# Lecture 1-6: Noise and Filters

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat is its period (T), and the number of periods in one second is called the repetition frequency (or the fundamental frequency) (F=1/T). Aperiodic signals do not have a repeating waveform shape: they are either signals that occur once (impulsive signals) or signals that change randomly (noise signals), see figure Spectra of Periodic and Aperiodic Signals: the spectral analysis of any periodic signal shows a line spectrum. The spectral components occur only at frequencies which are whole-number multiples of the repetition frequency (harmonics). The spectral analysis of any aperiodic signal shows a continuous spectrum. Spectral components occur at all frequencies. One explanation for this is that the repetition frequency of an aperiodic signal is zero, so the "harmonics" are 0Hz apart. The spectrum of a single narrow pulse shows the same energy at all frequencies, while the spectrum of "white" noise has the same mean energy at all frequencies. Other aperiodic signals have continuous spectra that are not flat. 3. Time Domain and Frequency Domain processing: we can consider how the waveform of a signal changes as it passes through a system: for example how a pulse is converted to a damped sinusoid when passed through a resonator. This looks at the time domain aspects of the process, see figure Alternatively we can consider how the spectrum of a signal is changed as it passes through a system: for example how the spectrum of a pulse is changed to the spectrum of a damped sinusoid. This looks at frequency domain aspects of the process, see figure In the latter case it is easy to see the role the frequency response of the system plays in shaping the signal spectrum. 4. Frequency Response of Complex Systems: any complex linear system can be treated as a combination of simpler systems. Specifically a complex system can always be analysed into a chain of simpler systems where the overall frequency response is simply the product of the frequency responses of the component systems (see figure 1-6.4). An important consequence of this is that the frequency response of any system can be analysed ultimately into a series of simple resonances and simple anti-resonances. (If resonances cause peaks in a response, anti-resonances cause dips). 5. Filters: these are a class of systems which have useful frequency response shapes. A lowpass filter removes all spectral components of an input signal that have frequencies higher than some cut-off frequency. A high-pass filter removes spectral components lower than some cut off frequency. A band-pass filter removes spectral components that occur at frequencies outside a given range: it only lets through components within a band of frequencies. 6. Application of a Band-pass filter for signal analysis: band-pass filters are particularly useful for analysing the spectral content of signals. We can use a number of band-pass filters to isolate each frequency region of the signal in turn so that we can measure the energy in each region: effectively calculating a spectrum (see figure 1-6.5) UCL/PLS/SPSC2003/WEEK1-6/110920/1

2 Reading Choose at least one from: Rosen & Howell, Signals and Systems for Speech and Hearing (1 st edition), Chapter 6: The frequency response of systems, pp Accessible introduction to filters. Rosen & Howell, Signals and Systems for Speech and Hearing (1 st edition), Chapter 7: The Frequency Characterization of Signals, pp Spectra of noise signals. Rosen & Howell, Signals and Systems for Speech and Hearing (1 st edition), Chapter 8: Signals through Systems. For those wanting more. Learning Activities You can help yourself understand and remember this week s teaching by doing the following activities before next week: 1. Practise making sketches from memory of the spectra of various types of sound, for example: a sinewave, a pulse, a pulse-train, white noise, a vowel. 2. Explain in words supported by diagrams what happens in the time domain when a pulse-train is put through a simple resonator, then describe the event again but focussing on what happens in the frequency domain. 3. Write descriptions in your own words of what low-pass, high-pass and band-pass filters actually do to a signal. 4. Write a description of how a band-pass filter could be used to determine the amplitude and frequency of the individual harmonic components of a complex periodic tone. If you are unsure about any of these, make sure you ask questions in the lab or in tutorial. Definitions Low-pass filter: a system that reduces the amplitude of signal components that are above some cut-off frequency High-pass filter: a system that reduces the amplitude of signal components that are below some cut-off frequency Band-pass filter: a system that reduces the amplitude of signal components that lie outside a given frequency range. Narrow pulse: an aperiodic impulsive signal that has equal amounts of energy at every frequency. White noise: an aperiodic random signal that has equal average energy at every frequency. UCL/PLS/SPSC2003/WEEK1-6/110920/2

3 Reflections You can improve your learning by reflecting on your understanding. Here are some suggestions for questions related to this week s teaching. 1. Think of some sources of sound and classify them as periodic, impulsive or noise. 2. Must an excised section of a periodic signal still be periodic? 3. How might you explain why the spectrum of a single narrow pulse has sinewave components at every frequency? 4. How might you explain why the spectrum of a noise signal has sinewave components as every frequency? 5. How can we calculate the overall effect of two systems if we know the frequency response of each one? What are the advantages of expressing the frequency response graphs in decibels? 6. How can we build a band-pass filter from a low-pass and a high-pass filter? Build a bandpass filter with a band from 900 to 1100Hz. 7. Explain how bandpass filters can be used to estimate the spectrum of a signal. 8. Is a narrow bandpass filter lightly damped or heavily damped? 9. Imagine a sound being generated by passing a pulse train through a simple resonator. What controls the loudness of the sound? What controls the pitch of the sound? What controls the timbre of the sound? What effect does a change in the damping of the resonator have on the sound? UCL/PLS/SPSC2003/WEEK1-6/110920/3

4 Figure Summary of Waveforms and Spectra A). Simple Periodic (i.e. sinewave) B). Complex Periodic (e.g. train of narrow pulses) C). Impulsive Aperiodic (e.g. single narrow pulse) D). Noise Aperiodic (e.g. white noise) UCL/PLS/SPSC2003/WEEK1-6/110920/4

5 1. Low Fundamental frequency pulse train Figure Excitation of a Simple Resonator - Time Description 2. Mid Fundamental frequency pulse train 3. High Fundamental frequency pulse train 4. White noise waveform UCL/PLS/SPSC2003/WEEK1-6/110920/5

6 1. Low Fundamental frequency pulse train Figure Excitation of a Simple Resonator - Frequency Description 2. Mid Fundamental frequency pulse train 3. High Fundamental frequency pulse train 4. White noise waveform UCL/PLS/SPSC2003/WEEK1-6/110920/6

7 Figure Combining linear systems Any sequence of linear systems can be replaced by a single system whose response is the product of the individual responses. Figure Use of a bandpass filter to analyse a signal Since a bandpass system only passes frequencies within a given region, we can use it to find which regions of the input signal contain frequency components. UCL/PLS/SPSC2003/WEEK1-6/110920/7

8 Lab 1-6: Signals and Systems Workbench Introduction Signals and systems theory aims to give a quantitative account of how signals can be characterised and how systems that modify signals can be characterised. We have seen how the use of a spectrum graph gives us a quantitative description of which sinusoidal components are present in a signal. We have seen how a frequency response graph gives us a quantitative description of how the amplitude of a sinusoidal component of a signal is changed by its passage through a system. Together, spectrum graphs and frequency response graphs give us a powerful means for describing signals (including speech signals) and systems that process and generate signals (including the vocal tract). Learning objectives In this laboratory session we reinforce all the earlier ideas of signals and systems theory by passing a number of different signals through a number of different systems and exploring what happens in both the time domain and the frequency domain. Method You are provided with a computer program Esystem that can generate a range of signals and pass them through a range of systems. The program displays the waveforms and the spectra of the signals, and it displays the frequency response of the systems. ( Menu operation is as follows: Main Menu Select Input Signal Sinewave Pulse Pulse Train Noise File Frequency Frequency "six.wav" Select System Resonator Low-pass High-pass Band-pass Vocal tract Frequency Bandwidth Frequency Frequency Lo Frequency Hi Frequency F1 Frequency F2 Frequency F3 Frequency Display Replay Print UCL/PLS/SPSC2003/WEEK1-6/110920/8

9 Observations Use the program to answer the questions below. Write down the answers to the questions in your notebook as you work through the activities. You can print out any picture, but be sure to enter your name as a title. A. Spectra of different waveforms 1. Set the system to be an amplifier of +6dB. What does this system do to signals passing through it? 2. What does the spectrum of a sinewave at 1000Hz look like? 3. What does the spectrum of a pulse train with a fundamental frequency of 100Hz look like? How do the input signal and input spectrum graphs change if the repetition frequency is changed to 200Hz? To 50Hz? 4. What does the spectrum of a single pulse look like? Explain this result using your answer to question 3 above. 5. What does the spectrum of white noise look like? Why do you think white noise is called white? B. Effect of a simple resonator on a sinewave 1. Set the system to be a simple resonator with a resonant frequency of 1000Hz and a bandwidth of 100Hz. How might you measure these numbers from the frequency response graph? 2. Pass a sinewave at 1000Hz through the resonator. Explain (numerically) what happens to the signal and its spectrum. 3. Pass a sinewave at 2000Hz through the resonator. Explain (numerically) what happens to the signal and its spectrum. 4. Set the system to be a simple resonator at 2000Hz with a bandwidth of 100Hz. Pass a 1000Hz sinewave through it. Explain (numerically) what happens to the signal and its spectrum. C. Effect of a simple resonator on a pulse train 1. Set the system to be a simple resonator at 1000Hz with a bandwidth of 100Hz. Set the input signal to be a pulse train with a fundamental frequency of 100Hz. Explain the shape of the output waveform. 2. Explain the shape of the output spectrum. Why are some harmonics amplified more than others? 3. Change the bandwidth of the resonator to 300Hz. Explain the change in the shape of the output waveform. D. Effect of a simple resonator on white noise 1. Set the system to be a simple resonator at 2500Hz with a bandwidth of 300Hz. Set the input signal to be white noise. Explain the shape of the output spectrum. 2. What speech sound has the most similar quality to this? 3. Change the resonant frequency to 4000Hz. What speech sound is most similar now? UCL/PLS/SPSC2003/WEEK1-6/110920/9

10 E. Effect of filtering on a speech signal 1. Set the system to be a low-pass filter at 1000Hz. What does this system do to amplitude components of the signal above 1000Hz? 2. Set the input signal to be the contents of the file six.wav. Listen to the input and output signals. How would you describe the change in timbre caused by the filter? 3. Set the system to be a high-pass filter at 1500Hz. How has this filter affected the timbre of the signal? 4. Set the system to be a band-pass filter between 300Hz and 3500Hz. How would you describe the change in timbre now? What does this quality remind you of? F. Use of band-pass filter for signal analysis 1. Set the input signal to be a pulse train with a fundamental frequency of 200Hz. Set the system to be a band-pass filter between 950Hz and 1050Hz. What part of the input signal can be seen in the output signal? 2. Change the band-pass filter so that it is between 850Hz and 950Hz. Why is there very little energy in the output spectrum? 3. How do 1 and 2 show us how we might use band-pass filters to analyse a sound? G. Making a vowel sound 1. Set the input to be a sawtooth waveform at 125Hz. Set the system to have a vowellike frequency response with F1=500Hz, F2=1500Hz, F3=2500Hz. What vowel does the output sound like? 2. Draw analogies between the figure and human speech production: (i) Input Signal, (ii) System, (iii) Output Signal. Concluding Remarks 1. Why is signals and systems theory useful in analysing speech production? (Think what could be described with a spectrum or a frequency response graph) 2. Why do sinewaves have such an important role in signals and systems theory? UCL/PLS/SPSC2003/WEEK1-6/110920/10

### Lecture 1-10: Spectrograms

Lecture 1-10: Spectrograms Overview 1. Spectra of dynamic signals: like many real world signals, speech changes in quality with time. But so far the only spectral analysis we have performed has assumed

### Lab #9: AC Steady State Analysis

Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

### The Physics of Music: Brass Instruments. James Bernhard

The Physics of Music: Brass Instruments James Bernhard As a first approximation, brass instruments can be modeled as closed cylindrical pipes, where closed means closed at one end, open at the other Here

### ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

### A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song

, pp.347-354 http://dx.doi.org/10.14257/ijmue.2014.9.8.32 A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song Myeongsu Kang and Jong-Myon Kim School of Electrical Engineering,

### RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

### Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

### Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester

ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across

### Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

### Waveforms and the Speed of Sound

Laboratory 3 Seth M. Foreman February 24, 2015 Waveforms and the Speed of Sound 1 Objectives The objectives of this excercise are: to measure the speed of sound in air to record and analyze waveforms of

### Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

### From Concept to Production in Secure Voice Communications

From Concept to Production in Secure Voice Communications Earl E. Swartzlander, Jr. Electrical and Computer Engineering Department University of Texas at Austin Austin, TX 78712 Abstract In the 1970s secure

### T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

### Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

### FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS. UIUC Physics 193 POM

FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS Fanbo Xiang UIUC Physics 193 POM Professor Steven M. Errede Fall 2014 1 Introduction Chords, an essential part of music, have long been analyzed. Different

### Analog Circuits for Sound Animation'

Analog Circuits for Sound Animation' BERNARD A. HUTCHINS, JR. Electronotes, Ithaca, NY 14850, USA One important practice of analog music synthesis is the achievement of a harmonically rich and dynamically

### This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;

### VCO Phase noise. Characterizing Phase Noise

VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

### RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain

Rec. ITU-R BS.644-1 1 RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain (1986-1990) The ITU Radiocommunication Assembly,

### SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY

3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 296 SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY ASHOK KUMAR SUMMARY One of the important

### TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS

TECHNICAL LISTENING TRAINING: IMPROVEMENT OF SOUND SENSITIVITY FOR ACOUSTIC ENGINEERS AND SOUND DESIGNERS PACS: 43.10.Sv Shin-ichiro Iwamiya, Yoshitaka Nakajima, Kazuo Ueda, Kazuhiko Kawahara and Masayuki

### 0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts

### Tutorial about the VQR (Voice Quality Restoration) technology

Tutorial about the VQR (Voice Quality Restoration) technology Ing Oscar Bonello, Solidyne Fellow Audio Engineering Society, USA INTRODUCTION Telephone communications are the most widespread form of transport

### RF Network Analyzer Basics

RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

### Understanding Dynamic Range in Acceleration Measurement Systems. February 2013 By: Bruce Lent

in Acceleration Measurement Systems February 2013 By: Bruce Lent Topics to discuss Definition of dynamic range The effective range Making full use of the high level Using filters to improve dynamic range

### Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 46 Per-pin Signal Generator

Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 46 Per-pin Signal Generator Advantest Corporation, Tokyo Japan August 2012 Preface to the Series ADC and DAC are the most typical

### What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter

Audio Filters What you will do Build a 3-band equalizer Low pass filter High pass filter Band pass filter Connect to a music source (mp3 player) Adjust the strength of low, high, and middle frequencies

### The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

### Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA

Audio Engineering Society Convention Paper Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA The papers at this Convention have been selected on the basis of a submitted abstract

### MATRIX TECHNICAL NOTES

200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

### The Physics of Sound

The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw

ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract

### Laboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2

Laboratory Manual and Supplementary Notes CoE 494: Communication Laboratory Version 1.2 Dr. Joseph Frank Dr. Sol Rosenstark Department of Electrical and Computer Engineering New Jersey Institute of Technology

### Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

### Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

### Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

### MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

### Spectrum Level and Band Level

Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic

### MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes

### Experimental validation of loudspeaker equalization inside car cockpits

Experimental validation of loudspeaker equalization inside car cockpits G. Cibelli, A. Bellini, E. Ugolotti, A. Farina, C. Morandi ASK Industries S.p.A. Via F.lli Cervi, 79, I-421 Reggio Emilia - ITALY

### MAPS - Bass Manager. TMH Corporation 2500 Wilshire Blvd., Suite 750 Los Angeles, CA 90057 ph: 213.201.0030 fx: 213.201.0031 www.tmhlabs.

MAPS - Bass Manager TMH Corporation 2500 Wilshire Blvd., Suite 750 Los Angeles, CA 90057 ph: 213.201.0030 fx: 213.201.0031 www.tmhlabs.com Thankyou for purchasing the TMH Bass Manager. By this purchase

### Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

### Impedance 50 (75 connectors via adapters)

VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

### Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

### Frequency response. Chapter 1. 1.1 Introduction

Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred

### Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band.

Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band. Reference: EB968 Date: January 2008 Author: Eric Burwood (National Acoustic Laboratories) Collaborator: Walter

### Network Analyzer Operation

Network Analyzer Operation 2004 ITTC Summer Lecture Series John Paden Purposes of a Network Analyzer Network analyzers are not about computer networks! Purposes of a Network Analyzer Measures S-parameters

### Propagation Channel Emulator ECP_V3

Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links

### EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions

EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.3-3). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t

### Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

### LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A

LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters - Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and Switched-Capacitor

### Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa

Topic Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Authors Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany),

### Music technology. Draft GCE A level and AS subject content

Music technology Draft GCE A level and AS subject content July 2015 Contents The content for music technology AS and A level 3 Introduction 3 Aims and objectives 3 Subject content 4 Recording and production

### Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

### Trigonometric functions and sound

Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

### Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

### Quarterly Progress and Status Report. Measuring inharmonicity through pitch extraction

Dept. for Speech, Music and Hearing Quarterly Progress and Status Report Measuring inharmonicity through pitch extraction Galembo, A. and Askenfelt, A. journal: STL-QPSR volume: 35 number: 1 year: 1994

### Maximizing Receiver Dynamic Range for Spectrum Monitoring

Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile

### A Basic Introduction to Filters Active Passive and Switched-Capacitor

A Basic Introduction to Filters Active Passive and Switched-Capacitor 1 0 INTRODUCTION Filters of some sort are essential to the operation of most electronic circuits It is therefore in the interest of

### TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

### AM/FM/ϕM Measurement Demodulator FS-K7

Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters

### FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

### Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?

### Web-Conferencing System SAViiMeeting

Web-Conferencing System SAViiMeeting Alexei Machovikov Department of Informatics and Computer Technologies National University of Mineral Resources Mining St-Petersburg, Russia amachovikov@gmail.com Abstract

### TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

### Aircraft cabin noise synthesis for noise subjective analysis

Aircraft cabin noise synthesis for noise subjective analysis Bruno Arantes Caldeira da Silva Instituto Tecnológico de Aeronáutica São José dos Campos - SP brunoacs@gmail.com Cristiane Aparecida Martins

### chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

### INTRODUCTION. Please read this manual carefully for a through explanation of the Decimator ProRackG and its functions.

INTRODUCTION The Decimator ProRackG guitar noise reduction system defines a new standard for excellence in real time noise reduction performance. The Decimator ProRackG was designed to provide the maximum

### THE IMPLEMENTATION OF A DTV RF ANALYSIS AND REGENERATION SYSTEM

THE IMPLEMENTATION OF A DTV RF ANALYSIS AND REGENERATION SYSTEM Tae-Hoon Kwon, Ha-Kyun Mok, Young-Woo Suh, and Young-Min Kim KBS(Korean Broadcasting System), Seoul, Korea ABSTRACT In this paper, we developed

### Transition Bandwidth Analysis of Infinite Impulse Response Filters

Transition Bandwidth Analysis of Infinite Impulse Response Filters Sujata Prabhakar Department of Electronics and Communication UCOE Punjabi University, Patiala Dr. Amandeep Singh Sappal Associate Professor

### Timing Errors and Jitter

Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

### SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS

SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS Dennis H. Shreve IRD Mechanalysis, Inc Columbus, Ohio November 1995 ABSTRACT Effective vibration analysis first begins with acquiring an accurate time-varying

### Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note

Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application

### HIGH SIGNAL-TO-NOISE RATIO GAIN BY STOCHASTIC RESONANCE IN A DOUBLE WELL

Post-print version of the paper: Zoltan Gingl, Peter Makra, and Robert Vajtai, Fluct. Noise Lett., L8 (2). World Scientific Publishing Company. DOI:.42/S29477548 (http://dx.doi.org/.42/s29477548) HIGH

### MODULATION Systems (part 1)

Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

### Spectrum Analyzers And Network Analyzers. The Whats, Whys and Hows...

Spectrum Analyzers And Network Analyzers The Whats, Whys and Hows... Bertrand Zauhar, VE2ZAZ ve2zaz@amsat.org June 2010 Today's Program Definitions of Spectrum and Network Analyzers, Differences between

### Title: Low EMI Spread Spectrum Clock Oscillators

Title: Low EMI oscillators Date: March 3, 24 TN No.: TN-2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note

Keysight Technologies 8 Hints for Better Spectrum Analysis Application Note The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope

### SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

### Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP

Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement

### Automotive. Aerospace. bout Us. Defense. Energy. Maritime. Education. Electronics. and more

Automotive Aerospace Defense bout Us Energy Maritime Education Electronics and more 1 2 State-of-the-art Hardware 2~8 Analog Input Channels 1~2 Drive Channel (can be adopted in dualaxis control application)

### A Guide to Calibrating Your Spectrum Analyzer

A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,

### Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

### Improving A D Converter Performance Using Dither

Improving A D Converter Performance Using Dither 1 0 INTRODUCTION Many analog-to-digital converter applications require low distortion for a very wide dynamic range of signals Unfortunately the distortion

### Spectrum Analysis Basics. Application Note 150

Spectrum Analysis Basics Application Note 150 Agilent Technologies dedicates this application note to Blake Peterson. Blake s outstanding service in technical support reached customers in all corners of

### Solutions to Exam in Speech Signal Processing EN2300

Solutions to Exam in Speech Signal Processing EN23 Date: Thursday, Dec 2, 8: 3: Place: Allowed: Grades: Language: Solutions: Q34, Q36 Beta Math Handbook (or corresponding), calculator with empty memory.

### Canalis. CANALIS Principles and Techniques of Speaker Placement

Canalis CANALIS Principles and Techniques of Speaker Placement After assembling a high-quality music system, the room becomes the limiting factor in sonic performance. There are many articles and theories

### Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

### Loudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering

Loudspeaker Parameters D. G. Meyer School of Electrical & Computer Engineering Outline Review of How Loudspeakers Work Small Signal Loudspeaker Parameters Effect of Loudspeaker Cable Sample Loudspeaker

### ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal

### Understanding CIC Compensation Filters

Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response

### Lecture 4: Jan 12, 2005

EE516 Computer Speech Processing Winter 2005 Lecture 4: Jan 12, 2005 Lecturer: Prof: J. Bilmes University of Washington Dept. of Electrical Engineering Scribe: Scott Philips

### GETTING STARTED WITH LABVIEW POINT-BY-POINT VIS

USER GUIDE GETTING STARTED WITH LABVIEW POINT-BY-POINT VIS Contents Using the LabVIEW Point-By-Point VI Libraries... 2 Initializing Point-By-Point VIs... 3 Frequently Asked Questions... 5 What Are the

### An Adjustable Audio Filter System for the Receiver - Part 1

1 of 7 An Adjustable Audio Filter System for the Receiver - Part 1 The audio response is shaped as required using Switched Capacitor Filters Lloyd Butler VK5BR Front panel view of the original receiver

### 73M2901CE Programming the Imprecise Call Progress Monitor Filter

A Maxim Integrated Products Brand 73M2901CE Programming the Imprecise Call Progress Monitor Filter APPLICATION NOTE AN_2901CE_042 March 2009 Introduction The Teridian 73M2901CE integrated circuit modem

### Spectrum Analyzer Basics www. agilent.com/find/backtobasics

www. agilent.com/find/backtobasics Abstract Learn why spectrum analysis is important for a variety of applications and how to measure system and device performance using a spectrum analyzer. To introduce