Lecture 14. Point Spread Function (PSF)


 Nancy Jemima Cannon
 4 years ago
 Views:
Transcription
1 Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signaltonoise Ratio (SNR), Contrasttonoise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect that Image restoration refers to the removal or minimization of known degradations in an image This includes deblurring of images degraded by the limitations of the sensor or its environment, noise filtering, and correction of geometric distortions or nonlinearities due to sensors.
2 Point Spread Function (PSF) The figure below shows a typical situation in an imaging system: Point Spread Function (PSF) The image of a point source is blurred and degraded due to noise by an imaging system. If the imaging system is linear, the image of an object can be expressed as: where (x,y) is the additive noise function, f() is the object, g(x,y) is the image, and h(x,y;) is the Point Spread Function (PSF). The ; is used to distinguish the input and output pairs of coordinates in this case.
3 Point Spread Function (PSF) A typical image restoration problem, give the formulation in the previous slide is of the form: Find an estimate of f(a,b) given The Point Spread Function, The blurred image, and, The statistical properties of the noise and/or the factors affecting the noise contribution. PSF The point spread function (PSF) describes the imaging system response to a point input, and is analogous to the impulse response. A point input, represented as a single pixel in the ideal image, will be reproduced as something other than a single pixel in the real image.
4 PSF A Point Source PSF The PSF need not be isotropic (radially symmetric). In ultrasound, Xray CT, and radionuclide tomography it is typical to have a nonisotropic PSF for various physical reasons. In MRI it is possible to have either isotropic or nonisotropic PSF depending on the type of acquisition since spatial frequency coverage can be different for the two inplane directions.
5 PSF The output image may then be regarded as a twodimensional convolution of the ideal image with the PSF: g 2 =g 1 h where h is the impulse response, or PSF. NOTE: Both * and ** are used to represent convolution In some medical imaging systems (e.g. planar X ray) the PSF can vary gradually over the field of view. In this case it is convenient to define a zone of constant PSF (isoplanatic region) to allow use of convolutional forms and the transform domain.
6 Isotropic PSFs Anisotropic PSFs PSF Optical (e.g. microscopy) also manifest asymmetric point spread functions due to lens imperfections (both material and geometry). It is typical for the PSF to degrade as distance from the center of the FOV is increased.
7 PSF: Examples From Fundamentals of Digital Image Processing by A.K. Jain Modulation Transfer Function (MTF) Another measure of system performance is the modulation transfer function (MTF). This is analogous to the frequency response typically used for onedimensional applications. In the case of a complex transfer function, MTF is usually expressed as the magnitude portion of the function. MTF allows for simplified descriptions of an imaging system s spatial resolution capabilities.
8 MTF PSF expresses system performance in the spatial domain, while MTF expresses system performance in the frequency domain. The two parameters are related by the Fourier transform: PSF MTF PSF 1 MTF MTF and OTF For spatially invariant imaging systems, the Optical Transfer Function (OTF) is defined as the normalized frequency response i.e., OTF = H( 1, 2 )/H(0,0) The Modulation Transfer Function (MTF) is defined as the magnitude of the OTF, i.e., MTF = OTF = H( 1, 2 ) / H(0,0)
9 MTF: Examples MTFs of the PSFs displayed earlier From Fundamentals of Digital Image Processing by A.K. Jain MTF Consider the discrete convolutional representation of a blurring function: a b n, m sn a, mbh a b x, Where x is the blurry image, s is the ideal image, and h is the point spread function.
10 MTF The DFT of this PSF is given by: n0 m0, v hn, H u N N u 1,, 2 2 M M v 1,, 2 2 m e un um 2i N M MTF and Frequency Response The coefficients of H(u,v) are those for plane waves of various frequencies and orientations. These are the spatial frequency components that exactly represent the PSF (blurring function). H(u,v) is the transfer function, also referred to as the frequency response. Examination of the magnitude H(u,v) allows for determination of limiting spatial resolution.
11 A Numerical Example Consider this example: a 3x3 blurring kernel typical of what has been seen before: A Numerical Example The transform is given by: u 2v 2u 2v, v 34cos 4cos 4cos cos H u N M N M N=M=33
12 2D Plots of the example Obtaining the MTF from a kernel PSF To obtain the MTF of a PSF represented as a kernel: Apply a scaling factor (= (array elements)) if you want a normalized (range 01) MTF plot. Embed the kernel in the center of an array of zeros equal to the size of the image to which it is to be applied. fftshift(abs(fft2( ))) Result will be 2D array representing the spatial frequency version of the blurring/filter function.
13 MTF As with systems seen in onedimensional applications, the MTF of imaging systems typically demonstrate a rolloff (like a lowpass filter) with higher spatial frequencies. An MTF curve is typically used to express the spatial frequency response of a system, and expresses normalized contrast as a function of spatial frequency (expressed in units of inverse length, e.g. mm 1 ). Signaltonoise Ratio (SNR) Signaltonoise ratio is an engineering term for the power ratio between a signal (meaningful information) and the background noise: Because many signals have a very wide dynamic range, SNRs are usually expressed in terms of the logarithmic decibel scale.
14 SNR In decibels, the SNR is 20 times the base10 logarithm of the amplitude ratio, or 10 times the logarithm of the power ratio: where P is average power and A is RMS amplitude. Both signal and noise power are measured within the system bandwidth. SNR SNR is usually taken to indicate an average signal to noise ratio, as it is possible that (near) instantaneous signal to noise ratios will be considerably different. In general, higher signal to noise is better. (i.e. cleaner.) In image processing, the SNR of an image is usually defined as the ratio of the mean pixel value to the standard deviation of the pixel values. Related measures are the "contrast ratio" and the "contrast to noise ratio".
15 SNR In the case of MRI, the noise is distributed uniformly throughout the image. The SNR can be measured by computing the mean signal intensity over a certain region of interest (ROI) and dividing this by the standard deviation of the signal from a region outside the image. In other modalities, this is not true; the noise is not uniformly distributed over the image. As a consequence, other methods must be used to estimate the SNR. Contrasttonoise Ratio (CNR) CNR is a measure for assessing the ability of an imaging procedure to generate clinically useful image contrast. The image contrast itself is not precise enough to qualify an image, because in a noisy image it is unclear where the contrast originates. It may be due to true tissue contrast, or it may be due to noise fluctuations. The human ability to distinguish between objects is proportional to contrast, and it decreases linearly with noise.
16 CNR These laws of perception are taken into account by the definition of the contrast to noise ratio CNR = contrast/noise. Therefore the CNR gives an objective measure of useful contrast. For instance, if an acquisition technique generates images with twice the contrast of those produced by another technique, the noise must increase less than twice in order to provide clinically better images. CNR A practical problem of CNR definition is that it relies on the measurement of the photon flux; this depends upon the display system and is difficult to perform. An equivalent yet much more feasible approach is to use the signal difference in the original data instead of assessing the contrast of the displayed image.
17 CNR Even if the image has a high signaltonoise ratio, it is not useful unless there is a high enough CNR to be able to distinguish among different tissues and tissue types, and in particular between healthy and pathological tissue. Various definitions of image contrast exist, but the most common is: C AB = S A S B where C AB is the contrast between tissues A and B and S A and S B are the signals from tissues A and B. CNR The CNR between two tissues is defined in terms of their respective signal noisetoratios of the two tissues: CNR AB = C AB / N = S A S B / N = SNR A SNR B where N is the standard deviation of the noise. * Note that this is analogous to the Signal difference to noise ratio
18 Receiver Operating Curve (ROC) in imagingbased diagnoses There are four possibilities for a practitioner making a diagnosis: a true positive (where true refers to a correct diagnosis and positive refers to say a tumor being present), a true negative, a false positive, and, a false negative. ROC plot for tumor diagnosis ROC Figure (Left) A table showing the four possible outcomes of a tumor diagnosis. (Right) The ROC represented by the dashed line represents a random diagnosis. The upper curve represents an improved diagnosis. The better the diagnosis, the larger is the integrated area under the ROC.
19 ROC The ROC plots the fraction of true positives versus the fraction of false positives for a series of images acquired under different conditions, or with a different value of some parameter, or with different SNRs, or with different practitioners, for example. The area under the ROC is a measure of the effectiveness of the imaging system and/or the practitioner. The greater the area under the curve the more effective is the diagnosis. ROC There are three measures commonly used in ROC analysis: 1. The accuracy is the correct number of diagnoses divided by the total number of diagnoses 2. The sensitivity is the number of true positives divided by the sum of the true positives and false negatives 3. The specificity is the number of true negatives divided by the number of true negatives and false positives
The Fundamentals of MTF, Wiener Spectra, and DQE. Motivation
The Fundamentals of MTF, Wiener Spectra, and DQE Robert M Nishikawa Kurt Rossmann Laboratories for Radiologic Image Research Department of Radiology, The University of Chicago Motivation Goal of radiology:
More informationSignal to Noise Instrumental Excel Assignment
Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a
More informationLectures 6&7: Image Enhancement
Lectures 6&7: Image Enhancement Leena Ikonen Pattern Recognition (MVPR) Lappeenranta University of Technology (LUT) leena.ikonen@lut.fi http://www.it.lut.fi/ip/research/mvpr/ 1 Content Background Spatial
More informationCHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
More informationPersonal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES
Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES 1.0 SCOPE AND PURPOSE These specifications apply to fingerprint capture devices which scan and capture
More informationMICROPHONE SPECIFICATIONS EXPLAINED
Application Note AN1112 MICROPHONE SPECIFICATIONS EXPLAINED INTRODUCTION A MEMS microphone IC is unique among InvenSense, Inc., products in that its input is an acoustic pressure wave. For this reason,
More informationCHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical XRay Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
More informationAliasing, Image Sampling and Reconstruction
Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is
More informationSGN1158 Introduction to Signal Processing Test. Solutions
SGN1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
More informationIntroduction to Digital Filters
CHAPTER 14 Introduction to Digital Filters Digital filters are used for two general purposes: (1) separation of signals that have been combined, and (2) restoration of signals that have been distorted
More informationDigital Camera Imaging Evaluation
Digital Camera Imaging Evaluation Presenter/Author J Mazzetta, Electro Optical Industries Coauthors Dennis Caudle, Electro Optical Industries Bob Wageneck, Electro Optical Industries Contact Information
More informationToday. next two weeks
Today Temporal and spatial coherence Spatially incoherent imaging The incoherent PSF The Optical Transfer Function (OTF) and Modulation Transfer Function (MTF) MTF and contrast comparison of spatially
More informationOptical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus
Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,
More informationTCOM 370 NOTES 994 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 994 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
More informationUntangling the megapixel lens myth! Which is the best lens to buy? And how to make that decision!
Untangling the megapixel lens myth! Which is the best lens to buy? And how to make that decision! 1 In this presentation We are going to go over lens basics Explain figures of merit of lenses Show how
More informationVCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
More informationT = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
More informationPCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
More informationIntroduction to Digital Audio
Introduction to Digital Audio Before the development of highspeed, lowcost digital computers and analogtodigital conversion circuits, all recording and manipulation of sound was done using analog techniques.
More informationJitter Measurements in Serial Data Signals
Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring
More informationSIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
More informationRobot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
More informationOptical modeling of finite element surface displacements using commercial software
Optical modeling of finite element surface displacements using commercial software Keith B. Doyle, Victor L. Genberg, Gregory J. Michels, Gary R. Bisson Sigmadyne, Inc. 803 West Avenue, Rochester, NY 14611
More informationMODULATION TRANSFER FUNCTION MEASUREMENT METHOD AND RESULTS FOR THE ORBVIEW3 HIGH RESOLUTION IMAGING SATELLITE
MODULATION TRANSFER FUNCTION MEASUREMENT METHOD AND RESULTS FOR THE ORBVIEW3 HIGH RESOLUTION IMAGING SATELLITE K. Kohm ORBIMAGE, 1835 Lackland Hill Parkway, St. Louis, MO 63146, USA kohm.kevin@orbimage.com
More informationDiffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi
Diffusione e perfusione in risonanza magnetica E. Pagani, M. Filippi DWMRI DIFFUSIONWEIGHTED MRI Principles Diffusion results from a microspic random motion known as Brownian motion THE RANDOM WALK How
More informationTTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008
Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT40 Digital Signal Processing Suggested Solution to Exam Fall 008 Problem (a) The input and the inputoutput
More informationDigital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University
Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application
More informationL9: Cepstral analysis
L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,
More informationAnalog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
More informationFilter Comparison. Match #1: Analog vs. Digital Filters
CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a headtohead competition between filters; we'll select
More informationCBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD1 STANDARD TEST DISC
CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD1 STANDARD TEST DISC 1. INTRODUCTION The CBS Records CD1 Test Disc is a highly accurate signal source specifically designed for those interested in making
More informationThis unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
More informationSynthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For noncontact distance measurement,
More informationModule 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
More informationAVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8bit and 32bit Microcontrollers APPLICATION NOTE
Atmel 8bit and 32bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analogtodigital converter (ADC) and the
More informationImplementing and Using the EMVA1288 Standard
Implementing and Using the EMVA1288 Standard A. Darmont *, J. Chahiba, J.F. Lemaitre, M. Pirson, D. Dethier Aphesa, Rue de Lorcé, 39, 4920 Harzé, Belgium ABSTRACT The European Machine Vision Association
More informationUnderstanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
More informationOptimizing IP3 and ACPR Measurements
Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.
More informationVideo Camera Image Quality in Physical Electronic Security Systems
Video Camera Image Quality in Physical Electronic Security Systems Video Camera Image Quality in Physical Electronic Security Systems In the second decade of the 21st century, annual revenue for the global
More informationImplementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)
More informationResolution Enhancement of Photogrammetric Digital Images
DICTA2002: Digital Image Computing Techniques and Applications, 2122 January 2002, Melbourne, Australia 1 Resolution Enhancement of Photogrammetric Digital Images John G. FRYER and Gabriele SCARMANA
More informationSound Pressure Measurement
Objectives: Sound Pressure Measurement 1. Become familiar with hardware and techniques to measure sound pressure 2. Measure the sound level of various sizes of fan modules 3. Calculate the signaltonoise
More informationCharacterizing Digital Cameras with the Photon Transfer Curve
Characterizing Digital Cameras with the Photon Transfer Curve By: David Gardner Summit Imaging (All rights reserved) Introduction Purchasing a camera for high performance imaging applications is frequently
More informationDIGITALTOANALOGUE AND ANALOGUETODIGITAL CONVERSION
DIGITALTOANALOGUE AND ANALOGUETODIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
More informationDOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGHSOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGHSOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREEDIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
More informationBildverarbeitung und Mustererkennung Image Processing and Pattern Recognition
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image PreProcessing  Pixel Brightness Transformation  Geometric Transformation  Image Denoising 1 1. Image PreProcessing
More informationRANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military
More informationGlencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 33, 58 84, 87 16, 49
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 68 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
More informationCollege on Medical Physics. Digital Imaging Science and Technology to Enhance Healthcare in the Developing Countries
2166Handout College on Medical Physics. Digital Imaging Science and Technology to Enhance Healthcare in the Developing Countries 13 September  1 October, 2010 Digital Radiography Image Parameters SNR,
More informationDetermination of source parameters from seismic spectra
Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D14473 Potsdam, Germany); Email: pb65@gmx.net
More information5 Factors Affecting the SignaltoNoise Ratio
5 Factors Affecting the SignaltoNoise Ratio 29 5 Factors Affecting the SignaltoNoise Ratio In the preceding chapters we have learned how an MR signal is generated and how the collected signal is processed
More informationClassification of Fingerprints. Sarat C. Dass Department of Statistics & Probability
Classification of Fingerprints Sarat C. Dass Department of Statistics & Probability Fingerprint Classification Fingerprint classification is a coarse level partitioning of a fingerprint database into smaller
More informationVisual perception basics. Image aquisition system. P. Strumiłło
Visual perception basics Image aquisition system P. Strumiłło Light perception by humans Humans perceive approx. 90% of information about the environment by means of visual system. Efficiency of the human
More informationThe front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
More informationE190Q Lecture 5 Autonomous Robot Navigation
E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator
More informationThe Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal
More informationAdvances in scmos Camera Technology Benefit Bio Research
Advances in scmos Camera Technology Benefit Bio Research scmos camera technology is gaining in popularity  Why? In recent years, cell biology has emphasized live cell dynamics, mechanisms and electrochemical
More informationComputational Optical Imaging  Optique Numerique.  Deconvolution 
Computational Optical Imaging  Optique Numerique  Deconvolution  Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
More informationIntroduction to IQdemodulation of RFdata
Introduction to IQdemodulation of RFdata by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
More informationAlgebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
More informationConvolution. The Delta Function and Impulse Response
CHAPTER 6 Convolution Convolution is a mathematical way of combining two signals to form a third signal. It is the single most important technique in Digital Signal Processing. Using the strategy of impulse
More informationComputer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
More informationEECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationDSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services
Application Note DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services Overview As cable operators move to digital simulcast and all digital networks, the majority
More informationSignal Detection. Outline. Detection Theory. Example Applications of Detection Theory
Outline Signal Detection M. Sami Fadali Professor of lectrical ngineering University of Nevada, Reno Hypothesis testing. NeymanPearson (NP) detector for a known signal in white Gaussian noise (WGN). Matched
More informationSelecting Receiving Antennas for Radio Tracking
Selecting Receiving Antennas for Radio Tracking Larry B Kuechle, Advanced Telemetry Systems, Inc. Isanti, Minnesota 55040 lkuechle@atstrack.com The receiving antenna is an integral part of any radio location
More informationMedical Image Processing on the GPU. Past, Present and Future. Anders Eklund, PhD Virginia Tech Carilion Research Institute andek@vtc.vt.
Medical Image Processing on the GPU Past, Present and Future Anders Eklund, PhD Virginia Tech Carilion Research Institute andek@vtc.vt.edu Outline Motivation why do we need GPUs? Past  how was GPU programming
More informationAdaptive Coded Aperture Photography
Adaptive Coded Aperture Photography Oliver Bimber, Haroon Qureshi, Daniel Danch Institute of Johannes Kepler University, Linz Anselm Grundhoefer Disney Research Zurich Max Grosse Bauhaus University Weimar
More informationCONFOCAL LASER SCANNING MICROSCOPY TUTORIAL
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,
More informationNumerical Methods For Image Restoration
Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:
More information9 Fourier Transform Properties
9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, timeinvariant systems, and its elegance and importance cannot be overemphasized.
More informationElectronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
More informationThe continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
More informationDigital vs. Analog Volume Controls
Digital vs. Analog Volume Controls October 2011 AMM ESS 10/11 Summary of this Presentation In a Digital Audio System what is the tradeoff between using a digital or an analog volume control? To answer
More informationApplication Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electromagnetic Interference Design engineers seek to minimize harmful interference between components,
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationCIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steadystate behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
More information1051232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
More informationCorrelation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
More informationThe Whys, Hows and Whats of the Noise Power Spectrum. Helge Pettersen, Haukeland University Hospital, NO
The Whys, Hows and Whats of the Noise Power Spectrum Helge Pettersen, Haukeland University Hospital, NO Introduction to the Noise Power Spectrum Before diving into NPS curves, we need Fourier transforms
More informationUsing visible SNR (vsnr) to compare image quality of pixel binning and digital resizing
Using visible SNR (vsnr) to compare image quality of pixel binning and digital resizing Joyce Farrell a, Mike Okincha b, Manu Parmar ac, and Brian Wandell ac a Dept. of Electrical Engineering, Stanford
More informationONLINE MONITORING OF AN HADRON BEAM FOR RADIOTHERAPEUTIC TREATMENTS
ONLINE MONITORING OF AN HADRON BEAM FOR RADIOTHERAPEUTIC TREATMENTS INFNLaboratori Nazionali del Sud Via S. Sofia 44, Catania, Italy Patient positioned for treatment System under consideration (experimental
More informationTime series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
More informationSUMMARY. Additional Digital/Software filters are included in Chart and filter the data after it has been sampled and recorded by the PowerLab.
This technique note was compiled by ADInstruments Pty Ltd. It includes figures and tables from S.S. Young (2001): Computerized data acquisition and analysis for the life sciences. For further information
More informationA PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin  nzarrin@qiau.ac.ir
More informationRF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
More informationAuthor: Dr. Society of Electrophysio. Reference: Electrodes. should include: electrode shape size use. direction.
Standards for Reportin ng EMG Data Author: Dr. Roberto Merletti, Politecnico di Torino, Italy The Standards for Reporting EMG Data, written by Dr. Robertoo Merletti, are endorsed by the International Society
More informationComputed Tomography Resolution Enhancement by Integrating HighResolution 2D XRay Images into the CT reconstruction
Digital Industrial Radiology and Computed Tomography (DIR 2015) 2225 June 2015, Belgium, Ghent  www.ndt.net/app.dir2015 More Info at Open Access Database www.ndt.net/?id=18046 Computed Tomography Resolution
More informationThe Fundamentals of Signal Analysis. Application Note 243
The Fundamentals of Signal Analysis Application Note 243 2 Table of Contents Chapter 1 Introduction 4 Chapter 2 The Time, Frequency and Modal Domains: A matter of Perspective 5 Section 1: The Time Domain
More informationActivitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies
Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.
More informationThe Image Deblurring Problem
page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation
More informationChoosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ.
Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ., Raleigh, NC One vital step is to choose a transfer lens matched to your
More informationMODULATION Systems (part 1)
Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4339622) is published by CORONA publishing co.,
More informationSynchronization of sampling in distributed signal processing systems
Synchronization of sampling in distributed signal processing systems Károly Molnár, László Sujbert, Gábor Péceli Department of Measurement and Information Systems, Budapest University of Technology and
More informationCovariance and Correlation
Covariance and Correlation ( c Robert J. Serfling Not for reproduction or distribution) We have seen how to summarize a databased relative frequency distribution by measures of location and spread, such
More informationA few words about imaginary numbers (and electronics) Mark Cohen mscohen@g.ucla.edu
A few words about imaginary numbers (and electronics) Mark Cohen mscohen@guclaedu While most of us have seen imaginary numbers in high school algebra, the topic is ordinarily taught in abstraction without
More informationShorttime FFT, Multitaper analysis & Filtering in SPM12
Shorttime FFT, Multitaper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Shorttime Fourier
More informationBig Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
More informationε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
More information