

### Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

### TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES

TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES by L. Wuidart I INTRODUCTION This paper presents an overview of the most important DC-DC converter topologies. The main object is to guide the designer in selecting

### AP1510. General Description. Features. Applications. Typical Application Circuit PWM CONTROL 3A STEP-DOWN CONVERTER AP1510. x (1+R A = V FB /R B

Features General Description Input voltage: 3.6 to 23 Output voltage: 0.8 to CC. Duty ratio: 0% to 100% PWM control Oscillation frequency: 300kHz typ. Current Limit, Enable function Thermal Shutdown function

### Input and Output Capacitor Selection

Application Report SLTA055 FEBRUARY 2006 Input and Output Capacitor Selection Jason Arrigo... PMP Plug-In Power ABSTRACT When designing with switching regulators, application requirements determine how

### Switched Mode Power Supplies

CHAPTER 2 Switched Mode Power Supplies 2.1 Using Power Semiconductors in Switched Mode Topologies (including transistor selection guides) 2.2 Output Rectification 2.3 Design Examples 2.4 Magnetics Design

### TEP 200WIR Series, 180 240 Watt

TEP 200WIR Series, 180 240 Watt Features Chassis mount with screw terminal block Including EMI filter to meet EN 55022, class A Ultra wide 4:1 input voltage ranges 8.5 36, 16.5 75, 43 160 VDC EN 50155

### A bidirectional DC-DC converter for renewable energy systems

BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 4, 2009 A bidirectional DC-DC converter for renewable energy systems S. JALBRZYKOWSKI, and T. CITKO Faculty of Electrical Engineering,

### AN2228 APPLICATION NOTE

AN2228 APPLICATION NOTE STD1LNK60Z-based Cell Phone Battery Charger Design Introduction This application note is a Ringing Choke Converter (RCC)-based, step-by-step cell phone battery charger design procedure.

### SELECTION GUIDE. Nominal Input

www.murata-ps.com NKE Series FEATURES RoHS Compliant Sub-Miniature SIP & DIP Styles 3kVDC Isolation UL Recognised Wide Temperature performance at full 1 Watt load, 40 C to 85 C Increased Power Density

### Bridgeless PFC Implementation Using One Cycle Control Technique

Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061

### Implementation of High Step-Up Solar Power Optimizer for DC Micro Grid Application

Implementation of High tepup olar Power Optimizer for C Micro Grid Application hihming Chen, KeRen Hu, TsorngJuu Liang, and YiHsun Hsieh Advanced Optoelectronic Technology Center epartment of Electrical

### APPLICATION OF SLIDING CONTROL METHOD TO AN ARC WELDING MACHINE AND COMPARING ITS PERFORMANCE WITH THAT OF CONVENTIONAL PI METHOD

APPLICATION OF SLIDING CONTROL METHOD TO AN ARC WELDING MACHINE AND COMPARING ITS PERFORMANCE WITH THAT OF CONVENTIONAL PI METHOD *Ahmet KARAARSLAN **Đres ĐSKENDER e-mail: akaraarslan@gazi.edu.tr e-mail:

### Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction

Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction A. Inba Rexy, R. Seyezhai Abstract Through the fast growing technologies, design of power factor

### Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

### Topic 5. An Interleaved PFC Preregulator for High-Power Converters

Topic 5 An nterleaved PFC Preregulator for High-Power Converters An nterleaving PFC Pre-Regulator for High-Power Converters Michael O Loughlin, Texas nstruments ABSTRACT n higher power applications, to

### R-78xx-0.5 INNOLINE. Features. 0.5 AMP SIP3 Single Output. Derating-Graph (Ambient Temperature) DC/DC-Converter

Features Description Efficiency up to 97%,Non isolated, no need for heatsinks Pin-out compatible with LM78XX Linears Very low profile( L*W*H=11.5*7.5*10.2 ) Wide input range.(4.75v ~ 32V) Short circuit

### High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

White paper High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

### High Voltage DC-DC Converter Project #SJB 2A06

Department of Electrical and Computer Engineering NECAMSID High Voltage DC-DC Converter Project #SJB 2A06 A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in partial

### Design of High Voltage, High Power and High Frequency Transformer in LCC Resonant Converter

Design of High Voltage, High Power and High Frequency Transformer in LCC Resonant Converter Jun Liu, Licheng Sheng, Jianjiang Shi, Zhongchao Zhang, Xiangning He, Senior Member, IEEE College of Electrical

### The power supply employs a single ended forward topology. (see Figure 3) The targeted performance figures for the supply are as follows:

Application Note 9 July, A8W, KHz Forward Converter Using QFET by I.S. Yang Introduction The inherent performance advantage of power MOSFETs makes their use very attractive in switched mode power supplies.

### How to Design an Isolated, High Frequency, Push-Pull DC/DC Converter

How to Design an Isolated, High Frequency, Push-Pull DC/DC Converter Dawson Huang A simple push-pull DC/DC converter with a fixed % duty cycle is often used as a low noise transformer driver in communication

### Application Note, Rev.1.0, September 2008 TLE8366. Application Information. Automotive Power

Application Note, Rev.1.0, September 2008 TLE8366 Automotive Power Table of Contents 1 Abstract...3 2 Introduction...3 3 Dimensioning the Output and Input Filter...4 3.1 Theory...4 3.2 Output Filter Capacitor(s)

### A Zero-Voltage Switching Two-Inductor Boost Converter With an Auxiliary Transformer

A Zero-Voltage Switching Two-Inductor Boost Converter With an Auxiliary Transformer Quan Li and Peter Wolfs Central Queensland University Rockhampton Mail Center, QLD 47, Australia Abstract-The two-inductor

### Simulation and Design of Prototype Boost Converter for Power Factor Correction

Volume, Issue, July-September, 3, pp. 8-37, IASTER 3 www.iaster.com, Online: 347-5439, Print: 348-5 ABSTRACT Simulation and Design of Prototype Boost Converter for Power Factor Correction Dr.S. Sankar,

### Designers Series XII. Switching Power Magazine. Copyright 2005

Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter

### A Protection Circuit for DC-DC Converter with Voltage Doubler

World Applied Sciences Journal 21 (2): 269-275, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.21.2.2548 A Protection Circuit for DC-DC Converter with Voltage Doubler D. Elangovan

### Switch Mode Power Supply Topologies

Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.

### Series AMLDL-Z Up to 1000mA LED Driver

FEATURES: Click on Series name for product info on aimtec.com Series Up to ma LED Driver Models Single output Model Input Voltage (V) Step Down DC/DC LED driver Operating Temperature range 4ºC to 85ºC

### The leakage inductance of the power transformer

Nondissipative lamping Benefits - onverters Even if small, a transformer s leakage inductance reduces the efficiency of some isolated dc-dc converter topologies However, the technique of lossless voltage

### Test Methods for DC/DC Power Modules

Test Methods for DC/DC Power Modules Design Note 027 Ericsson Power Modules Precautions Abstract A user may have the desire to verify or characterize the performance of DC/DC power modules outside the

### Functions, variations and application areas of magnetic components

Westring 18 3314 Büren Germany T +49 951 60 01 0 F +49 951 60 01 3 www.schaffner.com energy efficiency and reliability 1.1 Transformers The transformer is one of the traditional components of electrical

### POWER FORUM, BOLOGNA 20-09-2012

POWER FORUM, BOLOGNA 20-09-2012 Convertitori DC/DC ad alta densità di potenza e bassa impedenza termica. Massimo GAVIOLI. Senior Field Application Engineer. Intersil SIMPLY SMARTER Challenges when Designing

### EMI and t Layout Fundamentals for Switched-Mode Circuits

v sg (t) (t) DT s V pp = n - 1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for Switched-Mode Circuits secondary primary

### A HIGH GAIN HYBRID DC-DC BOOST-FORWARD CONVERTER FOR SOLAR PANEL APPLICATIONS. Nicklas Jack Havens

A HIGH GAIN HYBRID DC-DC BOOST-FORWARD CONVERTER FOR SOLAR PANEL APPLICATIONS by Nicklas Jack Havens A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in

### Chapter 6: Converter circuits

Chapter 6. Converter Circuits 6.. Circuit manipulations 6.2. A short list of converters 6.3. Transformer isolation 6.4. Converter evaluation and design 6.5. Summary of key points Where do the boost, buck-boost,

### Selecting the Optimal Inductor for Power Converter Applications

Selecting the Optimal Inductor for Power Converter Applications BACKGROUND Today s electronic devices have become increasingly power hungry and are operating at higher switching frequencies, starving for

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### Testing a power supply for line and load transients

Testing a power supply for line and load transients Power-supply specifications for line and load transients describe the response of a power supply to abrupt changes in line voltage and load current.

### 3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines

3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines Odile Ronat International Rectifier The fundamental reason for the rapid change and growth in information

### Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391

Improved PFC Boost Choke using a Quasi-Planar Winding Configuration Dave Shonts Schott Corporation 1000 Parkers Lake Road Wayzata, MN 55391 Abstract- A novel approach to boost inductor design using a quasi-planar

### TM MP2305 2A, 23V SYNCHRONOUS RECTIFIED, STEP-DOWN CONVERTER

The Future of Analog IC Technology TM TM MP305 A, 3 Synchronous Rectified Step-Down Converter DESCRIPTION The MP305 is a monolithic synchronous buck regulator. The device integrates 30mΩ MOSFETS that provide

### 30V Internal Switch LCD Bias Supply

19-1666; Rev 1; 1/3 3V Internal Switch LCD Bias Supply General Description The boost converter contains a.5a internal switch in a tiny 6-pin SOT23 package. The IC operates from a +2.4V to +5.5V supply

### Line Reactors and AC Drives

Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

### UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com hott@ieee.org Page 2 THE BASIC

### Building a dspic SMPS system

Building a dspic SMPS system 2006 Microchip Technology Incorporated. All Rights Reserved. Building a dspic SMPS System Slide 1 Welcome to the Building a SMPS dspic System Web seminar Page 1 Session Agenda

### SUCCESS EPCOS Capacitors

SUCCESS EPCOS Inc. Capacitors Group April, 2012 EV / HV / E-Mobility Battery charger system & Inverter On Board and Off Board Assembly Trend: Wireless Charging DC/DC Converter Filtering DC Link E-Mobility

### IS31LT3360 40V/1.2A LED DRIVER WITH INTERNAL SWITCH. January 2014

40V/1.2A LED DRIVER WITH INTERNAL SWITCH January 2014 GENERAL DESCRIPTION The IS31LT3360 is a continuous mode inductive step-down converter, designed for driving a single LED or multiple series connected

### MP2365 3A, 28V, 1.4MHz Step-Down Converter

The Future of Analog IC Technology MP365 3A, 8,.MHz Step-Down Converter DESCRIPTION The MP365 is a.mhz step-down regulator with a built-in Power MOSFET. It achieves 3A continuous output current over a

### When the Power Fails: Designing for a Smart Meter s Last Gasp

When the Power Fails: Designing for a Smart Meter s Last Gasp Daniel Pruessner 1/10/2012 5:25 PM EST Overview Smart meter designers have an unusual predicament: The meter is powered from the same bus that

### AC/DC Power Modules C B. TML Series, 20 & 40 Watt. Features. 20 Watt Models

TML Series, 0 & 0 Watt Features C B Scheme LVD UL 090- Encapsulated power supplies with increased power density Replaces TML and TML 0 series PCB mount or chassis mount with screw terminals Single, dual

### Parametric variation analysis of CUK converter for constant voltage applications

ISSN (Print) : 232 3765 (An ISO 3297: 27 Certified Organization) Vol. 3, Issue 2, February 214 Parametric variation analysis of CUK converter for constant voltage applications Rheesabh Dwivedi 1, Vinay

### Which is the best PFC stage for a 1kW application?

Which is the best PFC stage for a 1kW application? Comparison of different PFC stage topologies under an identical design philosophy Ulf Schwalbe/ Marko Scherf ISLE Steuerungstechnik und Leistungselektronik