2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model"

Transcription

1 ECE45A/8A Notes et #4 Port Parameters Two-ways of describing device: A. Equivalent - Circuit-Model Physically based Includes bias dependence Includes frequency dependence Includes size dependence - scalability Ideal for IC design Weakness: Model necessarily simplified; some errors. Thus, weak for highly resonant designs B. Port Model Matrix of tabular data vs. frequency Need one matrix for each bias point and device size Clumsy huge data sets required Traditional microwave method Exact Port descriptions These are black box (mathematical) descriptions. I I + port port + Inside might be a transistor, a FET, a transmission line, or just about anything. The terminal characteristics are I & I there are degrees of freedom. Rev./7

2 ECE45A/8A Notes et #4 Admittance Parameters I I Y Y Y Y Example: imple FET Model C gd g m gs C gs + gs Rds By inspection: Y jωc gs + jωc gd jωc gd g m jωc gd G ds + jωc gd Easy! I Y Y I Rev./7

3 ECE45A/8A Notes et #4 3 Impedance Parameters I I Example R R R 3 By inspection R + R 3 R 3 R 3 R + R 3 I I I I But, y, z, and h parameters are not suitable for high frequency measurement. Problem: How can you get a true open or short at the circuit terminals? Any real short is inductive. Any real open is capacitive. To make matters worse, if you are trying to measure a high freq. active device, a short or open can make it oscillate! olution: Use termination in instead! Broadband. Not very sensitive to parasitic L,C Kills reflections. Redefine parameters to use fwd. and rev. voltage waves. Measurement can use directional couplers. Rev./7

4 ECE45A/8A Notes et #4 4 Parameters o a a b b z z o input reflection coeff a rev. transm. gain a b b a a fwd transm. gain output a Γ a Note that must be defined. We don t really need transmission lines. Our objective now is to de-mystify -parameters they are easy! Recall (x) + (x) + (x) I(x) + (x) (x) phasor quantities. amplitude, not rms values. We can normalize the amplitude of waves to : a(x) + (x) b(x) (x) forward wave reverse wave Why? o that a(x)a* (x) power in forward wave. if a.44 then power in wave is watt. (or a rms ) Rev./7

5 ECE45A/8A Notes et #4 5 likewise, b(x)b * (x)/ is the power in the reverse wave o, in terms of total voltage (x) and current I(x), or, a( x) b( x) () x ( ) vx ax ()+ bx () ix () Ix () ax () bx () [ v( x) + i( x) ] [ ( x) + I( x) ] [ v( x) i( x) ] [ ( x) I( x) ] Reflection o, how is Γ defined in terms of the parameters? At port, But, Γ b a b a+ a We need to eliminate a. How? If L o, a Γ L so, therefore a if port is terminated in o. b ame with at port with : b Γ a a b Γ a a Rev./7

6 ECE45A/8A Notes et #4 6 Transmission b a+ a o, the forward transmission can be found by setting a (terminate output) b a a Reverse transmission, similarly, is found by setting a (terminate input in o) b a+ a b a a Rev./7

7 ECE45A/8A Notes et #4 7 ome comments on power measurement: Power can vary over a large range, therefore it is often specified on a logarithmic scale. There must be a point of reference on the scale; the power measurements are usually with reference to mw. The unit is called dbm meaning db relative to mw of power. Thus, dbm mw dbm mw - dbm. mw etc. To convert mw to dbm: dbm log (P) To convert dbm to mw: P dbm/ What is the difference between db and dbm? db is a power ratio used to describe a gain or loss for example. G log (P out /P in ) db Return Loss - log Γ db But, db says nothing about the absolute power level. Don t confuse their usage! Rev./7

8 ECE45A/8A Notes et #4 8 Now, define available power: P A max power output from a source with impedance s that can be absorbed into a load. let, L * (in this case) because maximum power transfer occurs when we have a conjugate match gen gen / generator load Or, in terms of a and b: P load P A 8 gen a + + gen ~ b b + + gen a and b ; gen and + o, gen * Pload PA aa 8 Rev./7

9 ECE45A/8A Notes et #4 9 We see that the available power is independent of load impedance. Even if the load is not matched, available power remains constant. Actual power in the load is reduced however. Generator output power is calibrated and displayed as available power. Actual Load Power P Re or * Load a b I PLoad PA ( ) Reflected Power b a imilarly, PR b a P Power reflected from input b Power incident on input a a A Power reflected from network output Power incident on output Power incident on output Reflected power from load b a b b Power reflected from input port Power incident on load from the network Rev./7

10 ECE45A/8A Notes et #4 a b a b Also, by definition, transducer gain P load P avs G T even if. load isn t matched to network and. input of network not matched to generator Here, P Load L b ( Γ ) is defined in terms of transducer gain for the special case of where L : b a a b power incident on load (and is absorbed since Γ L) a source available power imilarly, transducer gain with source and load reverse transducer power gain Rev./7

11 ECE45A/8A Notes et #4 Reference Planes E B C Microwave transistor in package E On board: B C [] connection to instruments here Define defining x at z both ports here. Defining the reference planes differently changes the -parameters. Rev./7

12 ECE45A/8A Notes et #4 phase shifts! 5Ω microstrip transmission lines b a e j θ e j ( θ +θ ) e j ( θ +θ ) e j θ a x θ π x x x λ b connections to instruments here π θ βx λ π θ βx λ θ π λ ' θ e j( θ+ θ ) e j( θ+ θ ) e jθ e The reflection parameters are shifted in phase by twice the electrical length because the incident wave travels twice over this length upon reflection. The transmission parameters have the sum of the electrical lengths, since the transmitted wave must pass through both lengths. Rev./7

13 ECE45A/8A Notes et #4 3 Comment on electrical length: The microwave literature will say a line is 43 long at 5 GHz. What does this mean? Electrical length E 36 λ ref Recall f λ v so f ref λ ref υ E v / f ref 36 v f ref 36 f ref E T f ref 36 a line which is ns long has an electrical length E 36 at f ref GHz and an electrical length E 36 at F ref MHz Why not just say Τ ns? you should be conversant with both terminologies. Converting to physical length f λ λ ref ref v v f p p thus: physical length E(deg) λ ref 36 Electrical length (in wavelengths) λ ref or: Rev./7

14 ECE45A/8A Notes et #4 4 How to Calculate -Parameters Quickly First Comment b a a b + a a (We must kill a in order to measure or calculate ) Γ L L b a if L, then Γ L is zero and so a Γ L b. o b a L o if we say that in L is the input impedance with L then in L in L + Γ in or: in L + The same comment clearly applies for. The mith Chart is often used to plot,. Rev./7

15 ECE45A/8A Notes et #4 5 Example: 4Ω Given 5Ω, what is? 4Ω 5Ω imilar arguments give 4 4. in L 54Ω Find b a a Γ a a ~ gen b b L Rev./7

16 ECE45A/8A Notes et #4 6 What is a in this case? We know that: a + and + o gen o, a gen o Consider the load: b out Why? b a + L out _ a Γ L b But, Γ L because L, so a. out + + a + b b Now, calculate out / gen : ( a ) out + b a But, a because the load impedance, so ubstitute for a : out a so, gen a out gen Rev./7

17 ECE45A/8A Notes et #4 7 thus, out when L gen Why the factor of? gen gen / generator load We see that the generator voltage is split between the source and load in the matched case. Here, we see that out/gen ½, but the transducer gain must be equal to. (P LOAD /P A ). is the transducer gain in this situation. If we insert an amplifier into the network, the signal has been increased by an amount. gen out gen / generator load Rev./7

18 ECE45A/8A Notes et #4 8 o, is the FORWARD INERTION GAIN or FORWARD TRANDUCER GAIN in a system of impedance. EXAMPLE: Find 5 4 gen 5 out / gen out/gen 5/ OR, we could let gen. Then, out. What about a reference plane extension? X - l X X X - l 5 4 gen 5 out / gen Θ i π l i /λ e jθ Γ IN () Γ OUT () e jθ and π π θ β θ β λ λ ' j( θ + θ ) π j( + )/ λ e e Rev./7

19 ECE45A/8A Notes et #4 9 EXAMPLE: Find the 4 parameters of the following circuit: gen C : Find in (with L ), then calculate input reflection coefficient. IN L / ( sc + / ) IN IN + IN IN + turning the crank, jωc / + jωc / will be the same due to symmetry. Note that we calculated IN with port terminated in. This is part of the definition of so is essential. Rev./7

20 ECE45A/8A Notes et #4 Now find : first use Thevenin Norton transformation: out gen / C out gen + sc I/Y out gen + jωc / Rev./7

S-Parameter Matrices

S-Parameter Matrices The objective of microwave circuit analysis is to move from the requirement to solve for all the fields and waves of a structure to an equivalent circuit that is amenable to all the tools of the circuit

More information

Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

More information

Agilent AN 154 S-Parameter Design Application Note

Agilent AN 154 S-Parameter Design Application Note Agilent AN 154 S-Parameter Design Application Note Introduction The need for new high-frequency, solid-state circuit design techniques has been recognized both by microwave engineers and circuit designers.

More information

RF-Microwaves formulas - 1-port systems

RF-Microwaves formulas - 1-port systems RF-Microwaves formulas - -port systems s-parameters: Considering a voltage source feeding into the DUT with a source impedance of. E i E r DUT The voltage into the DUT is composed of 2 parts, an incident

More information

The Smith chart. Smith chart components. The normalized impedance line CHAPTER

The Smith chart. Smith chart components. The normalized impedance line CHAPTER 26 CHAPTER The Smith chart The mathematics of transmission lines, and certain other devices, becomes cumbersome at times, especially when dealing with complex impedances and nonstandard situations. In

More information

Transmission Lines. Smith Chart

Transmission Lines. Smith Chart Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure

More information

Lecture 4: Microwave Amplifiers (1) Component focus: bipolar junction transistors (BJT) and fieldeffect transistors (FET).

Lecture 4: Microwave Amplifiers (1) Component focus: bipolar junction transistors (BJT) and fieldeffect transistors (FET). Lecture 4: Microwave Amplifiers (1) Component focus: bipolar junction transistors (BJT) and fieldeffect transistors (FET). The design techniques: employ the full range of concepts of microwave transmission

More information

ADS Tutorial Stability and Gain Circles ECE145A/218A

ADS Tutorial Stability and Gain Circles ECE145A/218A ADS Tutorial Stability and Gain Circles ECE145A/218A The examples in this tutorial can be downloaded from xanadu.ece.ucsb.edu/~long/ece145a as the file: stab_gain.zap The first step in designing the amplifier

More information

POWER DIVIDERS AND DIRECTIONAL COUPLERS

POWER DIVIDERS AND DIRECTIONAL COUPLERS POWER DIVIDERS AND DIRECTIONAL COUPLERS A directional coupler is a passive device which couples part of the transmission power by a known amount out through another port, often by using two transmission

More information

Microwave Circuit Design and Measurements Lab. INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2

Microwave Circuit Design and Measurements Lab. INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2 EE 458/558 Microwave Circuit Design and Measurements Lab INTRODUCTION TO MICROWAVE MEASUREMENTS: DETECTION OF RF POWER AND STANDING WAVES Lab #2 The purpose of this lab is to gain a basic understanding

More information

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

CHAPTER 6 Frequency Response, Bode Plots, and Resonance ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

More information

A Network Analyzer For Active Components

A Network Analyzer For Active Components A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory

More information

EE 221 AC Circuit Power Analysis. Instantaneous and average power RMS value Apparent power and power factor Complex power

EE 221 AC Circuit Power Analysis. Instantaneous and average power RMS value Apparent power and power factor Complex power EE 1 AC Circuit Power Analysis Instantaneous and average power RMS value Apparent power and power factor Complex power Instantaneous Power Product of time-domain voltage and time-domain current p(t) =

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Performing Amplifier Measurements with the Vector Network Analyzer ZVB

Performing Amplifier Measurements with the Vector Network Analyzer ZVB Product: Vector Network Analyzer R&S ZVB Performing Amplifier Measurements with the Vector Network Analyzer ZVB Application Note This document describes typical measurements that are required to be made

More information

Microwave Measurements with Network Analyzer Design of RFID Antenna. In the Course Circuit Theory By: Johan Sidén

Microwave Measurements with Network Analyzer Design of RFID Antenna. In the Course Circuit Theory By: Johan Sidén Microwave Measurements with Network Analyzer Design of RFID Antenna In the Course Circuit Theory By: By: 1(9) In this laboratory work you will show your classmates that you can get the best resonance on

More information

S-Parameters and Related Quantities Sam Wetterlin 10/20/09

S-Parameters and Related Quantities Sam Wetterlin 10/20/09 S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters

More information

RF IF. The World Leader in High-Performance Signal Processing Solutions. RF Power Amplifiers. May 7, 2003

RF IF. The World Leader in High-Performance Signal Processing Solutions. RF Power Amplifiers. May 7, 2003 The World Leader in High-Performance Signal Processing Solutions RF Power Amplifiers May 7, 2003 Outline PA Introduction Power transfer characteristics Intrinsic PA metrics Linear and Non-linear amplifiers

More information

Revision on Basic Transistor Amplifiers

Revision on Basic Transistor Amplifiers Electronic Circuits Revision on Basic Transistor Amplifiers Contents Biasing Amplification principles Small-signal model development for BJT Aim of this chapter To show how transistors can be used to amplify

More information

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

More information

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 31. Alternating Current Circuits Assignment is due at 2:00am on Wednesday, March 21, 2007 Credit for problems submitted late will decrease to 0% after the

More information

db, dbm, dbw db 10 log (x) where x is unitless! For example, amplifier gain is a unitless value!

db, dbm, dbw db 10 log (x) where x is unitless! For example, amplifier gain is a unitless value! 2/15/2005 db.doc 1/9 db, dbm, dbw Decibel (db), is a specific function that operates on a unitless parameter: db log (x) where x is unitless! Q: A unitless parameter! What good is that!? A: Many values

More information

2. The Vector Network Analyzer

2. The Vector Network Analyzer ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission

More information

Welcome to this presentation which helps to highlight the capability of Genesys in the design of power amplifiers for LTE applications

Welcome to this presentation which helps to highlight the capability of Genesys in the design of power amplifiers for LTE applications Welcome to this presentation which helps to highlight the capability of Genesys in the design of power amplifiers for LTE applications 1 2 3 4 5 Linearity is compromised due to the obvious output waveform.

More information

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronic and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronic and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronic and Communication Engineering Indian Institute of Technology, Guwahati Module -5 Power Circuits and System Lecture - 2 Transformer

More information

9 Measurements on Transmission Lines

9 Measurements on Transmission Lines Measurements on Transmission Lines Power and Attenuation Measurements Although a variety of instruments measure power, the most accurate instrument is a power meter and a power sensor. The sensor is an

More information

Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. #06 Power Amplifiers Lecture No. #01 Power Amplifiers (Refer Slide Time: 00:44) We now move to the next

More information

Lock - in Amplifier and Applications

Lock - in Amplifier and Applications Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

More information

EMC quantities and their uncertainty

EMC quantities and their uncertainty EMC quantities and their uncertainty Carlo Carobbi Dipartimento di Elettronica e Telecomunicazioni Università degli Studi di Firenze Politecnico di Torino, I3P - 17 Giugno 2010 1 EMC quantities Frequency

More information

7.1 POWER IN AC CIRCUITS

7.1 POWER IN AC CIRCUITS C H A P T E R 7 AC POWER he aim of this chapter is to introduce the student to simple AC power calculations and to the generation and distribution of electric power. The chapter builds on the material

More information

ECE145A/ECE218A. Goal: Learn to design stable narrowband amplifiers using S parameters

ECE145A/ECE218A. Goal: Learn to design stable narrowband amplifiers using S parameters In other courses, you have learned to design amplifiers using small signal models for devices. This works reasonably well at lower frequencies, but at high frequencies often the device S.S. model is not

More information

2/20/2009 3 Transmission Lines and Waveguides.doc 1/3. and Waveguides. Transmission Line A two conductor structure that can support a TEM wave.

2/20/2009 3 Transmission Lines and Waveguides.doc 1/3. and Waveguides. Transmission Line A two conductor structure that can support a TEM wave. 2/20/2009 3 Transmission Lines and Waveguides.doc 1/3 Chapter 3 Transmission Lines and Waveguides First, some definitions: Transmission Line A two conductor structure that can support a TEM wave. Waveguide

More information

RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp (eddy.boskamp@med.ge.com)

RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp (eddy.boskamp@med.ge.com) RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp (eddy.boskamp@med.ge.com) INTRODUCTION I am often asked by researchers what kind of equipment is needed to set up an RF lab. The

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

Antenna Factors, their Derivation and the FCC Dave Wissel @ Wave Technology

Antenna Factors, their Derivation and the FCC Dave Wissel @ Wave Technology Antenna Factors, their Derivation and the FCC Dave Wissel @ Wave Technology OVERVIEW: In the document I start with the definition of antenna factor (AF). Next I give a short history of what led to antenna

More information

The output signal may be of the same form as the input signal, i.e. V in produces V out

The output signal may be of the same form as the input signal, i.e. V in produces V out What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input

More information

Six-Port Reflectometer: an Alternative Network Analyzer for THz Region. Guoguang Wu

Six-Port Reflectometer: an Alternative Network Analyzer for THz Region. Guoguang Wu Six-Port Reflectometer: an Alternative Network Analyzer for THz Region Guoguang Wu Outline General Background of Network Analyzer Principles of Six-Port Reflectometer WR-15 Six-port Reflectometer Design,

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

A Shunt Fixture for Low Impedance Measurements Sam Wetterlin 4/28/11

A Shunt Fixture for Low Impedance Measurements Sam Wetterlin 4/28/11 A Shunt Fixture for Low Impedance Measurements Sam Wetterlin 4/28/11 Introduction Measurements of impedances in the 0.01-10 ohm range are useful for measuring the resistance of capacitors, inductors and

More information

BIASING MMIC AMPLIFIERS (e.g., ERA SERIES) (AN )

BIASING MMIC AMPLIFIERS (e.g., ERA SERIES) (AN ) Introduction BIASING MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer multi-stage performance

More information

Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition

Analysis on the Balanced Class-E Power Amplifier for the Load Mismatch Condition Analysis on the Class-E Power Amplifier for the Load Mismatch Condition Inoh Jung 1,1, Mincheol Seo 1, Jeongbae Jeon 1, Hyungchul Kim 1, Minwoo Cho 1, Hwiseob Lee 1 and Youngoo Yang 1 Sungkyunkwan University,

More information

Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows

Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows LS-296 Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows T. L. Smith ASD / RF Group Advanced Photon Source Argonne National Laboratory June 26, 2002 Table of Contents 1) Introduction

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater

More information

Understanding SWR by Example

Understanding SWR by Example Understanding SWR by Example Take the mystery and mystique out of standing wave ratio. Darrin Walraven, K5DVW It sometimes seems that one of the most mysterious creatures in the world of Amateur Radio

More information

Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page

Understanding the Fundamental Principles of Vector Network Analysis. Application Note 1287-1. Table of Contents. Page Understanding the Fundamental Principles of Vector Network Analysis Application Note 1287-1 Table of Contents Page Introduction 2 Measurements in Communications Systems 2 Importance of Vector Measurements

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

MANUAL RETURN LOSS MEASUREMENTS Sam Wetterlin 10/5/08

MANUAL RETURN LOSS MEASUREMENTS Sam Wetterlin 10/5/08 MANUAL RETURN LOSS MEASUREMENTS Sam Wetterlin swetterlin@comcast.net 10/5/08 This paper describes the procedure for using a reflection bridge (a/k/a return loss bridge ) to manually measure return loss

More information

APPLICATION NOTES POWER DIVIDERS. Things to consider

APPLICATION NOTES POWER DIVIDERS. Things to consider Internet Copy Rev A Overview Various RF applications require power to be distributed among various paths. The simplest way this can be done is by using a power splitter/divider. Power dividers are reciprocal

More information

LAB #2: AUDIO MONITOR

LAB #2: AUDIO MONITOR EET-368L 2-1 LAB #2: AUDIO MONITOR INTRODUCTION: The last stage in many communications systems is an audio amplifier of some type. The audio amplifier provides both voltage and current gain for signals

More information

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:

1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction: ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure

More information

Bharathwaj Muthuswamy EE100 Active Filters

Bharathwaj Muthuswamy EE100 Active Filters Bharathwaj Muthuswamy EE100 mbharat@cory.eecs.berkeley.edu 1. Introduction Active Filters In this chapter, we will deal with active filter circuits. Why even bother with active filters? Answer: Audio.

More information

INTEGRATED CIRCUITS DATA SHEET. TDA8340 TDA8341 Television IF amplifier and demodulator. Product specification File under Integrated Circuits, IC02

INTEGRATED CIRCUITS DATA SHEET. TDA8340 TDA8341 Television IF amplifier and demodulator. Product specification File under Integrated Circuits, IC02 INTEGRATED CIRCUITS DATA SHEET Television IF amplifier and demodulator File under Integrated Circuits, IC02 November 1987 DESCRIPTION The ;Q and ;Q are integrated IF amplifier and demodulator circuits

More information

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

More information

6-Port GaN HEMT Models Help Designers Optimize PA Efficiency. Waveform Engineering Maximizes Wireless PA Performance

6-Port GaN HEMT Models Help Designers Optimize PA Efficiency. Waveform Engineering Maximizes Wireless PA Performance 6-Port GaN HEMT Models Help Designers Optimize PA Efficiency Waveform Engineering Maximizes Wireless PA Performance Simulation of power amplifiers (PAs) for modern wireless base station and small cell

More information

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z + Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful

More information

Field Effect Transistor RF Amplifier Design Techniques

Field Effect Transistor RF Amplifier Design Techniques Application Note Rev. 0, 12/1993 NOTE: The theory in this application note is still applicable, but some of the products referenced may be discontinued. Field Effect Transistor RF Amplifier Design Techniques

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY. We start with examples of a few filter circuits to illustrate the concept.

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY. We start with examples of a few filter circuits to illustrate the concept. FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE206 - Electrical Circuits and Systems II Laboratory.

UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE206 - Electrical Circuits and Systems II Laboratory. UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE06 - Electrical Circuits and Systems II Laboratory. Objectives: Transformer Lab. Comparison of the ideal transformer versus

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Local Oscillator for FM broadcast band 88-108 MHz

Local Oscillator for FM broadcast band 88-108 MHz Local Oscillator for FM broadcast band 88-108 MHz Wang Luhao Yan Shubo Supervisor: Göran Jönsson Department of Electrical and Information Technology Lund University 2012.05.15 Abstract In this project

More information

Using the Impedance Method

Using the Impedance Method Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

Precision Measurements and Models You Trust. Application Note 49

Precision Measurements and Models You Trust. Application Note 49 Application Note 49 ANALYSIS OF A 30 W POWER AMPLIFIER UTILIZING MODELITHICS TRIQUINT T2G6003028-FS MODEL IN AGILENT ADS Introduction This note provides insight into the performance predictability of a

More information

Highly Integrated Wideband Doherty Power Amplifier

Highly Integrated Wideband Doherty Power Amplifier Highly Integrated Wideband Doherty Power Amplifier Sundas Sheikh Raza Hussain This thesis is presented as part of Degree of Master of Science in Electrical Engineering Blekinge Institute of Technology

More information

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer

More information

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 231 Lecture 23 Frequency Response of Amplifiers (I) CommonSource Amplifier December 1, 2005 Contents: 1. Introduction 2. Intrinsic frequency

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

An Introduction to the EKV Model and a Comparison of EKV to BSIM

An Introduction to the EKV Model and a Comparison of EKV to BSIM An Introduction to the EKV Model and a Comparison of EKV to BSIM Stephen C. Terry 2. 3.2005 Integrated Circuits & Systems Laboratory 1 Overview Characterizing MOSFET operating regions EKV model fundamentals

More information

1.7 Digital Signaling

1.7 Digital Signaling 1.7 Digital Signaling One important application of transmission line theory is modeling connections carrying digital signals beteen logic elements. To of the main issues that must be dealt ith are terminations

More information

APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

More information

S-parameter Simulation and Optimization

S-parameter Simulation and Optimization S-parameter Simulation and Optimization Slide 5-1 S-parameters are Ratios Usually given in db as 20 log of the voltage ratios of the waves at the ports: incident, reflected, or transmitted. S-parameter

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information

Broadband Push-Pull Power Amplifier Design at Microwave Frequencies

Broadband Push-Pull Power Amplifier Design at Microwave Frequencies Broadband Push-Pull Power Amplifier Design at Microwave Frequencies Robert Smith and Prof. Steve Cripps Centre for High Frequency Engineering, Cardiff University smithrm3@cardiff.ac.uk A broadband, high

More information

EE302 Lesson 14: Antennas

EE302 Lesson 14: Antennas EE302 Lesson 14: Antennas Loaded antennas /4 antennas are desirable because their impedance is purely resistive. At low frequencies, full /4 antennas are sometime impractical (especially in mobile applications).

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

The Gamma Match. 1 Equal Size Elements

The Gamma Match. 1 Equal Size Elements The Gamma Match The gamma match was originally invented as a means of feeding vertical monopole antennas for medium wave broadcasts, which were earthed at the base for lightning protection (see Figure

More information

Telecommunications and the Information Age ET108B LM#2

Telecommunications and the Information Age ET108B LM#2 Telecommunications and the Information Age ET108B LM#2 Characteristics of Sound Frequencies used by people Sound Waves versus Electrical Waves Basic Electricity as it pertains to Circuits Electromagnetic

More information

PA notes #3: Higher Efficiency Power Amplifiers

PA notes #3: Higher Efficiency Power Amplifiers ECE145B/18B PA Lecture Notes #3 Prof. S. Long PA notes #3: Higher Efficiency Power Amplifiers Efficiency limitations -- Class A: at best 50% at worst 0% For really high power or battery applications, Class

More information

Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division. Rho.

Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division. Rho. Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division Reflection coefficient is the basis of several measurements common

More information

Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

More information

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

More information

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,

More information

L stub Z A = Z 0 Z R Z 0S. Single stub impedance matching

L stub Z A = Z 0 Z R Z 0S. Single stub impedance matching Single stub impedance matching Impedance matching can be achieved by inserting another transmission line (stub) as shown in the diagram below Z A = Z 0 Z 0 Z R Z 0S d stub L stub Amanogawa, 006 Digital

More information

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency PAs

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency PAs Application Note NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency PAs Overview The design of power amplifiers (PAs) for present and future wireless systems

More information

Critical thin-film processes such as deposition and etching take place in a vacuum

Critical thin-film processes such as deposition and etching take place in a vacuum WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

More information

The Critical Length of a Transmission Line

The Critical Length of a Transmission Line Page 1 of 9 The Critical Length of a Transmission Line Dr. Eric Bogatin President, Bogatin Enterprises Oct 1, 2004 Abstract A transmission line is always a transmission line. However, if it is physically

More information

Chapter 9 Impedance Matching of Power Amplifiers

Chapter 9 Impedance Matching of Power Amplifiers RF Electronics Chapter 9: Impedance Matching of Power Amplifiers Page 1 Introduction Chapter 9 Impedance Matching of Power Amplifiers In order to obtain the most power from a bipolar or field effect transistor,

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

Lecture 27: Frequency response. Context

Lecture 27: Frequency response. Context Lecture 27: Frequency response Prof J. S. Smith Context Today, we will continue the discussion of single transistor amplifiers by looking at common source amplifiers with source degeneration (also common

More information

SECTION 2 Transmission Line Theory

SECTION 2 Transmission Line Theory SEMICONDUCTOR DESIGN GUIDE Transmission Line Theory SECTION 2 Transmission Line Theory Introduction The ECLinPS family has pushed the world of ECL into the realm of picoseconds. When output transitions

More information

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design

More information

Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT

Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT Application Report SLVA255 September 2006 Minimizing Ringing at the Switch Node of a Boost Converter Jeff Falin... PMP Portable Power Applications ABSTRACT This application report explains how to use proper

More information