2.161 Signal Processing: Continuous and Discrete Fall 2008


 Tamsyn Peters
 2 years ago
 Views:
Transcription
1 MT OpenCourseWare Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit:
2 MASSACHUSETTS NSTTUTE OF TECHNOLOGY DEPARTMENT OF MECHANCAL ENGNEERNG.6 Signal Processing Continuous and Discrete OpAmp mplementation of Analog Filters. ntroduction Practical realizations of analog filters are usually based on factoring the transfer function into cascaded secondorder sections, each based on a complex conjugate polepair or a pair of real poles, and a firstorder section if the order is odd. Any zeros in the system may be distributed among the second and firstorder sections. Each first and secondorder section is then implemented by an active filter and connected in series. For example the thirdorder Butterworth highpass filter would be implemented as s 3 H(s) s 3 0s 00s 000 s s H(s) s 0s 00 s 0 as shown in Fig.. The design of each loworder block can be handled independently.!! " & & " > Figure : A thirdorder Butterworth filter (a) as a single thirdorder section, and (b) as a secondorder and firstorder section cascaded. Statevariable active filters The statevariable filter design method is based on the block diagram representation used in the socalled phasevariable description of linear systems that uses the outputs of a chain of cascaded integrators as state variables. Consider a secondorder filter block with a transfer function Y (s) b s b s b 0 H(s) () U(s) s a s a 0 D. Rowell October, 00
3 and split H(s) into two subblocks representing the denominator and numerator by introducing an intermediate variable x and rewrite X(s) H (s) () U(s) s a s a 0 H (s) Y (s) b s b s b 0 (3) X(s) so that H(s) H (s)h (s). The differential equations corresponding to Eqs. () and (3) are d x dx a a 0 x u () dt dt and d x dx y b b b 0 x. (5) dt dt Rewrite Eq. () explicitly in terms of the highest derivative d x dt dx a a 0 x u. (6) dt Consider a pair of cascaded analog integrators with the output defined as x(t), as shown in Fig., so that the derivatives of x(t) appear as inputs to the integrators. Note that Eq. J N J Figure : Cascaded integrators with output x(t). gives an explicit expression for the input to the first block in terms of the outputs of the two integrators and the system input, and therefore generates the block diagram for H (s) (Eq. (5)) shown in Fig. 3. K J N J Figure 3: State variable realization of H (s) X(s)/U(s).
4 O J > > > K J N J Figure : Full secondorder state variable realization. Equation (5) shows that the output y(t) is a weighted sum of x(t) and its derivatives, leading to the complete secondorder state variable filter block shown in Fig.. This basic structure may be used to realize the four basic filter types by appropriate choice of the numerator. Figure 5 shows how the output may be selected to achieve the following transfer functions: H lp (s) Y (s) a 0 U(s) s a s a 0 a unity gain lowpass filter (7) H bp (s) Y (s) a s U(s) s a s a 0 a unity gain bandpass filter () H hp (s) Y 3 (s) s U(s) s a s a 0 a unity gain highpass filter (9) H bs (s) Y (s) s a 0 U(s) s a s a 0 a unity gain bandstop filter (0) ; " J F ;! D EC D F ; F 7 : : : ; M F Figure 5: State variable implementation of various filter types. 3
5 ". Opamp Based StateVariable Filters Electronic implementation of the block diagram structure of Fig. 5 involves weighted summation and integration. These two operations can de achieved by the two opamp circuts shown in Fig. 6. For the summer in Fig. 6a the output is B L L L E L K J E L K J > Figure 6: Elementary opamp circuits: (a) a summer, and (b) an integrator. R f R f v out v v R R and for the integrator in Fig. 6b t v out (t) v in (t)dt. R in C 0 and we note. Common opamp summing and integrating circuits involve a sign inversion.. Opamp integrators implicitly have a nonunity gain (unless R in C ).. A Three Opamp State Variable Filter Circuit! D EC D F K JF K J E # L L! )! ) ) L M F K JF K J $ F K JF K J Figure 7: A three opamp implementation of a secondorder statevariable filter. Figure 6 shows a common implementation of the secondorder statevariable filter using three opamps. Amplifiers A and A are integrators with transfer functions H (s) and H (s). R C s R C s
6 Let τ R C and τ R C. Because of the gain factors in the integrators and the sign inversions we have dv d v v (t) τ and v 3 (t) τ τ. () dt dt Amplifier A 3 is the summer. However, because of the sign inversions in the opamp circuits we cannot use the elementary summer of Fig. 6a. Applying Kirchoff s Current Law at the noninverting and inverting inputs of A 3 gives V in v v v v 3 v v v 0 and 0. () R 5 R 6 R R Using the infinite gain approximation for the opamp, we set v v and R 3 R 5 R R 6 v 3 v v V in, R 3 R R 5 R 6 R 3 R R 5 R 6 and substituting for v and v 3 from Eq. () we generate a differential equation in v d v R /R 3 dv R R /R 3 v V in (3) dt τ ( R 6 /R 5 ) dt R 3 τ τ τ τ ( R 5 /R 6 ) which corresponds to a lowpass transfer function with K lp a 0 H(s) () s a s a 0 where a 0 a K lp R R 3 τ τ R /R 3 R 6 /R 5 τ R 3 /R R 5 /R 6 A BandPass Filter: the transfer function where A HighPass Filter: the transfer function where Selection of the output as the output of integrator A generates K bp a s H bp (s) τ sh lp (s) s a s a 0 R 6 K bp R5 (5) Selection of the output as the output of the summer A 3 generates H hp (s) τ τ s H lp (s) R /R 3 K hp R5 /R 6 K hp s (6) s a s a 0 5
7 ! " E # )! L! $ ) L ) L % ' & HA A? J K J F K J ) " Figure : A bandstop secondorder statevariable filter. A BandStop Filter: A bandstop characteristic requires a pair of conjugate zeros on the imaginary axis as defined in Eq. (0). This may be done by including an additional summing amplifier A as shown in Fig.. The output is R 9 R 9 V o (s) V (s) V 3 (s) R R 7 R 9 R 9 V (s) τ τ s V (s) R R 7 f R 7 R and R 3 R, the filter transfer function simplifies to V o (s) V o (s) V (s) K bs (s a 0 ) H bs (s) V in (s) V (s) V in (s) s a s a 0 where R 9 K bs. ( R 5 /R 6 )R.3 A Simplified Two Opamp Based Statevariable Filter: f the required filter does not require a highpass action (that is, access to the output of the summer A ) the summing operation may be included at the input of the first integrator, leading to a simplified circuit using only two opamps shown in Fig. 9. With the infinite gain assumption for the opamps, that is V V, and with the assumption that no current flows in either input, we can apply Kirchoff s Current Law (KCL) at the node designated (a) in Fig. 0: i i f i 3 0 (V in v a ) sc (v v a ) v a 0 (7) R R 3 Using assumption above, v a V out, and realizing that the second stage is a classical opamp integrator with transfer function V out (s) v (s) R C s 6
8 E! ) K J ) Figure 9: Two opamp implementation of a statevariable secondorder active lowpass filter. (V in V out ) R sc ( R C sv out V out ) V out R 3 0 () E B L E E E!! ) K J Figure 0: Feedback summation at the input of the first integrator. Eq. () may be rewritten (V in V out ) sc ( R C sv out V out ) V out 0 (9) R R 3 which may be rearranged to give the secondorder transfer function which is of the form where V out (s) /τ τ (0) V in (s) s (/τ )s ( R /R 3 )/τ τ K lp a 0 H lp (s) () s a s a 0 a 0 ( R /R 3 ) τ τ () a τ (3) K lp R /R 3 () 7
9 . FirstOrder Filter Sections: Single pole lowpass filter sections with a transfer function of the form KΩ 0 H(s) s Ω0 may be implemented in either an inverting or noninverting configuration as shown in Fig.. The inverting configuration (Fig. (a)) has transfer function! E E K J K J > Figure : Firstorder lowpass filter sections (a) inverting, and (b) noninverting. V out (s) Z f R /R C V in (s) Z in R s /R C where Ω 0 /R C and K R /R. The noninverting configuration of Fig. b is a firstorder RC lag circuit buffered by a noninverting (high input impedance) amplifier with a gain K R 3 /R. ts transfer function is V out (s) R 3 /R C V in (s) R s /R C.5 Summary of Features of the Statevariable Filters Statevariable filters are capable of lowpass, bandpass, highpass and bandstop functions. They are capable of realizing both overdamped and lightly damped pole pairs. They are relatively insensitive (compared to other designs) to variation in component values. They do not require a wide range of component values. The coefficients in the transfer function may be set independently. Other designs may require fewer opamps.
10 3 Design Examples: The following two examples involve allpole lowpass filters, and are therefore suitable for the two opamp circuit. We will use the following procedure to determine the component values. Given a filter with a unitygain pole pair described by K lp a 0 H(s) s a s a 0 where a 0, a, and K lp are as defined in Eqs. () through (). The circuit components are chosen as follows: (a) We note that a /τ /R C, and therefore choose a convenient value for C and let R /a C. (b) We arbitrarily let R 3 R. setting K lp 0.5. (c) With this condition a 0 /τ τ a /R C, so we may choose a convenient value for C and then determine R a /(a 0 C ), which also defines R 3. The design is then complete. 3. Example mplement a secondorder Butterworth filter with a3db cutoff frequency of 000 rad/sec (59 Hz). The transfer function of the Butterworth filter is Following the above procedure 0 6 H(s) s s 0 6 (a) Let C 0.7 μf (a common value). Then R 0 6 /( 0.7) 50 Ω. (b) Let C 0.7 μf. Then R R 3 /( ) 607 Ω and the final filter is shown in Fig. 3. The common 7 opamp has been specified in this case. 3. Example Design a fifthorder Chebyshev Type lowpass filter, with a cutoff frequency of 000 rad/s, and allowing db of ripple in the passband. The Matlab commands [z,p,k] cheby(5,,000, s ) filter zpk(z,p,k) 9
11 " %. " %. E $ % 9 $ % 9 % " # " 9 % " K J Figure : Secondorder Butterworth design example. generate the following filter transfer function H(s) (s 6.s 9300)(s 7.9s 9300)(s 9.5) s 6.s 9300 s 7.9s 9300 s 9.5 We implement the filter as two cascade secondorder sections (each with a gain of K lp 0.5) as above, and a single firstorder noninverting section with a gain of. We will use the two opamp circuit Let all capacitors have a value of 0.7 μf. () For the first section a 6., b 9300: R, 5 Ω, ac a 6. R R 3, 6 Ω bc 9, () For the second section a 7.9, b 9, 300: R, 93 Ω, ac a 7.9 R R Ω bc 9, () For the firstorder section K Ω c 9.5: R 7, 39 Ω, Ω c C Let R, 500 Ω, R 3 (K )R 3, 500, 500 Ω and the design is complete. The final circuit is shown in Fig. 3. 0
12 " % " % E " $ " " $ " " # " % % " % " % % % & '! # " # %! " ' " % K J Figure 3: Fifthorder Chebyshev Type lowpass design example. All resistor values are in ohms, all capacitor values are in microfarads. 3.3 Example 3 Design a secondorder bandstop filter to reject 60 Hz interference, with a bandwidth of 0Hz. We start with a firstorder lowpass prototype filter with a cutoff frequency of rad/sec. (Note that the lowpass to bandstop transformation will generate a secondorder filter) The Matlab commands H lp (s). s [num,dden]lpbs(,[ ],*pi*60,*pi*0) filter tf(num,den) generate the following filter transfer function s 00 H(s) s 5.7s 00
13 We use the design equations described for bandstop filters in Section.3 with the circuit shown in Fig., that is where V o (s) V o (s) V (s) K bs (s a 0 ) H bs (s) V in (s) V (s) V in (s) s a s a 0 a 0 a K bs τ τ R 6 /R 5 τ R 9 ( R 5 /R 6 )R under the constraints that R 3 R and R 7 R in Fig.. (a) Let τ τ / a 0 / Then (arbitrarily) let C C 0.7 μf, so that R R 0.007/ Ω. (b) Since a, R 6 /R 5 τ R R 5 a τ We let R Ω and R Ω. (c) We let R 3 R R 7 R 0000 Ω. (d) We set K bs so that R 9 0.5K bs ( R 5 /R 6 )R 6000 Ω. Which completes the design, as shown in Fig.. Note that this filter inverts the signal, so if the application requires maintaining the sign of the input an extra opamp inverter should be used. E " % " % $ # $ " " L # $ " " L! L )! ) K J # ) ) " Figure : Secondorder bandstop filter design example. All resistor values are in ohms, all capacitor values are in microfarads.
14 Single OpAmp SecondOrder Filter Sections There are many opamp active filter circuits that will generate a secondorder transfer function using a single opamp. n this section we briefly introduce the infinite gain multiple feedback (MFB) structure and show how it may be configured as a lowpass, highpass and bandpass secondorder filter. Figure 5 shows the configuration with passive elements (resistors and capacitors) represented by admittances. (Admittance is the reciprocal of impedance, and for a capacitor Y C sc, and for a resistor Y R /R.) ; " E ;! ; ; > ; # K J Figure 5: A General nfinite Gain Multiple Feedback Filter. For the circuit in Fig. 5 we can write node equations (Kirchoff s Current Law) at the node designated (a), and the summing junction (b): and eliminating V a gives the transfer function (Y Y Y 3 Y ) V a Y V in Y V out 0 Y 3 V a Y 5 V out 0 V out (s) Y Y 3 (5) V in (s) Y 5 (Y Y Y 3 Y ) Y 3 Y and the various filter forms may be created by appropriate substitution of resistors and capacitors for the five admittances.. A Lowpass MFB Filter f the circuit is configured as in Fig. 6 and we write Y G /R, Y sc, Y 3 G 3 /R 3, Y G /R, and Y 5 sc the resulting transfer function is G G 3 Vout (s) C C 5 (6) V in (s) s G G G 3 s G 3G C C C which can be written as a lowpass system similar to Eq. (7 ) V out (s) ka 0 H lp (s) (7) V in (s) s a s a 0 3
15 E! K J Figure 6: An infinitegain Multiple Feedback lowpass filter. where a 0 a k R R 3 C C () C R R R3 R R. A Highpass MFB Filter A highpass filter with a transfer function similar to Eq. (9), that is ks H hp (s) s a s a 0 may be formed by configuring the circuit as in Fig. 7, that is with Y sc, Y G /R, Y 3 sc 3, Y sc, and Y 5 G /R. Substitution into Eq. (6) gives E! K J Figure 7: An infinitegain Multiple Feedback highpass filter. a 0 R R C C 3 a C C C 3 R C C 3 (9) k C C
16 .3 A Bandpass MFB Filter A bandpass filter has a transfer function similar to Eq. (), that is ka s H hp (s) s a s a 0 f the circuit is configured as in Fig. and Y G /R, Y G /R, Y 3 sc, Y sc, and Y 5 G 3 /R 3 then E! K J Figure : An infinitegain Multiple Feedback bandpass filter. a 0 a k R 3 C C R R C C (30) R 3 C C R 3 C R (C C ). Example Design a thorder highpass Butterworth filter with a 3dB cutoff frequency of 000 Hz using cascaded MFB sections. The MATLAB commands [num, den] butter(, *pi*000, high, s ); filter tf(num, den) gives the transfer function s H(s) s 60s s 6. 0 s s s s 0s 3977 s 60s
17 mplement both secondorder systems according to Fig. 7, and let C C C 3 C 0. μf, so that Eqs. (30) become: a 0 R R C a 3 R C k or For the two sections 3 R and R a C a 0 R C s H (s) C C C 3 0.μF, R 639Ω, R 06Ω, s 0s 3977 and s H (s) C C C 3 0.μF, R 5Ω, R 90Ω. s 60s 3977 The complete highpass filter is shown in Fig. 9. $! ' # & " E " $ ' & K J Figure 9: An thorder Butterworth Multiple Feedback highpass filter with f c 000 Hz. Capacitances are in μf, and resistances are in ohms. 6
LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters  Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A
LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters  Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and SwitchedCapacitor
More informationActive LowPass Filter Design
Application Report SLOA049B  September 00 Active LowPass Filter Design Jim Karki AAP Precision Analog ABSTRACT This report focuses on active lowpass filter design using operational amplifiers. Lowpass
More informationA Basic Introduction to Filters Active Passive and SwitchedCapacitor
A Basic Introduction to Filters Active Passive and SwitchedCapacitor 1 0 INTRODUCTION Filters of some sort are essential to the operation of most electronic circuits It is therefore in the interest of
More informationA SingleSupply OpAmp Circuit Collection
Application Report SLOA058 November 2000 A SingleSupply OpAmp Circuit Collection Bruce Carter OpAmp Applications, High Performance Linear Products One of the biggest problems for designers of opamp circuitry
More informationBasic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
More informationAPPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 400 Tucson, AZ 8574 Street Address: 670 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602) 746 Twx: 90952 Telex: 066649 FAX (602) 88950 Immediate Product Info:
More informationVer 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)
Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.
More informationBode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson
Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary
More informationUnderstanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
More informationDIGITALTOANALOGUE AND ANALOGUETODIGITAL CONVERSION
DIGITALTOANALOGUE AND ANALOGUETODIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
More informationUniversity of Rochester Department of Electrical and Computer Engineering ECE113 Lab. #7 Higherorder filter & amplifier designs March, 2012
University of Rochester Department of Electrical and Computer Engineering ECE113 Lab. #7 Higherorder filter & amplifier designs March, 2012 Writeups, due one week after the lab is performed, should provide
More informationLM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
More informationFirst, we show how to use known design specifications to determine filter order and 3dB cutoff
Butterworth LowPass Filters In this article, we describe the commonlyused, n th order Butterworth lowpass filter. First, we show how to use known design specifications to determine filter order and
More informationSDOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS
SDOMAIN ANAYSIS: POES, ZEROS, AND BODE POTS The main objectiveis to find amplifier voltage gain as a transfer function of the complex frequency s. In this sdomain analysis a capacitance С is replaced
More informationFrequency response. Chapter 1. 1.1 Introduction
Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred
More informationCTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION. Virgil Leenerts WØINK 8 June 2008
CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION Virgil Leenerts WØINK 8 June 28 The response of the audio voice band high pass filter is evaluated in conjunction with the rejection
More informationLab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
More informationLaboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 2024) and Week 10 (Oct. 2731) Due Week 11 (Nov. 37) 1 PreLab This PreLab should be completed before attending your regular
More informationElectronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
More informationA Differential OpAmp Circuit Collection
Application Report SLOA0A April 00 A Differential OpAmp Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT All opamps are differential input devices. Designers are accustomed to
More informationElectronics for Analog Signal Processing  II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras
Electronics for Analog Signal Processing  II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture  18 Wideband (Video) Amplifiers In the last class,
More informationFast analytical techniques for electrical and electronic circuits. Jet Propulsion Laboratory California Institute of Technology
Fast analytical techniques for electrical and electronic circuits Vatché Vorpérian Jet Propulsion Laboratory California Institute of Technology PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
More informationA Differential OpAmp Circuit Collection
Application Report SLOA0 July 00 Bruce Carter A Differential OpAmp Circuit Collection High Performance Linear Products ABSTRACT All opamps are differential input devices. Designers are accustomed to working
More informationEngineering Sciences 22 Systems Summer 2004
Engineering Sciences 22 Systems Summer 24 BODE PLOTS A Bode plot is a standard format for plotting frequency response of LTI systems. Becoming familiar with this format is useful because: 1. It is a standard
More informationFrequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V  Figure The
More informationPrecision Diode Rectifiers
by Kenneth A. Kuhn March 21, 2013 Precision halfwave rectifiers An operational amplifier can be used to linearize a nonlinear function such as the transfer function of a semiconductor diode. The classic
More informationLaboratory Manual. ELEN325 Electronics
Laboratory Manual ELEN325 Electronics Department of Electrical & Computer Engineering Texas A&M University Prepared by: Dr. Jose SilvaMartinez (jsilva@ece.tamu.edu) Rida Assaad (rida@ece.tamu.edu) Raghavendra
More informationPHYSICS 360  LAB #2 Passive Lowpass and Highpass Filter Circuits and Integrator and Differentiator Circuits
PHYSICS 360  LAB #2 Passie Lowpass and Highpass Filter Circuits and Integrator and Differentiator Circuits Objectie: Study the behaior of lowpass and highpass filters. Study the differentiator and
More informationCIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steadystate behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
More informationSAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +
More informationchapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
More information*For stability of the feedback loop, the differential gain must vary as
ECE137a Lab project 3 You will first be designing and building an opamp. The opamp will then be configured as a narrowband amplifier for amplification of voice signals in a public address system. Part
More informationisim ACTIVE FILTER DESIGNER NEW, VERY CAPABLE, MULTISTAGE ACTIVE FILTER DESIGN TOOL
isim ACTIVE FILTER DESIGNER NEW, VERY CAPABLE, MULTISTAGE ACTIVE FILTER DESIGN TOOL Michael Steffes Sr. Applications Manager 12/15/2010 SIMPLY SMARTER Introduction to the New Active Filter Designer Scope
More informationDesign of op amp sine wave oscillators
Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation
More informationG(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).
Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,
More informationUsing the Texas Instruments Filter Design Database
Application Report SLOA062 July, 2001 Bruce Carter Using the Texas Instruments Filter Design Database High Performance Linear Products ABSTRACT Texas Instruments applications personnel have decades of
More informationProgrammableGain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems
ProgrammableGain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORTCIRCUIT PHOTODIODE SHORT CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision
More informationUNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101  Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101  Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2sided sheet of
More informationTDA2040. 20W HiFi AUDIO POWER AMPLIFIER
20W HiFi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power
More informationController Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
More informationChapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
More informationMeasurement of Capacitance
Measurement of Capacitance PreLab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two
More informationMutual Inductance and Transformers F3 3. r L = ω o
utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil
More informationPressure Transducer to ADC Application
Application Report SLOA05 October 2000 Pressure Transducer to ADC Application John Bishop ABSTRACT Advanced Analog Products/OpAmp Applications A range of bridgetype transducers can measure numerous process
More informationLow Pass Filter Rise Time vs Bandwidth
AN121 Dataforth Corporation Page 1 of 7 DID YOU KNOW? The number googol is ten raised to the hundredth power or 1 followed by 100 zeros. Edward Kasner (18781955) a noted mathematician is best remembered
More informationSINGLESUPPLY OPERATION OF OPERATIONAL AMPLIFIERS
SINGLESUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated
More informationTransistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
More informationThe Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
More informationJ.L. Kirtley Jr. Electric network theory deals with two primitive quantities, which we will refer to as: 1. Potential (or voltage), and
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061 Introduction to Power Systems Class Notes Chapter 1: eiew of Network Theory J.L. Kirtley Jr. 1 Introduction
More informationStep response of an RLC series circuit
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives
More informationLecturer: James Grimbleby URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk
AC Circuit Analysis Module: SEEA5 Systems and Circuits Lecturer: UL: http://www.personal.rdg.ac.uk/~stsgrimb/ email:.b.grimbleby reading.ac.uk Number of Lectures: ecommended text book: David Irwin and
More informationEXAMPLE 8: An Electrical System (MechanicalElectrical Analogy)
EXAMPLE 8: An Electrical System (MechanicalElectrical Analogy) A completely analogous procedure can be used to find the state equations of electrical systems (and, ultimately, electromechanical systems
More informationThree phase circuits
Three phase circuits THREE PHASE CIRCUITS THREEPHASE ADVANTAGES 1. The horsepower rating of threephase motors and the kva rating of threephase transformers are 150% greater than singlephase motors
More informationEE 402 RECITATION #13 REPORT
MIDDLE EAST TECHNICAL UNIVERSITY EE 402 RECITATION #13 REPORT LEADLAG COMPENSATOR DESIGN F. Kağan İPEK Utku KIRAN Ç. Berkan Şahin 5/16/2013 Contents INTRODUCTION... 3 MODELLING... 3 OBTAINING PTF of OPEN
More informationAn Adjustable Audio Filter System for the Receiver  Part 1
1 of 7 An Adjustable Audio Filter System for the Receiver  Part 1 The audio response is shaped as required using Switched Capacitor Filters Lloyd Butler VK5BR Front panel view of the original receiver
More informationENGINEERING EXPERIMENT STATION COLLEGE OF ENGINEERING THE UNIVERSITY OF ARIZONA TUCSON, ARIZONA USE OF A THREELAYER DISTRIBUTED RC NETWORK
USE OF A THREELAYER DISTRIBUTED RC NETWORK TO PRODUCE TWO PAIRS OF COMPLEX CONJUGATE ZEROS Prepared under Grant NGL03002136 for the Instrumentation Division Ames Research Center Naional Aeronautics
More informationSelected Filter Circuits Dr. Lynn Fuller
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035
More informationManufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT 4 Understand singlephase alternating current (ac) theory Single phase AC
More informationFrequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
More informationFundamentals of Electronic Circuit Design. By Hongshen Ma
Fundamentals of Electronic Circuit Design By Hongshen Ma Preface Why Study Electronics? Purely mechanical problems are often only a subset of larger multidomain problems faced by the designer. Particularly,
More informationBuffer Op Amp to ADC Circuit Collection
Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op
More informationSECTION 6 DIGITAL FILTERS
SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital
More informationReading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
More informationFUNDAMENTALS OF ENGINEERING (FE) EXAMINATION REVIEW
FE: Electric Circuits C.A. Gross EE11 FUNDAMENTALS OF ENGINEERING (FE) EXAMINATION REIEW ELECTRICAL ENGINEERING Charles A. Gross, Professor Emeritus Electrical and Comp Engineering Auburn University Broun
More informationDepletionMode Power MOSFETs and Applications Abdus Sattar, IXYS Corporation
epletionmode Power MOSFETs and Applications Abdus Sattar, XYS Corporation Applications like constant current sources, solidstate relays, telecom switches and high voltage C lines in power systems require
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More informationWhat you will do. Build a 3band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter
Audio Filters What you will do Build a 3band equalizer Low pass filter High pass filter Band pass filter Connect to a music source (mp3 player) Adjust the strength of low, high, and middle frequencies
More informationRLC Resonant Circuits
C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document
More informationUse and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)
Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have
More informationDescription. Output Stage. 5k (10k)  + 5k (10k)
THAT Corporation Low Noise, High Performance Audio Preamplifier IC FEATURES Low Noise: 1 nv/hz input noise (60dB gain) 34 nv/hz input noise (0dB gain) (1512) Low THD+N (full audio bandwidth): 0.0005% 40dB
More informationby Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science
A Continuous Time Frequency Translating Delta Sigma Modulator by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of
More informationDesign Reference SLOD006A
Design Reference September 2001 Advanced Analog Products SLOD006A IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
More informationExperiment 4 ~ Resistors in Series & Parallel
Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You
More informationSee Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
More informationThe Membrane Equation
The Membrane Equation Professor David Heeger September 5, 2000 RC Circuits Figure 1A shows an RC (resistor, capacitor) equivalent circuit model for a patch of passive neural membrane. The capacitor represents
More informationW03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018  Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
More informationMicrowave Filters. Passbands and Stopbands in Periodic Structures
Passbands and Stopbands in Periodic Structures Periodic structures generally exhibit passband and stopband characteristics in various bands of wave number determined by the nature of the structure. This
More informationAN837 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDSBased Clock Jitter Performance vs. DAC Reconstruction Filter Performance
More informationLet s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.
Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.
More informationA LowCost VCA Limiter
The circuits within this application note feature THAT218x to provide the essential function of voltagecontrolled amplifier (VCA). Since writing this note, THAT has introduced a new dual VCA, as well
More informationDr. Julio R. García Villarreal San José State University San José, California  USA VEE 18V VCC 18V. 22kOhm R6 R1 RTD VPROCESS VARIABLE
1 VCC 18V VEE 18V R1 RTD VPROCESS VARIABLE 220 Ohm R2 50% 22kOhm R4 22kOhm R5 8.5V Key = A 10kOhm R3 TEMP. ADJUST 22kOhm R6 U1A LF444 22kOhm R7 U1B LF444 (R9 ADJUSTED TO 710 ohms) DEADBAND ADJUST 22kOhm
More informationTL074 TL074A  TL074B
A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION
More informationBasic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
More informationAnalysis of CommonCollector Colpitts Oscillator
Analysis of CommonCollector Colpitts Oscillator H R Pota May 20, 2005 Introduction Murphy s rule when paraphrased for oscillators reads [], Amplifiers will oscillate but oscillators won t. As we all know,
More informationTime series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
More informationHigh Speed, Low Power Monolithic Op Amp AD847
a FEATURES Superior Performance High Unity Gain BW: MHz Low Supply Current:.3 ma High Slew Rate: 3 V/ s Excellent Video Specifications.% Differential Gain (NTSC and PAL).9 Differential Phase (NTSC and
More informationSwitch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
More informationUnderstanding Power Impedance Supply for Optimum Decoupling
Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,
More informationTDA2040. 20W HiFi AUDIO POWER AMPLIFIER
20W HiFi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power
More informationCommon Emitter BJT Amplifier Design Current Mirror Design
Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite
More informationFEATURES APPLICATIO S TYPICAL APPLICATIO. LTC1061 High Performance Triple Universal Filter Building Block DESCRIPTIO
FEATRES Three Filters in a Single Package p to th Order Filter Functions Center Frequency Range up to khz f O Q Product up to MHz Guaranteed Center Frequency and Q Accuracy Over Temperature Guaranteed
More informationcss Custom Silicon Solutions, Inc.
css Custom Silicon Solutions, Inc. CSS555(C) CSS555/ PART DESCRIPTION The CSS555 is a micropower version of the popular 555 Timer IC. It is pinforpin compatible with the standard 555 timer and features
More informationApprentice Telecommunications Technician Test (CTT) Study Guide
Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The
More informationPRACTICAL GUIDE TO DATA SMOOTHING AND FILTERING
PRACTICAL GUIDE TO DATA SMOOTHING AND FILTERING Ton van den Bogert October 3, 996 Summary: This guide presents an overview of filtering methods and the software which is available in the HPL.. What is
More informationEDUMECH Mechatronic Instructional Systems. Ball on Beam System
EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 9989 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional
More informationTL082 Wide Bandwidth Dual JFET Input Operational Amplifier
TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage
More informationSParameters and Related Quantities Sam Wetterlin 10/20/09
SParameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of SParameters SParameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters
More informationECE 3510 Final given: Spring 11
ECE 50 Final given: Spring This part of the exam is Closed book, Closed notes, No Calculator.. ( pts) For each of the timedomain signals shown, draw the poles of the signal's Laplace transform on the
More informationClock Recovery in SerialData Systems Ransom Stephens, Ph.D.
Clock Recovery in SerialData Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
More information