Lecture 23: Common Emitter Amplifier Frequency Response. Miller s Theorem.

Size: px
Start display at page:

Download "Lecture 23: Common Emitter Amplifier Frequency Response. Miller s Theorem."

Transcription

1 Whites, EE 320 ecture 23 Page 1 of 17 ecture 23: Common Emitter mplifier Frequency Response. Miller s Theorem. We ll use the high frequency model for the BJT we developed the previous lecture and compute the frequency response of a common emitter amplifier, as shown below Fig. 5.71a. (Fig. 5.71) s we discussed the previous lecture, there are three distct region of frequency operation for this and most transistor amplifier circuits. We ll exame the operation of this CE 2009 Keith W. Whites

2 Whites, EE 320 ecture 23 Page 2 of 17 amplifier more closely when operated three frequency regimes. Mid-band Frequency Response of the CE mplifier t the mid-band frequencies, the DC blockg capacitors are assumed to have very small impedances so they can be replaced by short circuits, while the impedances of C and C μ are very large so they can be replaced by open circuits. The equivalent small-nal model for the mid-band frequency response is then We ll defe so that at the output R = r R R (1) o C V = g R V (2) o m Usg Théven s theorem followed by voltage division at the put we fd

3 Whites, EE 320 ecture 23 Page 3 of 17 r r R B V = VTH = V r + rx + RTH r + rx + RB R RB + R (3) Substitutg (3) to (2) we fd the mid-band voltage ga m to be Vo gmr RB m = ( ro RC R) (4) V r + r + R R R + R x B B High Frequency Response of the CE mplifier For the high frequency response of the CE amplifier of Fig. 5.71a, the impedance of the blockg capacitors is still negligibly small, but now the ternal capacitances of the BJT are no longer effectively open circuits. Usg the high frequency small-nal model of the BJT discussed the previous lecture, the equivalent small-nal circuit of the CE amplifier now becomes: (Fig. 5.72a)

4 Whites, EE 320 ecture 23 Page 4 of 17 We ll simplify this circuit a little by calculatg a Théven equivalent circuit at the put and usg the defition for R (1): (Fig. 5.72b) where it can be easily shown that V is V given (3) r RB V = V (5.167),(5) r + r + R R R + R x B B while R = r rx + ( RB R ) (5.168),(6) Miller s Theorem We can analyze the circuit Fig. 5.72b through traditional methods, but if we apply Miller s theorem we can greatly simplify the effort. Plus, it will be easier to apply an approximation that will arise if we use Miller s theorem. You may have seen Miller s theorem previously circuit analysis. It is another equivalent circuit theorem for lear

5 Whites, EE 320 ecture 23 Page 5 of 17 circuits ak to Théven s and Norton s theorems. Miller s theorem applies to this circuit topology: The equivalent Miller s theorem circuit is (Fig. 1) (Fig. 2) where x = v 1 v B and B x = v 1 v B (7),(8) The equivalence of these two circuits can be easily verified. For example, usg KV Fig. 1 v = ix + vb v vb or i = (9) while usg KV the left-hand figure of Fig. 2 gives x

6 Whites, EE 320 ecture 23 Page 6 of 17 i v = (10) Now, for the left-hand figure to be equivalent to the circuit Fig. 1, then i (9) and i (10) must be equal. Therefore, v vb v = x The equivalent impedance can be obtaed from this equation as xv x = = v v vb B 1 v which is the same as (7). similar result verifies (8). So, for a resistive element R x, Miller s theorem states that Rx Rx R = and RB = (12),(13) vb v 1 1 v v while for a capacitive element C x, Miller s theorem states that v B v C = Cx 1 and CB = Cx 1 (14),(15) v vb B

7 Whites, EE 320 ecture 23 Page 7 of 17 High Frequency Response of the CE mplifier (cont.) Returng now to the CE amplifier equivalent small-nal circuit of Fig. 5.72b, we ll apply Miller s theorem of Figs. 1 and 2 to this circuit and the capacitor C μ to give (Fig. 3) where, usg (14) and (15), V o C = Cμ 1 V V and CB = Cμ 1 V o (16),(17) ctually, this equivalent circuit of Fig. 3 is no simpler to analyze than the one Fig. 5.72b because of the dependence of C and C B on the voltages V o and V. However, this equivalent circuit of Fig. 3 will prove valuable for the followg approximation. Note from Fig. 5.72b that I + I = μ gmv I = gv I (18) m μ Up to frequencies near f H and better, the current I μ the small capacitor C μ will be much smaller than gv m. Consequently, from (18)

8 Whites, EE 320 ecture 23 Page 8 of 17 I gv m (19) V I R = g R V (5.169),(20) and o m Usg this last result (16) and (17) we fd that g 1 ( 1 ) mr V C Cμ + = Cμ + gmr V V 1 and CB Cμ 1+ = Cμ 1+ gmrv gmr (21) (22) Most often for this type of amplifier, gmr 1 so that (22) CB C μ. But as we itially assumed, the current through C μ is much smaller than that through the dependent current source gv, which ultimately led to equation (19). m Consequently, we can ignore C B parallel with gv m and the fal high frequency small-nal equivalent circuit for the CE amplifier Fig. 5.71a is (Fig. 5.72c)

9 Whites, EE 320 ecture 23 Page 9 of 17 where C ( ) C C C C 1 gmr μ + = + + (5.173),(22) Based on this small-nal equivalent circuit, we ll derive the high-frequency response of this CE amplifier. t the put C V = V (23) + R while at the output V C = g R V (24) o m Substitutg (23) to (24) gives Sce ( jωc ) If we defe C o = m V g R V 1 C + R C = then (25) becomes 1 jωc gmr Vo = gmr V = V 1 + R 1+ jωc R jωc ω = H 1 C R then substitute this to (26) gives Vo gmr gmr = = V ω f 1+ j 1+ j ω f H H (25) (26) (27) (28)

10 Whites, EE 320 ecture 23 Page 10 of 17 where f H ωh 1 = = 2 2 C R (5.176),(29) You should recognize this transfer function (28) as that for a low pass circuit with a cut-off frequency (or 3-dB frequency) of ω H. This is the response of a sgle time constant circuit, which is what we have the circuit of Fig. 5.72c. What we re ultimately terested is the overall transfer function Vo V from put to output. This can be easily derived from the work we ve already done here. Sce Vo V V o = (30) V V V We can use (28) for the first term the RHS of (30), and use (5) for the second givg Vo gmr r RB = (31) V f 1+ j r + rx + RB R RB + R f H We can recognize m from (4) this expression givg Vo m = (5.175),(32) V f 1+ j f H Once aga, this is the frequency response of a low pass circuit, as shown below:

11 Whites, EE 320 ecture 23 Page 11 of 17 (Fig. 5.72d) Comments and the Miller Effect Equation (32) gives the mid-band and high frequency response of the CE amplifier circuit. It is not valid for the low frequency response near f and lower frequencies, as shown Fig. 5.71b. It turns out that C (22) is usually domated by C ( 1 ) = Cμ + gmr. Even though C μ is usually much smaller than C its effects at the put are accentuated by the factor + g R. 1 m The reason that C undergoes this multiplication is because it is connected between two nodes (B and C Fig. 5.72a) that experience a large voltage ga. This effect is called the

12 Whites, EE 320 ecture 23 Page 12 of 17 Miller effect and the multiplyg factor 1+ gmr (22) is called the Miller multiplier. Because of this Miller effect and the Miller multiplier, the put capacitance C of the CE amplifier is usually quite large. Consequently, from (20) the f H of this amplifier is reduced. In other words, this Miller effect limits the high frequency applications of the CE amplifier because the bandwidth and ga will be limited. ow Frequency Response of the CE mplifier On the other end of the spectrum, the low frequency response of the CE amplifier and all other capacitively coupled amplifiers is limited by the DC blockg and bypass capacitors. This type of low frequency response analysis is rather complicated because there is more than a sgle time constant response volved. In the circuit of Fig. 5.71a there are three capacitors volved, C C1, C C2, and C E. ll three of these greatly affect the low frequency response of the amplifier and can t be ignored.

13 Whites, EE 320 ecture 23 Page 13 of 17 The text presents an approximate solution which the low frequency response is modeled as the product of three high pass sgle time constant circuits cascaded together so that V o jω jω jω m (5.183),(33) V jω ω p1 jω ω p2 jω ω p3 (Fig. 5.73e) So there isn t a sgle f as suggested by Fig. 5.71b but rather a more complicated response at low frequencies as we see Fig. 5.73e above. Computer simulation is perhaps the best predictor for this complicated frequency response, but an approximate formula for f is given the text as f fp 1+ fp2 + fp3 = CC1RC1 CERE CC2RC2 (5.184),(5.185),(34) where R C1, R E, and R C 2 are the resistances seen by C C1, C E, and C C 2, respectively, with the nal source V = 0 and the other two capacitors replaced by short circuits.

14 Whites, EE 320 ecture 23 Page 14 of 17 Example N23.1. Compute the mid-band small-nal voltage ga and the upper 3-dB cutoff frequency of the small-nal voltage ga for the CE amplifier shown Fig. 5.71a. Use a 2N2222 transistor and the circuit element and DC source values listed Example 5.18 the text. Use 10 μf blockg and bypass capacitors. The circuit gilent dvanced Den System appears as: C C C1 Start=100 Hz Stop=1.0 MHz Step=100 Hz V_DC SRC2 Vdc=10.0 V R R2 R=8 kohm vo vi V_C SRC1 Vac=polar(1,0) V Freq=freq R R3 R=5 kohm C C1 C=10 uf C C2 C=10 uf R R1 R=100 kohm ap_npn_2n2222_ Q1 R R4 R=5 kohm I_DC SRC4 Idc=1 m C C3 C=10 uf V_DC SRC3 Vdc=-10.0 V From the results of the DS circuit simulation

15 Whites, EE 320 ecture 23 Page 15 of 17 ( ) ( ) V CB = 2.03 V 400 mv = 2.43 V V = 0.4 V 1.02 V = 0.62 V BE From Fig. 9 the Motorola 2N2222 datasheet (see the previous set of lecture notes) For V CB = 2.43 V Ccb = C μ 5.8 pf. For V = 0.62 V C = 20 pf. BE IC 1 m gm = = = 0.04 S VT 25 mv From (5.163), gm 0.04 ft = = MHz 2 ( C C ) 2 ( 20 pf 5.8 pf + + μ ) This value agrees fairly with the datasheet value of 300 MHz. β0 265 from the DS parts list for this 2N2222 transistor. Therefore, β0 265 r = = = 6,625 Ω g 0.04 m From the 2N2222 datasheet, the nomal output resistance at I C = 1 m is ro 50 kω. What about r x? It s so small value (~ 50 Ω) that we ll easily be able to ignore it for the m calculations compared to r (which is 6,625 Ω as we just calculated). From (4), eb C

16 Whites, EE 320 ecture 23 Page 16 of 17 Therefore, g r R = r R R ( ) m B m o C r rx RB R RB R 2,898.6= R V m = V m = 20log10 m = 36.2 db or decibels ( ) From DS: m3 freq= Hz db(vo)= m3 m1 freq= 6.300kHz m2 freq= 84.40kHz db(vo)= db(vo)= m1 m2 db(vo) E2 1E3 1E4 1E5 freq, Hz 1E6 From this plot, DS computes a mid-band ga of m = db, which agrees closely with the predicted value above. From (29), f H 1 2C R

17 Whites, EE 320 ecture 23 Page 17 of 17 where from (22) C = C + C ( + g R ) = + ( + ) μ 1 m ,898.6 pf = = pf while from (6) R = r rx + ( RB R ) Because RB R = 100 k 5 k = 4,761.9 Ω is so much larger than r x (on the order of 50 Ω), we can safely ignore r x. Then, R 6,625 4,762 = 2,771 Ω. Therefore, fh ,771 = khz This agrees very closely with the value of khz predicted by the DS simulation shown above. dd a short discussion on the ga-bandwidth product m f H.

TWO PORT NETWORKS h-parameter BJT MODEL

TWO PORT NETWORKS h-parameter BJT MODEL TWO PORT NETWORKS h-parameter BJT MODEL The circuit of the basic two port network is shown on the right. Depending on the application, it may be used in a number of different ways to develop different

More information

Common Emitter BJT Amplifier Design Current Mirror Design

Common Emitter BJT Amplifier Design Current Mirror Design Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite

More information

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE BJT AC Analysis 1 of 38 The r e Transistor model Remind Q-poiint re = 26mv/IE BJT AC Analysis 2 of 38 Three amplifier configurations, Common Emitter Common Collector (Emitter Follower) Common Base BJT

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

Voltage Divider Bias

Voltage Divider Bias Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

Experiment EB1: FET Amplifier Frequency Response

Experiment EB1: FET Amplifier Frequency Response EEE106 Electronics II: : FET Amplifier Frequency Response earng Outcome O4: Analyze the operation of JFET, MOSFET and BJT amplifiers and switchg circuits 1.0 Apparatus Equipment required Components required

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Figure 1: Common-base amplifier.

Figure 1: Common-base amplifier. The Common-Base Amplifier Basic Circuit Fig. 1 shows the circuit diagram of a single stage common-base amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

S-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS

S-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS S-DOMAIN ANAYSIS: POES, ZEROS, AND BODE POTS The main objectiveis to find amplifier voltage gain as a transfer function of the complex frequency s. In this s-domain analysis a capacitance С is replaced

More information

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224) 6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

More information

Lecture 22: Class C Power Amplifiers

Lecture 22: Class C Power Amplifiers Whites, EE 322 Lecture 22 Page 1 of 13 Lecture 22: lass Power Amplifiers We discovered in Lecture 18 (Section 9.2) that the maximum efficiency of lass A amplifiers is 25% with a resistive load and 50%

More information

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.

Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and

More information

Lecture 3: DC Analysis of Diode Circuits.

Lecture 3: DC Analysis of Diode Circuits. Whites, EE 320 Lecture 3 Page 1 of 10 Lecture 3: DC Analysis of Diode Circuits. We ll now move on to the DC analysis of diode circuits. Applications will be covered in following lectures. Let s consider

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Lecture 12: DC Analysis of BJT Circuits.

Lecture 12: DC Analysis of BJT Circuits. Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode

More information

Objective. To design and simulate a cascode amplifier circuit using bipolar transistors.

Objective. To design and simulate a cascode amplifier circuit using bipolar transistors. ascode Amplifier Design. Objective. o design and simulate a cascode amplifier circuit using bipolar transistors. Assignment description he cascode amplifier utilises the advantage of the common-emitter

More information

Frequency Response of the CE Amplifier

Frequency Response of the CE Amplifier ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Frequency Response of the CE Amplifier Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 14623-5604

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors). 1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

More information

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

More information

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS Chapter Outline 10.1 The Two-Stage CMOS Op Amp 10.2 The Folded-Cascode CMOS Op Amp 10.3 The 741 Op-Amp Circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis

More information

The BJT Differential Amplifier. Basic Circuit. DC Solution

The BJT Differential Amplifier. Basic Circuit. DC Solution c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit

More information

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

More information

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits

Notes about Small Signal Model. for EE 40 Intro to Microelectronic Circuits Notes about Small Signal Model for EE 40 Intro to Microelectronic Circuits 1. Model the MOSFET Transistor For a MOSFET transistor, there are NMOS and PMOS. The examples shown here would be for NMOS. Figure

More information

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 231 Lecture 23 Frequency Response of Amplifiers (I) CommonSource Amplifier December 1, 2005 Contents: 1. Introduction 2. Intrinsic frequency

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

More information

Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

More information

3.4 - BJT DIFFERENTIAL AMPLIFIERS

3.4 - BJT DIFFERENTIAL AMPLIFIERS BJT Differential Amplifiers (6/4/00) Page 1 3.4 BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

*For stability of the feedback loop, the differential gain must vary as

*For stability of the feedback loop, the differential gain must vary as ECE137a Lab project 3 You will first be designing and building an op-amp. The op-amp will then be configured as a narrow-band amplifier for amplification of voice signals in a public address system. Part

More information

11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION 11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

More information

Tutorial 12 Solutions

Tutorial 12 Solutions PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Application of network analyzer in measuring the performance functions of power supply

Application of network analyzer in measuring the performance functions of power supply J Indian Inst Sci, July Aug 2006, 86, 315 325 Indian Institute of Science Application of network analyzer in measuring the performance functions of power supply B SWAMINATHAN* AND V RAMANARAYANAN Power

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II 1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.

More information

VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: Biasing and Small Signal Model VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

AN1991. Audio decibel level detector with meter driver

AN1991. Audio decibel level detector with meter driver Rev. 2.1 20 March 2015 Application note Document information Info Keywords Abstract Content SA604A, LM358, RSSI, cellular radio The SA604A can provide a logarithmic response proportional to the input signal

More information

Step Response of RC Circuits

Step Response of RC Circuits Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

Application Note SAW-Components

Application Note SAW-Components Application Note SAW-Components Principles of SAWR-stabilized oscillators and transmitters. App: Note #1 This application note describes the physical principle of SAW-stabilized oscillator. Oscillator

More information

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

More information

Design Considerations for an LLC Resonant Converter

Design Considerations for an LLC Resonant Converter Design Considerations for an LLC Resonant Converter Hangseok Choi Power Conversion Team www.fairchildsemi.com 1. Introduction Growing demand for higher power density and low profile in power converter

More information

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works) Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

COMMON-SOURCE JFET AMPLIFIER

COMMON-SOURCE JFET AMPLIFIER EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

Collection of Solved Feedback Amplifier Problems

Collection of Solved Feedback Amplifier Problems c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Collection of Solved Feedback Amplifier Problems This document contains

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design

EE 435 Lecture 13. Cascaded Amplifiers. -- Two-Stage Op Amp Design EE 435 Lecture 13 Cascaded Amplifiers -- Two-Stage Op Amp Design Review from Last Time Routh-Hurwitz Stability Criteria: A third-order polynomial s 3 +a 2 s 2 +a 1 s+a 0 has all poles in the LHP iff all

More information

Lecture 27: Mixers. Gilbert Cell

Lecture 27: Mixers. Gilbert Cell Whites, EE 322 Lecture 27 Page 1 of 9 Lecture 27: Mixers. Gilbert Cell Mixers shift the frequency spectrum of an input signal. This is an essential component in electrical communications (wireless or otherwise)

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics B3 - Using nonlinearity» Tuned amplifier» Frequency multiplier» Gain compressor» Adding feedback AY 2015-16 15/03/2016-1 ATLCE

More information

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002

Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002 Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that

More information

Capacitor Ripple Current Improvements

Capacitor Ripple Current Improvements Capacitor Ripple Current Improvements The multiphase buck regulator topology allows a reduction in the size of the input and put capacitors versus single-phase designs. By quantifying the input and put

More information

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Understanding the Terms and Definitions of LDO Voltage Regulators

Understanding the Terms and Definitions of LDO Voltage Regulators Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

PBA series [PBA300F ~ 1500F and 1500T] *PBA series is suitable for general application which requires a current source power supply.

PBA series [PBA300F ~ 1500F and 1500T] *PBA series is suitable for general application which requires a current source power supply. - circuit - PBA and ACE series are available as a current source power supply by adding external circuit. The main feature of each series is shown below. PBA series [PBA300F ~ 1500F and 1500T] *PBA series

More information

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above. Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination

More information

Series AMLDL-Z Up to 1000mA LED Driver

Series AMLDL-Z Up to 1000mA LED Driver FEATURES: Click on Series name for product info on aimtec.com Series Up to ma LED Driver Models Single output Model Input Voltage (V) Step Down DC/DC LED driver Operating Temperature range 4ºC to 85ºC

More information

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

More information

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

More information

css Custom Silicon Solutions, Inc.

css Custom Silicon Solutions, Inc. css Custom Silicon Solutions, Inc. CSS555(C) CSS555/ PART DESCRIPTION The CSS555 is a micro-power version of the popular 555 Timer IC. It is pin-for-pin compatible with the standard 555 timer and features

More information

Selected Filter Circuits Dr. Lynn Fuller

Selected Filter Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035

More information

Using the Impedance Method

Using the Impedance Method Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

More information

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

Chapter 6 PLL and Clock Generator

Chapter 6 PLL and Clock Generator Chapter 6 PLL and Clock Generator The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central processing module. The PLL allows the processor to operate at a high internal clock

More information

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is: 4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing

More information

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish N393, N393 is a Preferred Device General Purpose Transistors NPN Silicon Features PbFree Package May be Available. The GSuffix Denotes a PbFree Lead Finish MAXIMUM RATINGS Rating Symbol Value Unit CollectorEmitter

More information

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

More information

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics 192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing

More information

LOW POWER FM TRANSMITTER SYSTEM

LOW POWER FM TRANSMITTER SYSTEM Order this document by MC28/D MC28 is a onechip FM transmitter subsystem designed for cordless telephone and FM communication equipment. It includes a microphone amplifier, voltage controlled oscillator

More information

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

More information

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

More information

Electronic Devices and Circuit Theory

Electronic Devices and Circuit Theory Instructor s Resource Manual to accompany Electronic Devices and Circuit Theory Tenth Edition Robert L. Boylestad Louis Nashelsky Upper Saddle River, New Jersey Columbus, Ohio Copyright 2009 by Pearson

More information

Lecture 20: Transmission (ABCD) Matrix.

Lecture 20: Transmission (ABCD) Matrix. Whites, EE 48/58 Lecture 0 Page of 7 Lecture 0: Transmission (ABC) Matrix. Concerning the equivalent port representations of networks we ve seen in this course:. Z parameters are useful for series connected

More information

DATA SHEET. MMBT3904 NPN switching transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2002 Oct 04. 2004 Feb 03.

DATA SHEET. MMBT3904 NPN switching transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2002 Oct 04. 2004 Feb 03. DISCRETE SEMICONDUCTORS DATA SHEET dbook, halfpage M3D088 Supersedes data of 2002 Oct 04 2004 Feb 03 FEATURES Collector current capability I C = 200 ma Collector-emitter voltage V CEO = 40 V. APPLICATIONS

More information

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,

More information

Application Report SLOA024B

Application Report SLOA024B Application Report July 999 Revised September 2002 Mixed Signal Products SLOA024B IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,

More information

P D 215 1.25 Operating Junction Temperature T J 200 C Storage Temperature Range T stg 65 to +150 C

P D 215 1.25 Operating Junction Temperature T J 200 C Storage Temperature Range T stg 65 to +150 C SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line The is designed for output stages in band IV and V TV transmitter amplifiers. It incorporates high value emitter ballast resistors, gold

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information

http://users.ece.gatech.edu/~mleach/ece3050/notes/feedback/fbexamples.pdf

http://users.ece.gatech.edu/~mleach/ece3050/notes/feedback/fbexamples.pdf c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.

More information

Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10. RC Circuits ISU EE. C.Y. Lee Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

More information